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1 Introduction

Markov chains are awesome and can solve some important computational prob-
lems. A classic example is computing the volume of a convex body, where
Markov chains and random sampling provide the only known polynomial time
algorithm. Arguably the most important question about a Markov chain is how
long to run it until it converges to its stationary distribution. Generally, a chain
is run for some fixed number of steps, until the current point is provably within
some threshold distance from the target distribution.

However, this ignores the information we gain as the chain takes its steps,
which could potentially be beneficial for determining convergence. For instance,
we might converge much faster than the mixing time suggests, or perhaps the
mixing time is unknown, in which case we have no a priori way to know how
long to run the Markov chain. So instead, perhaps we observe some quantities
of the walk, and then announce convergence once some condition is met. Such
algorithms which, at a high level, use the walk to determine convergence are
referred to as stopping rules.

Also note that we can use stopping rules to create distributions other than
the stationary distribution of the Markov chain. A trivial example of such a
stopping rule is to stop the walk when we reach a current state x. We will see
other more interesting stopping rules that can generate complex distributions
over the state space.

2 Preliminaries

We assume that M is an irreducible Markov chain with transition matrix M =
{pij} and initial distribution σ over a state space Ω such that |Ω| = n. We denote
by Ω∗ the set of finite “walks” on Ω, i.e. the set of strings w = (w0, w1, . . . , wt)
where wi ∈ Ω. Given σ and M , the set Ω∗ inherits the following probability
distribution.

Pr(w) = σw0

t∏
i=1

pwi−1wi

Definition 1 (Stopping Rule). A stopping rule Γ is a partial map from the set
Ω∗ to [0, 1]. It is defined precisely when Pr(w) > 0 and Γ(w0, . . . , wi) is defined
and non-zero for each 0 ≤ i ≤ t− 1.
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Intuitively the stopping rule gives us for every finite walk w attainable by
the Markov chain, the probability of continuing the walk. One can also think
of Γ as a random variable taking values in Z+, such that the chain stops at wΓ.
We will use the two notions interchangeably; their meaning will become clear
from the context.

The mean length EΓ of a stopping rule Γ is the expected number of steps
taken by the chain before it stops. Observe that if EΓ <∞ then with probability
1 the chain eventually stops. This can be seen for instance by defining the
sequence of random variables {Xt}t∈Z+ where Xt = 1 if the chain has not
stopped at time t and 0 otherwise. Then clearly Γ =

∑∞
t=0Xt and so EΓ =∑∞

t=0 EXt =
∑∞
t=0 Pr(Xt > 0) <∞ and so by the first Borel-Cantelli lemma the

event that Xt > 0 happens infinitely often is 0. In this case we get a probability
distribution σΓ over Ω

σΓ
j :=

∑
w=(w0,...,wt=j)

σw0

(
t∏
i=1

Γ(w0, . . . , wi−1)

)
(1− Γ(w))

where σΓ
j is the probability of stopping in state j. Given a distribution τ

over Ω, we say that Γ is a stopping rule from σ to τ if σΓ = τ . We first make
the observation that for any pair of distributions σ, τ over Ω, there is a stopping
rule Γτ (called the “naive” rule) such that σΓ = τ . The “naive” rule selects
a state j ∈ Ω drawn according to τ and stops when the chain reaches j. The
mean length of the “naive” rule is

EΓτ =
∑
i,j∈Ω

σiτjH(i, j)

where H(i, j) is the hitting time from i to j. The maximum length max(Γ) of
a stopping rule Γ is defined as the length of the longest walk w that has positive
probability according to Γ. Note that the probability of a walk w = (w0, . . . , wt)
according to Γ is given by

PrΓ(w) = σw0

t∏
i=1

Γ(w0, . . . , wi)pwi−1,wi .

Definition 2 (Mean Optimal Stopping Rule). A stopping rule Γ from σ to τ
is called mean optimal (for σ and τ) if for any stopping rule Γ′ from σ to τ ,
EΓ ≤ EΓ′. If Γ is mean optimal for σ, τ then H(σ, τ) := EΓ is called the access
time from σ to τ .

Definition 3 (Max Optimal Stopping Rule). A stopping rule Γ from σ to τ
is called max optimal (for σ and τ) if for any stopping rule Γ′ from σ to τ ,
max(Γ) ≤ max(Γ′).

Definition 4 (Exit frequencies). The exit frequencies x = {xj}j∈Ω is defined
by setting xj equal to the expected number of times the walk leaves state j before
stopping. The exit frequencies of the naive stopping rule is denoted by {x̃j}j∈Ω.
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We have the following lemma about exit frequencies of stopping rules from
σ to τ .

