
Sampling Self Avoiding Walks

James Fairbanks and Lianghao Chen

December 3, 2014

Abstract

These notes present the self testing algorithm for sampling self avoiding walks by Randall and

Sinclair[3] [4]. They are intended to be used towards the end of a graduate class on Markov Chains. We

are solving the problem of sampling Self Avoiding Walks of a fixed length.

The main lessons to learn are.

1. In Baretti-Sokal chain, changing a fixed constant � to a sequence of constants �i allows one to prove

convergence.

2. The mixing rate of the algorithm is polynomial if cjck  cj+kg(j + k) for some polynomial g.

3. We can find the necessary �i, a
�1
i by bootstrapping.

4. For any g we can test the necessary conjecture.

1 Introduction

A walk is self avoiding if no vertex is visited more than once. We want to sample self avoiding walks in order
to answer physical questions about polymers such as how many possible walk are there of a given length,
and how far is the free endpoint from the origin in a typical SAW. Let cn be the number of self-avoiding
walks of size n. We can count lattice walks exactly. At each step there are 2d possible neighbors and at each
step every neighbor is a valid transition so there are (2d)n possible walks of length n on the d dimensional
lattice. Since there are no iteractions between choices, we can sample exactly from the uniform distribution
on lattice walks without a markov chain.

We cannot sample random walks with the process that starts with a walk of length 1 and extends it with
equal probability in any direction that does not create a self intersection, because at each step some choices
of direction will lead to more possibilities at longer steps.

The pivot algorithm analysed in [2] introduces a Markov Chain that uses very nonlocal moves that have
”not too small” acceptance fraction. The authors make a heuristic argument about the autocorrelation time,
but do not prove fast mixing. The pivot algorithm takes steps where each vertex of the walk is chosen at
random and then a randomly rotatation or reflection is applied to the segment after this point. These steps
take points very far in distance but are not proven to have fast mixing.

It is clear that cn+m

cncm
 1 because it is the probability of picking one walks of length n,m and concatenating

them to form a self avoiding walk of length n+m.

2 The Markov Chain

Construct Markov Chains M1,M2, ..., where each Mn has state space �n = [n
i=0Si the union of all self

avoiding walks of length at most n. The physics community believes that there should be one parameter
� that controls the MC but their chain cannot be proven to mix rapidly. Relaxing this to a sequence of
parameters �i is allows us to prove rapid mixing and uniformity for the correct choice of �i.

1

For a self-avoiding walk w 2 �n of length i  n, choose one edge randomly from the 2d edges that are
incident to the free endpoint of w. If this edge coincides with the last step of w, remove this edge. If adding
this edge also makes a self-avoiding walk of length at most n, add this edge with probability �i+1.

Define w � w0 i↵ |w| < |w0| and the first |w| steps of w0 coincides with w 1. Define w �1 w0 i↵ w � w0

and |w0| = |w|+ 1.

Pn(w,w
0) =

8
>>><

>>>:

�|w0|/2d if w �1 w0

1/2d if w0 �1 w

r(w) if w = w0

0 otherwise

Stationary distribution is

⇡n(w) =
1

Zn

|w|Y

i=1

�i

for w 2 �n where Zn is the normalizing factor
P

w2�n

Q|w|
i=1 �i

�i is chosen as ci�1/ci so that the stationary distribution is uniform on the levels and uniform within
the levels. Physicists believe that there is a limit for ci�1/ci so Baretti and Sokal chose a single � for all
ci�1/ci. Here � is replaced by a sequence of �i’s which can be determined by bootstrapping. This allows
the algorithm to provide correct answers at each level even if there were no constant � that satisfied the
conjecture at all of the levels simultaneously.

2.1 Stationary Distribution

Here are the details of the stationary distribution that were skipped in class.
if w <1 w0:

|w|Y

i=1

�i�|w0|
1

2d
=

|w0|Y

i=1

�i
1

2d

if w0 <1 w:
|w0|Y

i=1

�i�|w|
1

2d
=

|w|Y

i=1

�i
1

2d

if w0 = w:
|w|Y

i=1

�ir(w) =

|w0|Y

i=1

�ir(w)

otherwise both transition probabilities are 0 so the detailed balance equation is satisfied.
Assume that each �i is equal to ci�1/ci. Then

⇡n(w) =
1

Zn

|w|Y

i=1

ci�1

ci
=

1

Znc|w|

2.2 Uniform

Here are the details of the uniformity that were skipped in class. Since the stationary probability is the same
for each walk of the same length, conditioning on the length gives the uniform distribution on that length.
The distribution of lengths is given by the following where �̂j is the set of paths with length exactly j

P (|w| = j) =
1

Zn
|�̂j |

jY

i=1

�i

1w0
extends w

2

This tells us that if each of the products
Qj

i=1 �i is equal to the number of walks with length j, then the
distribution is uniform on all walks. This can be achieved by setting �i =

ci�1

ci
because the product telescopes

appropriately. We might be interested in biasing towards large walks, which would lead to �i values that
are larger. We also cannot a priori state the number of walks of a given length since this is the quantity we
are trying to estimate. If �i were known, then we could run the markov chain and sample e�ciently. Since
we need to find the �i, we bootstrap this parameter. The innovation of allowing the � parameter to vary at
each level of the tree allows the sampler to work for all levels up to the point where the conjecture is false,
if such a point exists. The Baretti and Sokal chain with a fixed � for all levels is not robust in this way.

3 The Mixing Time (exact case)

We define a sequence ↵n which bounds the fraction of pairs of self avoiding walks whose concatenation has
length n which are self avoiding.

