Probability and Computing:
Randomized Algorithms and
Probabilistic Analysis

Michael Mitzenmacher
Harvard University

Eli Upfal

Brown University

Draft Manuscript: Please Do Not Distribute
To be published in 2004

June 1, 2004

To

Stephanie, Michaela, and Jacqueline

M.M.

Liane, Tamara, and Ilan

E.U.

Contents

Preface

1 Events and Probability
1.1 Application: Verifying Polynomial Identities
1.2 Axioms of Probability
1.3 Application: Verifying Matrix Multiplication
1.4 Application: A Randomized Min-Cut Algorithm

1.5 Exercises

2 Discrete Random Variables and Expectation
2.1 Random Variables and Expectation
2.1.1 Linearity of Expectations.
2.1.2 Jensen’s inequality
2.2 The Bernoulli and Binomial Random Variables
2.3 Conditional Expectation
2.4 The Geometric Distribution,
2.4.1 Example: Coupon Collector’s Problem
2.5 Application: The Expected Run-Time of Quicksort

2.6 Exercises

3 Moments and Deviations
3.1 Markov’s Inequality Lo oo
3.2 Variance and Moments of a Random Variable

3.2.1 Example: Variance of a Binomial Random Variable

© Copyright Mitzenmacher and Upfal, 2003-2004

14
14
16
22
26
29

35
35
37
39
40
42
46
48
51
%)

CONTENTS

3.3 Chebyshev’s inequality oL 66
3.3.1 Example: Coupon Collector’s Problem 67

3.4 Application: A Randomized Algorithm for Computing the Median . . 70
3.4.1 The Algorithm 70
3.4.2 Analysis of the Algorithm 72

3.5 Exerciseso L 76
4 Chernoff Bounds 80
4.1 Moment Generating Functions 80
4.2 Deriving and Applying Chernoff Bounds 82
4.2.1 Chernoff Bounds for the Sum of Poisson Trials 83
4.2.2 Example: Coin flips. L. 86
4.2.3 Application: Estimating a Parameter 87

4.3 Better Bounds for Some Special Cases 88
4.4 Application: Set Balancing 91
4.5 Application: Packet Routing in Sparse Networks * 92
4.5.1 Permutation Routing on the Hypercube 93
4.5.2 Permutation Routing on the Butterfly 98

4.6 EXerciseso 104
5 Balls, Bins, and Random Graphs 111
5.1 Application: The Birthday Paradox 111
5.2 Ballsinto Bins 113
5.2.1 The Balls and Bins Model 113
5.2.2 Application: Bucket Sort L. 115

5.3 The Poisson distribution 0o Lo 116
5.3.1 Limit of the Binomial Distribution 119

5.4 The Poisson approximation 121
5.4.1 Example: Coupon Collector’s Problem, Revisited * 126

5.5 Application: Hashing L 129

© Copyright Mitzenmacher and Upfal, 2003-2004

CONTENTS

5.6

5.7
5.8

6 The
6.1
6.2

6.3

6.4

6.5

6.6

6.7

6.8

6.9
6.10

5.5.1 Chain Hashing 129
5.5.2 Hashing: Bit strings L. 130
5.5.3 Bloom filter o 131
5.5.4 Breaking symmetryo 134
Random Graphs 135
5.6.1 Random Graph Models 135
5.6.2 Application: Hamiltonian Cycles in Random Graphs 136
Exercises 142
An Exploratory Assignment L. 148
Probabilistic Method 150
The Basic Counting Argument 150
The Expectation Argument 152
6.2.1 Application: Finding a Large Cut 153
6.2.2 Application: Maximum Satisfiability 155
Derandomization using Conditional Expectations 155
Sample and Modify oo o 157
6.4.1 Application: Independent Sets 157
6.4.2 Application: Graphs with Large Girth 158
The Second Moment Method 159
6.5.1 Application: Threshold Behavior in Random Graphs 159
The Conditional Expectation Inequality 161
The Lovasz Local Lemma 163
6.7.1 Application: Edge-Disjoint Paths 166
6.7.2 Application: Satisfiability 167
Explicit Constructions using the Local Lemma * 167
6.8.1 Application: A Satisfiability Algorithm 168
Lovasz Local Lemma: The General Case 172
Exercises L 174

