
CS 8803 MCM - Markov Chain Monte Carlo Methods
Homework 3

“Due” Wednesday, April 21

You do not have to hand this homework in, but can if you would like to. We are
going to prove all the necessary lemma to show that simulated tempering can give an
exponential speedup. Please prove all of the following lemmas, and try to fill in bounds
on the mixing rate, where appropriate.

Let G = Kn be the complete graph with n vertices, and let β > 0 be the inverse
temperature. The state space Ω = {±1n} assigns spins to each vertex, and the stationary
distribution of the Ising model is

π(σ) = e
β

(∑
i 6=j

σiσj

)
/Z,

where Z is the normalizing constant.

We are considering the Markov chainM that changes one spin at a time and converges
to π.

Lemma 1 When β is sufficiently large, M requires exponential time to converge to
the stationary distribution.

This motivates the need for a new algorithm. We start by showing that M is fast if
we restrict to the positive or negative half of the state space, regardless of β.

Lemma 2 Let Ω+ ⊆ Ω be the set of configurations σ such that the number of vertices
assigned + is at least the number assigned -. Show that M restricted to Ω+ is rapidly
mixing for any β.

To prove this we will use the decomposition theorem. We will decompose Ω+ = ∪Ωi

where the union is over n/2 ≤ i ≤ n and Ωi is the set of configurations with exactly i
+’s.

Lemma 3 The 2-step Markov chain M2 restricted to Ωi is rapidly mixing. (Hint:
Use coupling.)

Lemma 4 The projection has n/2 vertices, where

πp(i) =

(
n

i

)
eβ((

i
2)+(n−i

2 ))/Zp.

The projection chain that uses Metropolis probabilities to move from i to i − 1 or i + 1
is rapidly mixing.
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Now use Lemmas 3 and 4 and the Decomposition Theorem to prove Lemma 2.
Clearly the same proof shows that M restricted to Ω− = Ω \ Ω+ is also rapidly mixing.

We now introduce the tempering chain M̂ . The state space is

Ω̂ = Ω× [m],

where [m] = {0, ...,m}. The stationary distribution of the tempering chain is π̂(σ, i) =
1

m+1
πi(σ), where

πi(σ) = exp(βi(
∑
i 6=j

σiσj)/Z

and βi = β ∗ i/m. The Markov chain M̂ either performs level moves (pick i and use M
with distribution πi) or temperature moves (pick (i, d) ∈ [m]×{+1,−1} and move from
(σ, i) to (σ, i+ d) with the appropriate Metropolis probabilities if i+ d ∈ [m].

We will prove the following main theorem:

Theorem 5 The Markov chain M̂ is rapidly mixing on Ω̂ for any β.

Again we will use decomposition. We will start by partitioning Ω̂ into 2m+ 1 pieces
by dividing each Ωi (except the bottom one when i=0) into Ω+

i and Ω−i .

Notice that the restriction of M̂ to the bottom distribution is rapidly mixing (just
use coupling), and the restriction to every other set in the partition is rapidly mixing
by Lemma 2.

To analyze the projection chain arising from this decomposition of Ω̂, we consider
first the Metropolis chain on the 2m+ 1 points in the projection. The center point has
probability 1/(m + 1) and all other point have probability 1/2(m + 1). It is easy to
show that the Metropolis chain (that assigns probability 1 or 1/2 to each transition) is
rapidly mixing.

Show that we can now use the Decomposition Theorem for a second time to prove
Theorem 5.

If you are feeling really ambitious, consider the generalized distributions that are not
necessarily symmetric (such as the exponential distribution on state space {−m1, ...,m2}
with

π(i) = e|i|/Z

where

Z =
m2∑

i=−m1

e|i|.

The easiest way to do this is to allow moves from the left-hand point (representing Ω+
i

and Ω−i ) and then use the comparison theorem.
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