
CS 8803 MCM - Markov Chain Monte Carlo Methods
Homework 2

Due Wednesday, March 31

1. Consider a random walk on the states Ω = {0, 1, ..., n− 1}. From state i you move
to state i+ 1(mod n) with probability 1/2 and to state 0 with probability 1/2 (so
there are no self loops, except at 0). In other words, Pi,i+1 = Pi,0 = 1/2 for all
i < n− 1 and Pn−1,0 = 1.

Give a coupling argument to bound the mixing time τx(1/4) to within a constant
factor of the optimal bound. That is, bound the time it takes for the variation
distance ||P (x, ·), π(·)||TV < 1/4 from any starting state x.

2. Let n, k be positive integers with k ≤ n/2 and let the state space Ω be all subsets
of {1, . . . , n} of size k. We can define a Markov chain on Ω as follows. With
probabilty 1/2, do nothing. Otherwise, given a set S ∈ Ω, randomly pick elements
a ∈ S and b /∈ S and move to the set S ∪ {b} \ {a}.

a) Show that this Markov chain is ergodic with the uniform stationary distribution.

b) Use a coupling argument to show that the mixing time is O(k log k).

3. In problem 5 of homework 1 we showed that the random transposition shuffle
mixed in time O(n2). Now we are going to consider bounding the mixing time of
that chain using canonical paths and flows; unfortunately it gives a worse bound,
but it will help you understand how to use this technique!

Let the state space Ω be the set of permutations on n items, where we connect
two states if they differ by transposing two items (and we add self-loops with
probability 1/2 everywhere). Given x, y ∈ Ω, we define the path γxy as follows: for
each k = 1, 2, ..., n in turn, we move card xk from its current position to its final
destination in y.

a) Use the flow encoding technique (and an appropriate injection) to show that
the number of paths γxy that pass through any particular transition of the Markov
chain is at most |Ω|.

b) Now deduce that the mixing time of this Markov chain is τ = O(n3(n log n +
log ε−1)).

(Note, by the way, that both methods give suboptimal bounds and the true mixing
time of the chain is O(n log n).)
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4. In order to estimate the number of k-colorings of a graph G with k > 2∆, we saw
that we can use our Markov chain for sampling k-colorings on a sequence of graphs
Gi. Because our final result will is a telescoping produce involving m terms, we
require that each ratio is within a 1± ε

2m
factor of its true value with probability

at least 1− 1
4m

. Show that if each term is the expectation a 0/1 random variable

with expected value p ≥ 3/4, then t = 16m3

3ε2
samples are sufficient to estimate each

term in the product.

(Use Chebyshev’s inequality and explicitly calculate the variance of X =
∑t
i xi

where xi is 1 with probability p and 0 with probability 1− p.)

5. We saw in class that we can estimate the number of matchings of any given size if
the number of perfect and near perfect matchings are polynomially related. This
was done by using a Markov chain whose state space is all matchings and by giving
a matching of size k weight proportional to λk.

Show that without any conditions on the number of perfect or near-perfect match-
ings we can use that algorithm to efficiently estimate the number of matchings
of relatively large size. In particular, show that if k∗ is the size of the maximum
matching, then we can estimate the number of matchings of size k = (1− ε)k∗, in
time nO(1/ε).
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