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Temperature Algorithms And Bimodal 

Distributions

Simulated Tempering and Swapping are sampling algorithms 

similar to simulated annealing - vary a temperature variable in 

the hopes of avoiding bad cuts that are present in the state 

space of bimodal distributions.

Shown to work efficiently on the mean-field (complete graph) 

Ising model. (Madras,Zheng; 2003), where purely local MC's 

fail. 



  

What about other models?

Q-state mean-field Potts Model is generalization of Ising model (where q 

= 2).  Natural to consider these algorithms for other mean-field Potts 

Models where q >2.

Paper shows that for q >= 3 they will not mix rapidly due to the nature of 

phase transition. 

● q=2 Potts (Ising) has 2
nd

 order phase transition (continuous in derivative of 

energy)

● q>=3 has 1
st
 order phase transition (discontinuous in derivative)

Paper also provides a modified Swapping algorithm that provably 

samples efficiently from the mean-field Potts model.



  

Potts Model

● Q-state mean-field Potts Model 

– Q : # of particle spins = # of vertex colors

– Edges connect particles that affect each other

– Mean-field : complete graph

● Configuration s is assignment of colors to ever vertex.

● Energy of configuration is function of Hamiltonian

       where                  is 1 if q
i
 = q

j
 and 0 otherwise.  High energy implies a high level of 

  monocromaticity



  

Potts Model 2

● State space W is the space of all q
n
 colorings.

● Inverse Temperature : b = 1/(kT)

● Gibbs Distribution (probability of a particular 

configuration) :

 

● Partition function : Z(b)  = S          ; for all s    W

● Paper uses q = 3  



  

Markov Chains

● Ergodic, reversible, finite state space

● Metropolis Hastings - define Markov Kernel as a graph that

– Connects W

– Vertices are configurations and edges are 1-step transitions.

● Potts Model → use Hamming distance of 1.

– Metropolis then converges slowly because most probable states are 

monochromatic, and to go from one color dominant to another need to pass 

through exponentially unlikely “transition” states.

● Temperature Chains use temperature moves to try to move 

around bad cuts.



  

Simulated Tempering
● Expanded State Space      to include M+1 different inverse 

temperatures: 

–    = union of M+1 copies of W, for each inverse temperature

– b
i
 = b

M
 * i/M ; b

0
 = 0 , b

M
 corresponds to desired distribution.

● Chain configuration : (x, i) : i → index of b 

● Conditional distributions :

● Two moves for Simulated Tempering chain : 

– Level Move : Metropolis Hastings at a fixed b
i
      

w/p:

– Temperature Move : Move from i to i +/- 1 in temp space 

w/p:

● Partition functions expensive to calculate → Swapping



  

Swapping
● Chain configuration : x = (x

0
,...,x

M
) : across inverse temperature

● M+1 different inverse temperatures: 

–      = product of M+1 copies of W, for each inverse temperature

– Configuration is M+1-tuple of configurations chosen at each inverse temperature

● Conditional distributions :

 

● Two moves for Simulated Tempering chain : 

– Level Move : Metropolis Hastings at a fixed temperature : 

x = (x
0
,...x

i
,...,x

M
) to x' = (x

0
,...x'

i
,...,x

M
) where x and x' only differ at i, and at i 

they differ only by one-step Metropolis. (same probability)

– Swap Move : x = (x
0
,...x

i
,x

i+1
,...,x

M
) to x' = (x

0
,...x

i+1
,x'

i
,...,x

M
)  

w/p : 



  

Size of Temp
-1
 Space

● M needs to be chosen carefully 

– Large enough for non-trivial temperature move 

probabilibilities.

– Small enough for tractable running time

– Paper chose M = O(n)



  

Proving Torpid mixing of Tempering on Potts

● Lower Bound on t(e) by showing poor conductance (bad 

cut)

 

– High Temperature (Low b) : high entropy, “uniform-looking”

– Low Temperature (High b) : high energy, “predominant color-looking”

– Transition is discontinuous for 3-state mean-field Potts model – abrupt 

change in the size of the largest color class.



  

Slow Mixing proof setup

● n = |V|, W = 3
n 
: all colorings.

● W
s
 = Partition set of W such that s = (s

1
,s

2
,s

3
)

● Partition set probability :

● Configuration sets of interest :  

– “Uniform looking” : W
n/3

 = s = (n/3,n/3,n/3)

– “Color-dominant looking” : W
2n/3

 = s = (2n/3,n/6,n/6)

– “Transition looking” : W
n/2

 = s = (n/2,n/4,n/4)

● Show that a temperature exists such that W
n/3

 and  W
2n/3 

 have large 

weight while W
n/2 

has exponentially small weight.



