
Quiz 3 Solutions

CS3510

1. MST:

weight: 19

2. Huffman Codes:

1



Character Encoding
A 010
B 1
C 011
D 000
E 001

Your Huffman tree should look something like this, but it is possible that
your edge labels are swapped, as well as the values of the final bit for
two children of the same node. If your tree has a greater height than this
tree, i.e., some of your encodings have more bits than necessary, then you
probably built your tree by choosing the highest frequency character first.
You were instead supposed to build from the lowest frequency values and
work your way up to minimize the tree height.

The encoding of ABBCCED using this particular tree results in the binary
string 10000101101111110.

3. True / False

(a) Suppose all the weights in a graph are distinct. Then the longest

2



edge cannot be in the minimum spanning tree.

This statement is false. If a graph contains no cycles, then the longest
edge will be necessary so that all nodes are reachable in the minimum
spanning tree.

(b) Suppose all weights in a graph are distinct. Then the minimum span-
ning tree is unique.

True. If there are edges with equal weights in the graph, then the
minimum spanning tree algorithm will have to choose arbitrarily be-
tween these edges, alphabetically for instance. Which means that
another MST could be found if a different tie-breaking method were
used. However, if every weight is distinct then the outcome is deter-
ministic and there is a single unique minimum spanning tree for a
particular graph.

(c) The Union by Rank data structure always creates balanced trees
where all the leaves are on the kth or k + 1st level of the tree, for
some k.

False. If a rank 0 tree is joined with a rank 3 tree, then the shorter
tree, a leaf, will be attached directly to the root putting it at depth
1. The leaves at depth 3, that gave the root its rank, will have a dis-
tance of two from the previous node thus disproving the the original
claim

(d) In an undirected graph, the shortest path between two nodes always
lies on some minimum spanning tree.

3



In the process of determining the minimum spanning tree of this
graph, the edge with weight 2 will always be examined last, at which
point it will introduce a cycle and thus be discarded. This means
that the MST will only a contain a path from A to D with weight 3,

4



which is not the shortest path.
(e) In a Huffman coding, the item with the greatest probability is always

a child of the root.

Character Frequency
A 5
B 6
C 7
D 8

There are no direct children of the root node in this case, including
the highest frequency element, D, thus countering the original claim.

4. Dynamic Programming

(a) Formally define the set of sub-problems you will solve.

Let K(i) be the maximum value of the committee while considering
the first i people.

(b) Give the recurrence for the solution of a given sub-problem in terms
of other sub-problems.

K(i) = max

{
vi + K(i− 3)
K(i− 1)

This handles the two possibilities for the value of K(i) at a given
position. The ith person is either included or not. If included, then

5



we must exclude possible value contributions from neighbors, which
is why get the value of the rest of the maximum committee from
position i−3. If the current person is not included, then we can take
the value of the maximum committee considering all people up to
and including the i− 1th person.

(c) What are the base cases?

The only positions where the above recurrence cannot be used are the
first three people considered. So we initialize values of K(1), K(2),
and K(3). At position one, only one person is considered so the max-
imum committee value is just v1. The committee after considering
the first two positions will end up being the maximum of v1 and v2.
This is because a choice of of either position will exclude the other.
The same logic follows for the best committee after considering the
first three people.

K(1) = V1

K(2) = max(v1, v2)

K(3) = max(v1, v2, v3)

(d) Give a non-recursive pseudo-code specification of the algorithm and
state its complexity in terms of n.

1 K(1) = v1

2 K(2) = max(v1, v2)
3 K(3) = max(v1, v2)
4 for i = 3 to n
5 if vi + K(i− 3) > K(i− 1)
6 K(i) = vi + K(i− 3)
7 position[i] = i
8 else
9 K(i) = K(i− 1)
10 position[i] = position[i− 1]

We can find the chosen committee members by a single pass of the po-
sition array. Since this and the original algorithm only do a constant
amount of work over a single pass of the array, the overall running
time is O(n).

6


