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1 Introduction

Consider the move to middle shuffle where a card from the top is placed uniformly at random at a position
in the deck. It is easy to see that this Markov Chain is simply a walk on permutations of the cards, that the
state space is connected, and that the Markov Chain is aperiodic. This therefore implies that the stationary
distribution, Π is uniform. We hope that we can demonstrate that this Markov Chain is rapidly mixing,
that is that the Markov Chain reaches the stationary distribution in a polynomial amount of time relative
to the graph size, and exponentially quickly relative to the size of the state space, Ω.

Our goal is to discover a way to bound the mixing time of this Markov Chain. Unfortunately, simple
analysis of the chain is very difficult. It is difficult do determine when the chain is sufficiently mixed. A tool
we can used is called coupling.

Informally, coupling involves using not one, but two initial states in order to bound the mixing time of
the Markov Chain. It is provable to say that the Markov Chains have reached stationarity when the two
Markov Chains become identical. More formally, define x, y ∈ Ω. We will use some mechanism to ensure
that x and y perform coupled transitions. How we define our coupling and these transitions is critical to
ensure that we accurately bound the mixing time of the Markov Chain.

Figure 1: Starting position of coupling, x0 and y0 shown.

Figure 2: After some number of steps, the X and Y chains have coupled.
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Figure 3: Once coupled, the X and Y chains do not separate.

One of the simplest ways to couple two random walks on the state space is to force them to perform
identical moves (where possible). For example: starting at two random points, if point x moves up, force y
to also move up. Obviously in this random walk the coupling does not force the states closer together, they
remain the same distance from each other at all states. We will more cleverly define coupling in order to
allow our states to move closer to one another.

2 Wacky, Informal Arguments

Let us return to the example of shuffling. Previously we were considering the mixing time of the move to mid-
dle shuffle. When trying to think about a coupling for this shuffle, it is very difficult to see how any coupling
would bring states closer together. Instead, let us look at the reverse Markov Chain, where a card is chosen
uniformly at random from the deck, and that card is moved to the top. We claim that this shuffle method has
an identical mixing time to the top to middle shuffle and that there is an easy to define coupling for this chain.

Consider two initial configurations, x0, y0 ∈ Ω. Let x0 be any distribution, and y0 be chosen from the
uniform distribution (y0 ∈ Π). On x0, we choose a card uniformly at random from the deck and bring it to
the top. Suppose that we choose the 27th card from x0 to bring to the top, which happens to be 8♥. For
the coupling, instead of uniformly randomly choosing a card, we will search the deck for the 8♥ and bring
it to the top.

Initially it may seem that this does not preserve the Markov Chain because the move is chosen by x0

instead of y0 choosing its move uniformly randomly from the possible states. This concern, however, is
unwarranted because each card is equally likely to be chosen by x0, which implies that y0’s move is faithful
to the original Markov Chain. The moves for all future yi follow the same convention, but more specifically
once a card is ”coupled” between the two distributions, it always remains coupled. Clearly, because of the
nature of the coupling, when a card is moved to the top, no uncoupled cards can be above any two coupled
cards, and they always remain at the same height as the other from the top.

We claim that the mixing time of this Markov Chain is strictly less than the the coupling time of these
coupled chains. Clearly, this is an example of the coupon collector’s problem, and takes O(n log n) time
before all the cards are selected with probability P = 1 − ε. Because y0 was selected from Π, when we
stop after k steps, yk is also from the uniform distribution. Because xk and yk are now coupled, we can
presume that xk is also sampled from the uniform distribution of Ω, and therefore this Markov Chain is
rapidly mixing.
This chain has the same mixing time as the the top to middle shuffle.

3 Colorings

Consider the problem of sampling from colorings on a graph. Let G = (V,E) be any graph with max degree
∆, and some number of colors k ∈ Z. Our goal is to find a k coloring uniformly at random from the state
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space of possible colorings, Ω.

There is a problem with our goal, however. First, the k coloring may not exist, and deciding whether
this coloring exists is NP-Complete. A corollary of this problem is that because the decision problem is
NP-Complete, it is also NP-Complete to develop a starting configuration for our walk to begin on.