  

Proof

● Lemma 1 : There exists b
c
 such that 

a) p
bc

(W
n/3

) = p
bc

(W
2n/3

) + o(1) : Uniform and Color-dominant are equally likely

b) p
bc

(W
n/3

) >> p
bc

(W
n/2

) : Transition sets are exponentially unlikely

 → Shown by solving for b
c
 and then finding ratio of p

bc
(W

n/3
)/p

bc
(W

n/2
)

● Lemma 2 : Most likely W
n/2

 is s = (n/2,n/4,n/4) 

 → Shown by solving for d(p(n/2, xn, n/2 - xn))/dx to find critical point.

● Lemma 3 : For all b
i
<= b

c        
p

bi
(W

n/3
) >> p

bi
(W

n/2
)

 → Shown by extending proof of 1b to b
i
<= b

c



  

Theorem

● For large n, there exists a so that F
s
 <= e

(-an + o(n))

Shown by solving for conductance around region of bad cut (region bounded 

by s
1
,s

2
,s

3 
= n/2), showing conductance is bounded by result from O(n) * 

p
bc

(W
n/3

)/p
bc

(W
n/2

) then finding a at b
c
.

● (Zheng 1999) Result implies that with torpid tempering comes 

torpid swapping.



  

Bad Cuts

● Torpid mixing discovered for swapping

– Due to bad cuts in the state space

● To subvert, choose an interpolation that does 

not preserve a bad cut

● The maxima and minima should be preserved 

throughout the interpolation



  

Bimodal Exponential Distribution

●

● Bimodal with partition when x=0

●

● Unchanging maxima and minima over i

– Unchanging basin of attraction

● Maps to a polynomial fraction of the uniform 

distribution

● Swapping chain over temperature

–  



  

Decomposition of Chain

● Partition swapping chain based on trace

– Trace t = (t
0
,...,t

M
): t

i
 = 0 if x

i
 < 0, else ti = 1

– This defines a vector indicating the sign of each 

element

● Within a partition defined by fixed trace t, each 

state will have trace t



  

Bounding the restricted chain

● Ignoring swapping moves, each configuration is 

independent of the others

● The mixing time is the worst case mixing time 

over all temperatures

● A fixed trace restricts configurations to one side 

of the bimodal distribution, resulting in a 

unimodal distribution

● Unimodal distributions are rapidly mixing.  



  

Bounding the projection

● The projection is Markov chain defined by 

partitioning with the trace

– This is a hypercube of dimension M+1

● The swapping transition on this projection 

results in the transpose of two neighboring bits

● The level transition may result in inverting a bit

– Only probable at the lowest inverse temperatures



  

Bounding another Chain

● Consider the chain which involves selecting and 

inverting any of the M+1 bits 

● Each model configuration in the swapping 

configuration is independent of the other model 

configurations

– Then when an bit of the trace is inverted, the 

distribution is uniform with respect to that bit

● Due to the Coupon Collector Theorem, this 

chain mixes rapidly.  G = O(M log M)  



  

Path Comparison

● Compare the projection to the simple walk

– For inverting a bit, consider this path

● Transpose the bit successively to the lowest position

● Invert the bit

● Transpose the new bit back to the original position

– Use the comparison theorem

●

●

– Restrict the probability of each transition in the chain



  

Bounding Path Probability

● Assume N ≤ N'

● The probability of each unit in the path is 

bounded by the transition in the simple walk

–

● The probability of each state in the path

– Partition t* into blocks contain 1s, separated by 0s



  

Partition Gap

● At each state, the total number of paths using a 

transition is M+1, since there are M+1 

transitions in the simple walk

– Further, the length of a path is O(M)

– Coupled with the previous theorem

● A = O(M)

● G = O(M-1)



  

Bimodal Mean-field Spin Models

● Examples:

– Consider the case where

● This constraint prevents more than a single maxima 

caused by preference for a predominate color

● Entropy causes a single maxima emphasizing an equal 

distribution of colors 

– Alternatively, the Ising model under an external field

●



  

Flat-Swap Algorithm

● Define swapping interpolation using an 

additional function

–

● This interpolation directly counters the term 

provided by entropy



  

Flat-Swap Algorithm State Space

– For example: on the Ising model with an external 

field on the complete graph

●

– With respect to the total spin distributions at all 

temperatures

● The distribution maintains the same relative shape

● same maxima and minima

– The Ising model is bimodal

– The basin of attraction corresponds to a polynomial 

fraction of the total spin distributions

– Thus this algorithm mixes rapidly using swapping
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