© Copyright Mitzenmacher and Upfal, 2003-2004

CONTENTS

7 Markov Chains and Random Walks

7.1

7.2

7.3

7.4

7.5
7.6

Markov Chains: Definitions and Representations
7.1.1 Application: A randomized algorithm for 2-Satisfiability

7.1.2 Application: A randomized algorithm for 3-Satisfiability

Classification of States
7.2.1 Example: The Gambler’s Ruin.
Stationary Distributions oo
7.3.1 Example: A Simple Queue
Random Walks on Undirected Graph
7.4.1 Application: An s — ¢t Connectivity Algorithm
Parrondo’s Paradox o Lo o

Exercises

8 Continuous Distributions and the Poisson Process

8.1

8.2

8.3

8.4

8.5
8.6

Continuous Random Variables
8.1.1 Probability Distributionsin R
8.1.2 Joint Distribution and Conditional Probability
The Uniform Distribution
8.2.1 Additional Properties of the Uniform Distribution
The Exponential Distribution
8.3.1 Additional Properties of the Exponential Distribution
8.3.2 Application: Balls and Bins with Feedback *
The Poisson Process L
8.4.1 Interarrival Distribution
8.4.2 Combining and Splitting Poisson Processes
8.4.3 Conditional Arrival Time Distribution
Continuous Time Markov Processes
Application: Markovian Queues
8.6.1 M/M/1 Queue in Equilibrium 000
8.6.2 M/M/1/K Queue in Equilibrium

© Copyright Mitzenmacher and Upfal, 2003-2004

179
179
182
186
190
193
194
200
202
204
205
210

CONTENTS

8.6.3 The Number of Customers in an M/M /oo Queue 248

8.7 Exercises 251

9 Entropy, Randomness, and Information 258
9.1 The Entropy Function 258
9.2 Entropy and Binomial Coefficients 261
9.3 Entropy: A Measure of Randomness 263
9.4 Compression e e e e 268
9.5 Coding: Shannon’s Theorem * 271
9.6 Exercises 280
10 The Monte Carlo Method 288
10.1 The Monte Carlo Method 288
10.2 The DNF Counting Problem 291
10.2.1 The Naive Approach 292

10.2.2 A Fully Polynomial Randomized Scheme for DNF Counting . 293

10.3 From Approximate Sampling to Approximate Counting 295
10.4 The Markov Chain Monte Carlo Method 300
10.4.1 The Metropolis Algorithm 302

10.5 Exercises oL 304
10.6 An Exploratory Assignment on Minimum Spanning Trees 308

11 Coupling of Markov Chains * 309
11.1 Variation Distance and Mixing Time 309
11.2 Coupling 312
11.2.1 Example: Shuffling Cards 314

11.2.2 Example: Random Walks on the Hypercube 315

11.2.3 Example: Independent Sets of Fixed Size 315

11.3 Application: Variation Distance is Non-Increasing in Time 317
11.4 Geometric Convergence 320
11.5 Approximately Sampling Proper Colorings 321

© Copyright Mitzenmacher and Upfal, 2003-2004

CONTENTS

11.6 Path Coupling 326
11.7 Exerciseso 329
12 Martingales 336
12.1 Martingales L 336
12.2 Stopping Times 338
12.2.1 Application: A Ballot Theorem 340
12.3 Wald’s Equation Lo 342
12.4 Tail Inequalities for Martingales 344
12.5 Applications of the Azuma-Hoeffding Inequality 347
12.5.1 General Formalization 347
12.5.2 Application: Pattern Matching 349
12.5.3 Application: Ballsand Bins 350
12.5.4 Application: Chromatic Number 351
12.6 Exerciseso 351
13 Pairwise Independence and Universal Hash Functions 357
13.1 Pairwise Independence 357
13.1.1 Example: A Construction of Pairwise Independent Bits 358
13.1.2 Application: Derandomizing an Algorithm for Large Cuts. . . 359
13.1.3 Example: Constructing Pairwise Independent Values Modulo a
Prime 360
13.2 Chebyshev’s Inequality for Pairwise Independent Variables 361
13.2.1 Application: Sampling Using Fewer Random Bits 362
13.3 Families of Universal Hash Functions 364
13.3.1 Example: A 2-Universal Family of Hash Functions 367

13.3.2 Example: A Strongly 2-Universal Family of Hash Functions . 368

13.3.3 Application: Perfect Hashing 370
13.4 Application: Finding Heavy Hitters in Data Streams 373
13.5 Exercises 377

© Copyright Mitzenmacher and Upfal, 2003-2004

CONTENTS

14 Balanced Allocations * 381
14.1 The Power of Two Choices 381
14.1.1 The Upper Bound 381

14.2 Two Choices: The Lower Bound 386
14.3 Applicationso 390
14.3.1 Hashing 390

14.3.2 Dynamic Resource Allocation. 391

14.4 ExXerciseso e 391
References 396

© Copyright Mitzenmacher and Upfal, 2003-2004

Preface

Why Randomness?