Because of the hardness of finding colorings for small values of k, we will be dealing exclusively with
values where k ≥ ∆ + 1, where it is trivial to assign a k-coloring using a greedy algorithm. Because k is
strictly greater than the largest degree, it is always possible to assign a color to a vertex regardless of the
colors of the surrounding (at most) ∆ vertices.

We will define a Markov Chain to walk on the state space of these colorings as follows:

Markov Chain: Mcol

1. Given G = (V,E) at a valid coloring
2. Select v ∈u V
3. Select color c ∈u 1, 2, ..., k − 1, k
4. Recolor v with c if it produces a valid k-coloring. Otherwise keep v
colored as it is.

It is clear to see that any particular edge in the Markov Chain combined with a color is chosen with
probability 1

|V |k , which is important to ensure that the appropriate stationary distribution is reached. Unfor-
tunately, when k = ∆, the state space is disconnected. (Proof: Consider Kn where k = n. No valid coloring
exists.) Additionally, on the torus, when k = +1, the state space is also disconnected in some instances.
(Proof: Let the central node be yellow, its north neighbor be white, its east neighbor be blue, its south
neighbor be red, and its west neighbor be red. Repeat this pattern for the torus. No valid transitions exist
for this Markov Chain.) It is left to the reader to show that when k ≥ ∆ + 2, Mcol is ergodic.

We will now begin a series of proofs to show when this chain is rapidly mixing. The state of the art
result [Jerrum] demonstrates that when k ≥ 2∆, Mcol is rapidly mixing. As a sidenote, Jerrum has shown
that 8-colorings are rapidly mixing on the grid, a specialized case of general graphs. It has also been demon-
strated that when k = 6 or k = 7, the Markov chain is also rapidly mixing. k = 3 has also been shown to be
rapidly mixing by Randall. An open problem is whether 4 and 5 colorings are also rapidly mixing for the grid.

We will begin by demonstrating that the Markov Chain is rapidly mixing for k ≥ 4∆. We will then
introduce a technique called path coupling to prove rapid mixing for k ≥ 3∆, and lastly we will improve on
this bound to show that Mcol is rapidly mixing when k ≥ 2∆. First, however, we must demonstrate that
the time for couplings to reach each other is greater than the mixing time for an algorithm.

4 Coalescence Time

The shuffling example we considered earlier presents us with a strange issue. In general, we do not wish to
compare our random starting point, X, with the a sample from stationarity, Y ∈u Π. Instead, we want to
begin with Y at a random starting point similar to X. We will define our coupling as follows:
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Coupling:

p̂ : Ω2 → Ω2 such that∑
y′∈Ω

p̂((x, y), (x′, y′)) = P (x, x′) and∑
x′∈Ω

p̂((x, y), (x′, y′)) = P (y, y′)

This implies several things, the most important of which is that the marginal from x→ x′ and from y → y′

is faithful to the original markov chain. Moreover, this implies that when x = y, x′ = y′. In other words,
steps of the coupled Markov Chains are still faithful to the original Markov Chain, and once two states are
coupled, they remain coupled at all future steps.

We wish to have some intuition about the amount of time that it takes for two chains to couple so we
have a valid understanding of the mixing times.

Definition: Coalescence time

A function t such that ∀x, y ∈ Ω, ε > 0
Pr[xt(ε) 6= yt(ε)|x0 = x, y0 = y] ≤ ε
This implies that even in the worst possible starting positions x, y, the coa-
lescence time is bounded by this error probability.

This implies that even in the worst possible starting positions x, y, the coalescence time is bounded by this
error probability. Understanding these worst case bounds is critical to proving the mixing times for our
Markov Chains in all cases.

Theorem:

τ(ε) < t(ε)

Proof:
Recall that ||pt(x0)−Π||tv =

1
2

∑
w∈Ω

|pt(x,w)−Π(w)| = max
A⊆Ω

∑
w∈A

[pt(x,w)−Π(w)].