Lemma 1. The exit frequencies of any stopping rule from σ to τ satisfy∑
i

pijxi − xj = τj − σj

A simple corollary of the above lemma is the following theorem.

Theorem 1. Let Γ and Γ′ be two stopping rules with exit frequencies x and x′

respectively. Let D = EΓ − EΓ′ be the difference between their mean lengths.
Then σΓ = σΓ′ if and only if x′−x = Dπ, where π is the stationary distribution
of M .

In the next section we talk about a few mean optimal stopping rules that
hold for any Markov chain. The first of these called the filling rule also gives us
a useful characterization of mean optimal rules in terms of exit frequencies.

3 Examples

3.1 Random walk on a hypercube

Consider the following random walk on the hypercube {0, 1}n where we select a
direction uniformly at random and flip the bit in that direction. Then a stopping
rule that generates the uniform distribution on {0, 1}n is as follows: stop when
you have selected every direction. By the coupon collector argument the mean
length of this rule is O(n log n).

3.2 Top card shuffling

Consider the following shuffling algorithm: select the top card from the deck
and insert it with equal probability into any of the n slots among the remaining
n − 1 cards. Then a stopping rule that generates the uniform distribution is
to perform one more shuffle when the card that was originally at the bottom
of the deck reaches the top and stop. Again by the coupon collector argument,
the mean length of this stopping rule is O(n log n).

3.3 Random walk on a cycle

Consider the following stopping rule for the random walk on a cycle starting
from a vertex u: stop when every node has been visited once. Somewhat coun-
terintuitively, the probability that v is the last node visited is the same for
every v 6= u. Thus this also gives us a stopping rule for generating the uniform
distribution on the cycle.

4 Mean Optimal Stopping Rules

4.1 Filling Rule

Definition 5. The filling rule Φσ,τ is defined recursively as follows. Suppose
we have defined Φσ,τ (w) for every w such that |w| ≤ k. Let pki be the probability
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according to Φσ,τ of being in state i after k steps and let qki be the probability of
stopping at state i in fewer than k steps. Then if we are in state i in the k+ 1th

step, then we stop with probability min(1, (τi − qki )/pki ).

The filling rule gives us the following useful characterization of mean optimal
stopping rules.

Theorem 2. A stopping rule Γ is mean optimal for σ, τ if and only if there is
a j ∈ Ω such that xj = 0.

Proof Sketch. From Theorem 1 it follows that if xj = 0 for a stopping rule
Γ then Γ must be mean optimal. This is because for any Γ′ from σ to τ ,
xj − x′j = −x′j = (EΓ − EΓ′)πj and since x′j , πj ≥ 0, it follows that EΓ ≤ EΓ′.
For the converse direction we need to exhibit a mean optimal stopping rule that
has a state j such that xj = 0. The filling rule is exactly the rule with the
desired property.

4.1.1 Understanding the Filling Rule

Let’s consider a small toy example to try and understand the filling rule. Con-
sider the graph in Figure 1 and the Markov chain which randomly selects an
outgoing edge with equal probability. Note that this chain will have station-
ary distribution (1/2, 1/2) and will converge after a single step. Let σu and τu
denote the starting and target distributions, respectively, for the vertex u.

We now run the filling rule with an example starting and target distribution.
Suppose σu = 1, σv = 0 and τu = 2/3, τv = 1/3. Note that whenever the
Markov chain has nonzero probability at a state, the filling rule will assign as
much probability as it can to that state without “overfilling”, i.e. exceeding the
target probability for that state. So, in the first step, the filling rule will stop
at vertex u with probabilty 2/3 and will take another step of the Markov chain
with probability 1/3, i.e. will be at u or v each with probability 1/6. Note that
vertex u has “filled” up its probability to 2/3, so the filling rule will no longer
stop at state u. Note that v is a halting state, as every time the we visit v for
this σ, τ we always stop (and so by the previous theorem, we see that the filling
rule is mean optimal here).

So how many steps do we need to take, in expectation, to generate τ starting
from σ? With probability 2/3, we stop after 0 steps (at u); with probability
1/3, we will stop once we reach v. This will be a geometric distribution with
probability 1/2. So, in expectation, we stop after (1/3) · 2 = 2/3 steps.

Figure 1: A simple graph.
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4.2 Local Rule

Definition 6. Let τ be arbitrary and let xi be the exit frequencies for a mean
optimal stopping rule from σ to τ . Then if we are at state i then the chain stops
with probability τi/(τi + xi). Note that the stopping rule depends only on the
state i and not on the time.