Why should computer scientists study randomness? Computers appear to behave far
too unpredictably as it is! Adding randomness would appear to be a disadvantage,
adding further complications to the already challenging task of efficiently utilizing
computers.

Science has learned in the last century to accept randomness as an essential
component in modeling and analyzing nature. In physics, for example, Newton’s laws
led people to believe for a long period of time that the universe was a deterministic
place; given a big enough calculator and the appropriate initial conditions, one could
determine the location of planets years from now. The development of quantum
theory suggests a rather different view; the universe still behaves according to laws,
but the backbone of these laws is probabilistic. “God does not play dice with the
universe” was Einstein’s anecdotal objection to modern quantum mechanics theory.
Nevertheless, the prevailing theory today for sub-particle physics is based on random
behavior and statistical laws, and randomness plays a significant role in almost every
other field of science ranging from genetics and evolution in biology to modeling price
fluctuations in a free market economy.

Computer science is no exception. From the highly theoretical notion of proba-
bilistic theorem proving to the very practical design of PC Ethernet cards, randomness
and probabilistic methods play a key role in modern computer science. The last two
decades have witnessed a tremendous growth in the use of probability theory in com-
puting. Increasingly more advanced and sophisticated probabilistic techniques have
been developed and applied to broader and more challenging computer science appli-
cations. In this book, we study the fundamental ways in which randomness comes to
bear on computer science: randomized algorithms and the probabilistic analysis of
algorithms.

e Randomized algorithms. Randomized algorithms are algorithms that make
random choices during their execution. In practice, a randomized program
would use values generated by a random number generator to decide the next
step at several branches of its execution. For example, the protocol imple-

© Copyright Mitzenmacher and Upfal, 2003-2004

10

mented in the Ethernet card, uses random numbers to decide the time when it
next tries to access the shared Ethernet communication medium. The random-
ness is useful to break symmetry, preventing the different cards from repeatedly
accessing the medium at the same time. Other commonly used applications of
randomized algorithms include Monte-Carlo simulations and primality testing
for cryptography applications. In these and many other important applications
randomized algorithms are significantly more efficient than the best known de-
terministic solutions. Furthermore, in most cases the randomized algorithms
are also simpler and easier to program.

These gains come at a price; for example, the answer may have some probability
of being incorrect, or the efficiency is guaranteed only with some probability.
Although it may seem unusual to design an algorithm that may be incorrect,
if the probability of an error is sufficiently small, the improvement in speed or
memory may well be worthwhile.

e Probabilistic analysis of algorithms. Complexity theory tries to classify
computation problems according to their computational complexity, in particu-
lar distinguishing between the easy and hard problems. For example, complexity
theory shows that the Traveling Salesmen Problem is NP-hard. It is therefore
very unlikely that there is an algorithm that can solve any instance of the Trav-
eling Salesmen Problem in time that is subexponential in the number of cities.
An embarrassing phenomenon for the classical worst-case complexity theory is
that problems that are classified as hard to compute by the theory are often
easy to solve in practice. Probabilistic analysis gives a theoretical explanation
for that phenomenon. While these problems may be hard to solve on some set
of pathological hard inputs, on most inputs (in particular those that occur in
real life applications) the problem is actually easy to solve. More precisely, if
we think of the input as being randomly selected according to some probability
distribution on the collection of all possible inputs, we are very likely to obtain
a problem instance that is easy to solve, and instances that are hard to solve
appear with relatively small probability. Probabilistic analysis of algorithms is
the method of studying how algorithms perform when the input is taken from a
well-defined probabilistic space. As we will see, even NP-hard problems might
have algorithms that work extremely well on almost all inputs.