Let A ⊆ Ω be any subset at t(ε).
pt(x,A) =

∑
w∈A

[pt(x,w)] = Pr[xt ∈ A]

≥ Pr[xt = yt ∧ yt ∈ A]
= 1− Pr[xt 6= yt ∨ yt 6∈ A]
≥ 1− Pr[xt 6= yt] + Pr[yt 6∈ A]

We know
Pr[xt(e) 6= yt(e)|x0 = x ∧ y0 = y] ≤ ε⇒ Pr[xt(e) 6= yt(e)|x0 = x ∧ y0 ∈π Ω] ≤

∑
y∈Ω

Π(y) · ε = ε

From this we can conclude
1− Pr[xt 6= yt] + Pr[yt 6∈ A] ≥ Pr(yt ∈ A)− ε = Π(A)− ε⇒ ||P t,Π|| < ε⇒ τ(ε) ≤ t(ε)

In many cases, this proof will have a logε factor associated with it because often the definition of coalescance
time is about expected time for X and Y to meet. In this case we were bounding the probability by an ε, so
this factor is not present.

4.1 Walk on the hypercube

To demonstrate coupling with a simple example, consider walks on the hypercube b = {0, 1}n We will define
our Markov Chain as follows:
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Markov Chain:

1. Pick an index i ∈u {1, ..., n}
2. Pick j ∈ 0, 1 3. Set bi = j. This implies that there is a 1

2 probability of
self-loop.

We will show, using coupling, that τ(ε) = O(n log n).

Start with arbitrary x = (x1, ..., xn), y = (y1, ..., yn). Instead of blindly hoping that our two Markov
Chains coalesce, we will pick i, j to be the same for both x, y. Using this coupling, it is clear that once the
two chains agree on a bit, they will always agree on that bit, and because of this fact we can assume that
the chain converges to Π in coupon collector’s time, O(n log n). It is important to note that if we flipped bit
i instead of picking j as the chosen result for bit i, then the chains would never meet because any differences
would always be different and the chains would always be at constant distance from one another.

5 K-Colorings

Our original motivation for looking at coupling was to determine when we can efficiently sample from k-
colorings in a graph. We have shown that analyzing the coupling time gives a good bound on the mixing
time of a Markov Chain, and we have given some strategies about how to couple two chains. Recall our
definition of the Markov Chain:

Markov Chain: Mcol

1. Given G = (V,E) at a valid coloring
2. Select v ∈u V
3. Select color c ∈u 1, 2, ..., k − 1, k
4. Recolor v with c if it produces a valid k-coloring. Otherwise keep v
colored as it is.

We will now define a coupling to try to bound the mixing time with different values of k.

5.1 k > 4∆ is rapidly mixing

When k ≥ 4∆, we will use the following coupling: first, choose a node to change the color of in both graphs.
Second, choose a color to set both graphs to. Third, recolor the nodes as allowed by the Markov Chain. The
probability of going from any one state to any other state is 1

nk , and the chain is ergodic. We hope we can
prove this chain to be rapidly mixing.

Theorem: Mcol is rapidly mixing when k > 4∆.

Proof: Given two separate colorings, σ, τ on G, let d be the number of vertices where the colorings differ. We
claim that as long as the distance between σ and τ is nonzero, the expected change in distance is negative (i.e.
the chance of the two chains getting closer is greater than their chance of getting further apart). Decompose
moves into ones where the two chains are brought closer and one where the chains get futher apart.

The good moves are the ones where v is chosen to be a point where σ and τ differ and a good color is
picked. The probability of any particular good move being chosen is k−2∆

nk , and since there are d places at
which the chains differ, the probability of choosing a good move is d · k−2∆

nk .
Bad moves for this coupling are ones in which v is chosen to be a place where σ and τ agree and the

process forces them to disagree. Consider a node, v chosen from G which is colored blue in both σ and τ .
In σ, v’s neighbors have colors {b1, ..., bn} and in τ v’s neighbors have colors {c1, ..., cn} with ∀i, j bi 6= cj .

There are at most 2∆ bad color choices, assuming that v has the maximum degree of the graph, ∆, and
all the neighbors in σ and τ are distinct. This gives us a probability of bad moves at any vertex ≤ 2∆

nk , so
the probability of bad moves across the graph P [bad] ≤ 2d∆

nk .
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(a) (b) (c)

Figure 4: In a), σ and τ both have c(v) red. σ has a blue neighbor, τ does not. In b), σ cannot change
at v because blue was chosen and it has a blue neighbor. In c), τ changes because it does not have a blue
neighbor

Given these probabilities, we can now show that the chain is in expectation rapidly mixing.