Theorem 3. The local rule generates τ , i.e σΛτ = τ and Λτ is mean optimal.

4.3 Chain Rule

Let ρ be a distribution on the subsets U of Ω. Then ρ gives us the following
natural stopping rule: choose a set U from Ω according to ρ and keep walking
till the chain hits a state in U . Note that the naive rule is a special example of
such a rule where ρ is concentrated only on singletons. The chain rule is also a
special case of this rule.

Definition 7. For every pair of distributions σ, τ on Ω, there exists a unique
distribution ρ which is concentrated on a chain of subsets of Ω and gives a mean
optimal stopping rule from σ to τ . Then the stopping rule obtained as above
from ρ is called a chain rule from σ to τ .

4.4 Threshold Rule

Definition 8. A stopping rule Γ is said to be a threshold rule if there is a
threshold vector h = (h1, . . . , hn), hi ≥ 0 such that

Γ(w0, . . . , wk) =


0 if k ≥ hwk
1 if k ≤ hwk − 1

k − hwk otherwise

Essentially, a threshold rule is a set of critical times for each state, and if
we reach a state after its critical time, we stop. For instance, we could set
each state’s threshold to be the mixing time of the lazy chain to get a point
approximately from the stationary distribution of the chain.

Theorem 4. For any target distribution τ , there exists a threshold rule which
is both mean-optimal and max-optimal.

In fact, there is an algorithm which, given a target distribution τ , will con-
struct a threshold vector as the walk runs, and runs in time polynomial in the
size of the state space.

4.4.1 Understanding the Threshold Rule

Consider the same example graph of Figure 1. The filling rule assigns as much
probability to a state as it can in the current step; the threshold rule, however,
will wait until a critical time for the state is reached, and then always assign
probability when that state is visited. Suppose σu = 1, σv = 0, and τu = τv =
1/2. The threshold rule for this example will simply take a single step and then
stop. Note that the filling rule and the threshold rule for this example will have
the sample number of expected steps, but the threshold rule will always run in
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a single step. This behavior of the threshold rule is what makes it max optimal.
Note that not every threshold rule will be max optimal–the previous theorem
simply guarantees the existence of one.

5 Exact Mixing in an Unknown Chain

Suppose that we didn’t know the mixing time of a Markov chain, but wanted
to generate a point from the stationary distribution π of the chain. It turns
out, perhaps suprisingly, that there is a stopping rule that will generate points
exactly from π. Let M be an irreducible Markov chain with state space Ω, and
let h = maxi,j∈ΩH(i, j) denote the maximum hitting time of the chain.

We first give some definitions. Given a state i and positive integer t, a t-exit
of i waits X steps after being in state i, where X is chosen uniformly from
{0, 1, . . . , t − 1}, then setting i′ equal to the resulting state. A t-pass selects a
state j uniformly at random from Ω, then runs independent t-exits from every
state i except j. A t-pass is deemed successful if the directed graph consisting
of the n− 1 arcs (i, i′) has no loop or cycle (and is thus an in-directed spanning
tree rooted at j).

The stopping rule Γ sets t = 2, performs 3|Ω| t-passes, and sees if any of the
t-passes are successful. If so, Γ takes one step from the state j, which was the
root of the successful pass, and stops. Otherwise, we double t and repeat.

Theorem 5. Γ runs in expected number of steps bounded by O(h3 log h) and
stops at state j with probability exactly πj.

Also, note that any stopping rule for an unknown Markov chain that gener-
ates the stationary distribution never stops before it visits all states. Therefore,
we cannot hope to do better than the hitting time h.

6 Sampling from a Convex Body

All of the previous discussion has been on stopping rules for a Markov chain on a
discrete state space. But what about a continuous state space? One application
that we’ve come across for a stopping rule is the problem of generating random
samples from a convex body. There are a number of random walks which can
provable converge in polynomial time to the uniform distribution over a convex
body. However, the bounds given on the mixing time are generally too high to
be practical, and therefore if one were to implement one of these random walks,
it would be far too slow to run the Markov chain for the proven mixing time.

An implementation of these walks seems to suggest that convergence happens
faster than the proven mixing time [1]. So how should we determine convergence
of the walk? The implementation uses some heuristic tests, such as looking at
the proportion of points that lie on one side of a random halfspace. But none
of them provide provable guarantees of accuracy. An interesting open question
is to develop an efficient stopping rule that would determine when the current
point is approximately random. Or in the case of when these points are used
for estimating the volume of a convex body, could we develop some set of tests
that decides when the current stream of points will provide a good estimate for
the volume?
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