↵n = min
j+k<n

cj+k

cjck

The key idea is to bound the congestion across any edge at length k. We have Q(e) = ⇡n(w)Pn(w,w0) =
1/4dZnck+1 for the ergodic flow across any edge. and the probability of any subtree S which is the extensions
of w0 with length k + 1 is

⇡n(S) =
X

w̃⌫w0

⇡n(w̃) (1)

=
1

Znck+1

nX

j=k+1

ck+1

cj
|extensions of w with j steps| (2)

 1

Znck+1

nX

j=k+1

ck+1cj�k�1

cj
(3)

 n

Znck+1↵n
(4)

Where we use the fact that the number of ways to extend a walk by i steps is less than ci which is the
sub-Cayley property for the tree. So ⇢(�)  4dn↵�1

n .
From the mixing time bound based on congestion we get a factor of log ⇡n(0)�1 = log n and a factor of

2n from the length of the longest path in a tree. So the final mixing time is O �
dn2↵�1

n log n✏�1
�

4 Assumed Conjecture

Physicists believe that there is a limiting constant for the expansion probability ci�1/ci, and that cn =
µnpoly(n). It is widely believed that for any dimension d, there exists fixed polynomial g such that, for all
n,m,

cncm  g(n+m)cn+m (5)

That is that the probability of successful concatenation is bounded below by 1/g(n).
The conjecture implies that ↵�1

n  g(n). The bound on the mixing time of the Markov Chain will be
presented in terms of ↵. So this conjecture will imply fast mixing.

5 Bootstrapping

The mixing time of Mn depends on ↵�1
n and the transition probabilities depend on �i. We know neither of

these. In fact the �i are the principle quantity of interest to understanding the set of random walks. So we
will assume that we can sample from Mn�1 and show how to estimate ↵n and �n.

3

To estimate the ↵’s we generate tn independent pairs of walks from Si ⇥ Sn�i for each i  n. Then
we count what fraction of pairs of them produce self avoiding concatenations, call this qn,i. By taking
the minimum of ↵n�1 and qn,i we get an estimator within a factor of 4 of the true answer with su�cient
probability. The 0/1 estimator theorem says that tn = O �

a�1
n log n/�

�
is su�ciently large for desired failure

probability 1� �. This leads to a Õ(n4↵�2
n) cumulative running time. One factor of ↵�1

n for the per sample
time and another factor from the number of samples.

We can start with the known quantities �1 = 1/2d, c̄1 = 2d ↵1 = 1. To estimate the �n = cn�1/cn, we
generate samples from Mn�1 and then count what fraction can be extended to length n Then our estimate
for the number of walks at length n is c̄n�1/�n and we use this value of �n to estimate the ↵n.

6 Self Testing

Everything said about the chain is true regardless of the conjecture given. The bounds are in terms of ↵�1
n

which might grow superpolynomially. If we want to guarantee that the running time is polynomial then we
need to know that ↵�1

n is polynomially bounded. Since we have not made progress on the conjecture, we
adapt the algorithm to self-test. Given any function g, we can test the conjecture cmcn  g(m + n)cm+n.

We run the estimate ↵ process above and then check if ˜↵�1
n > 4g(n). If it is, then the conjecture has a

counterexample with high probability. If our estimates always pass the check, then we can be confident that
the answers are reliable with high probabily. The algorithm can output either a reliable answer or a error
message with probability 1� �.

7 Later Work

The following are three possible directions that later work can be built based on this paper.

1. Conjecture: For any dimension d, there exists fixed polynomial g,

8n,m cncm  g(n+m)cn+m

Proving this conjecture will make this algorithm the first polynomial time Monte Carlo approximation
algorithm for self-avoiding walks.

2. There can be other algorithms that are self-testing like this one. When an algorithm is based on a
conjecture, letting the algorithm reject if the conjecture is false will make it a more robust algorithm.

3. There are a few areas in physics and biology where the result in this paper can be applied to.

Gambin and Wojtowicz[1] applied this algorithm on lattice models of protein folding. Protein fold-
ing is a physical process where a protein changes its three-dimensional structure from random coil.
While there are several lattice models for protein, Gambin and Wojtowicz used the simplest one called
three-dimensional HP model, where each protein is represented by a sequence of ”H”s and ”P”s (”H”
represents hydrophobic amino acid type and ”P” represents polar amino acid type). They considered
these sequences as self-avoiding walks. Instead of defining cn as the number of self-avoiding walks of
length n, they define it as the sum of weighted self-avoiding walks of length i and introducing weighting
factor �.

cn =
P

w2Si
�h(w)

They made up two HP sequences and experimented by the EstimateBeta method. They got a table
of numerical results and observed a pattern: The quantity ↵�1

n seems independent with � and the
hydrophobicity pattern of the sequence.

4

References

[1] Anna Gambin and Damian Wójtowicz. Almost fpras for lattice models of protein folding. In Experimental

and E�cient Algorithms, pages 534–544. Springer, 2005.

[2] Neal Madras and Alan D Sokal. The pivot algorithm: a highly e�cient monte carlo method for the
self-avoiding walk. Journal of Statistical Physics, 50(1-2):109–186, 1988.

[3] Dana Randall and Alistair Sinclair. Testable algorithms for self-avoiding walks. In Proceedings of the

Fifth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA ’94, pages 593–602, Philadelphia,
PA, USA, 1994. Society for Industrial and Applied Mathematics.

[4] Dana Randall and Alistair Sinclair. Self-testing algorithms for self-avoiding walks. Journal of Mathe-

matical Physics, 41(3):1570–1584, 2000.

5