E[∆d] = −1(dk−2∆d
nk ) + 2d∆

nk = 4d∆−dk
nk .

Let A = k−4∆
k .

4d∆−dk
nk = −dA.

E[d] ≤ n(1−A)t ≤ ne−At
n

⇒ ||Pt −Π||TV ≤ E[d] ≤ ne−At
n ⇒ τε ≤ 1

An ln (nε−1)

This is sufficient to show the rapid mixing of the chain.

5.2 k > 3∆ is rapidly mixing

To demonstrate that the Markov Chain is rapidly mixing when k > 3∆, we will need to introduce the concept
of path coupling. Path coupling allows us to demonstrate that as long as two states can be represented as
having unit distances between them, and we can prove that these unit distances in expectation contract,
then the chain as a whole contracts.

More formally, consider all pairs σ, τ such that their hamming distance, dh(σ, τ) = 1⇒ E[∆(dh(σ, τ)) =
1] < 0. Our claim is that if this holds, and we can define all pairs as having a path consisting of these pairs
at distance 1, then their distance in expectation also shrinks.

Consider a pair, x, y ∈ Ω. Define dist(x, y) =
d−1∑
i=0

dist(zi, zi+1) where x = z0, z1, ..., zd = y and

d(zi, zi+1) = 1. Our proof is very similar to before, only this time we only have to consider entire graphs
which differ by one point. Realizing this, we can enhance the probability that our chains are in expectation
decreasing. We can show that the rate of good moves is k−∆

nk . To show this, consider two chains σ, τ which
differ at only one point. Let v be this point. When the Markov Chain ”selects” v, assuming v has degree ∆,
there are then ∆ points which are invalid selections. There are therefore k −∆ valid selections. As the two
chains differ by only one point, the probability of good moves is k−∆

nk .

As before, there are at most 2∆ bad moves in the graph when distance is 1. To acheive a bad move, you
must pick a neighbor of the node that is different between σ and τ . Let us call this node w, and w is any
neighbor of v. For each w, there are 2 bad choices, choosing the color blue or choosing the color red. Either
of these choices will cause the σ and τ to become further apart because the change is valid in one of σ(w)
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or τ(w), but not in the other. This implies that the probability of bad moves is 2∆
nk .

Following the logic from the proof in the previous section, the mixing time is τε ≤ 1
An ln (nε−1) where

A = k−3∆
d .

5.3 k > 2∆ is rapidly mixing

A method Jerrum uses allows us to prove that when k > 2∆, the chain is rapidly mixing. We essentially use
the same mechanism for the k > 3∆ proof, in that we use path coupling’s strengths to prove our Markov
Chain’s mixing rate. The additional change that allows to demonstrate fast mixing of k > 2∆ is a change to
the coupling. We use the fact that the chains differ at one point to reduce the chance of error in the chain.

In this case, the only place error can be introduced when the neighbors of the uncoupled node, v, are
selected. Let one of these nodes be w. Suppose v is colored blue in σ and colored red in τ . Suppose w is,
without loss of generality, colored yellow. The two bad choices for color for w are red and blue, so the novel
idea is to alternate selection of red and blue (or whichever colors are contained in v) between σ and τ . For
instance, if blue is chosen for w, place blue as the color for w ∈ σ and red as the color for w ∈ τ . If red is
chosen, do the opposite.

This presents two cases: Case 1) w has a color unique from v in both graphs. In this case, the distance
between the two increases to 2. Case 2) w is equal in color to v in both graphs, and w does not get recolored.
In this case there are the same number of good moves as in the k > 3∆ proof, but there is only one bad
choice for each neighboring vertex. Perform the proof as before, but since there is only one bad move now,
τε ≤ 1

An ln (nε−1) where A = k−2∆
d

6 Conclusion

It is important to remember that coupling is simply a thought experiment. When mixing Markov Chains,
one does not execute two simultaneously and then output the result when the two are identical; instead
it demonstrates provable bounds on when the Markov Chain has reached an arbitrarily close point to the
stationary distribution.

Additionally, Mark Jerrum uses a different algorithm for performing the algorithms. His algorithm
involves removing the color from a vertex and replacing the color instead of our Markov Chain, and his
analysis is different and worth reading. Jerrum is also able to show that the chain is rapidly mixing for
k = 2∆.
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