The Book

This textbook is designed to accompany one- or two-semester courses for advanced
undergraduate or beginning graduate students in computer science and applied math-
ematics. The study of randomized and probabilistic techniques in most leading uni-
versities has moved from being the subject of an advanced graduate seminar meant
for theoreticians to a regular course geared generally to advanced undergraduate
and beginning graduate students. While there are a number of excellent advanced,

© Copyright Mitzenmacher and Upfal, 2003-2004

11

research-oriented books on this subject, there was a clear need for an introductory
textbook in this area. We hope that this book satisfies this need.

This textbook has developed from courses on probabilistic methods in computer
science taught at Brown (CS 155) and Harvard (CS 223) in recent years. The emphasis
in these courses and in this textbook is on the probabilistic techniques and paradigms,
and not on particular applications. Fach chapter of the book is devoted to one such
method or technique. In each chapter, the techniques are clarified though examples
based on analyzing randomized algorithms or developing probabilistic analysis of
algorithms on random inputs. Many of these examples are derived from problems in
networking, reflecting both a prominent trend in the networking area and the taste
of the authors.

The book contains fourteen chapters. We have divided the book into two parts.
The first part of the book, consisting of the first seven chapters, represent what we
believe is core material. The book assumes only a basic familiarity with probability
theory, equivalent to what is covered in a standard Discrete Mathematics course for
computer scientists. The first three chapters review this elementary probability theory
while introducing some interesting applications. Topics covered include random sam-
pling, expectation, Markov’s inequality, variance, and Chebyshev’s inequality. If the
class has sufficient background in probability, these chapters can be taught quickly.
We do not suggest skipping these chapters, however, as they introduce the concepts of
randomized algorithms and probabilistic analysis of algorithms, and contain several
examples that are used throughout the text.

The next four chapters cover more advanced topics, including Chernoff bounds,
balls and bins models, the probabilistic method, and Markov chains. The material in
these chapters is more challenging than in the initial chapters.

We have starred sections in the Table of Contents that are particuarly challeng-
ing that the instructor may want to consider skipping.

This core material may constitute the bulk of a quarter or semester long course,
depending on the pace. The second part of the book covers additional advanced
material that can be used to fill out the basic course as necessary, or for a more
advanced second course. These chapters are for the most part self-contained, so the
instructor can choose the topics best suited to the class. The chapters on continuous
probability and entropy are perhaps the most appropriate to incorporate into the
basic course. Our introduction to continuous probability focuses on uniform and
exponential distributions, including examples from queueing theory. Our chapter on
entropy shows how randomness can be measured, and how entropy arises naturally
in the context of randomness extraction, compression, and coding.

Two of the remaining chapters cover the Monte Carlo method and coupling.
These chapters are closely related, and are best taught together. The chapter on
martingales covers important issues on dealing with dependent random variables, a
theme that continues in a different vein in the chapter on pairwise independence and

© Copyright Mitzenmacher and Upfal, 2003-2004

12

derandomization. Finally, the chapter on balanced allocations covers a topic close to
the heart of the authors, and ties in nicely with the previous chapter on the analysis
of balls and bins problems.

The order of the subjects, in particular in the first part of the book, corresponds
to their relative importance in the algorithmic literature. Thus, for example, the
study of Chernoff bounds precedes more fundamental probability concepts such as
Markov chains. Instructors, however, may choose to teach the chapters in different
order. A course with more emphasis on general stochastic processes, for example,
may teach the Markov chains chapter right after chapters 1-3, following with the
chapter on balls, bins, and random graphs (omitting the Hamiltonian cycle example).
The chapter on the the probabilistic method could be skipped, following instead with
continuous probability and the Poisson process. The material from the chapter on
Chernoff bounds, however, is needed for most of the remaining material.

While most of the exercises in the book are theoretical, we have included some
programming exercises, including a more extensive exploratory assignment that re-
quires some programming. We have found that occasional programming exercises are
often helpful in reinforcing the ideas in the book, as well as adding some variety to
the course.

We have decided to restrict the material in this book to methods and tech-
niques based on rigorous mathematical analysis, and with a few exceptions, all claims
in this book are followed by full proofs. Obviously, many extremely useful proba-
bilistic methods do not fall under this strict category. For example, in the important
area of Monte Carlo methods most practical solutions are heuristics that have been
demonstrated to be effective and efficient by experimental evaluation rather than by
rigorous mathematical analysis. We have taken the view that in order to best apply
and understand the strengths and weaknesses of heuristic methods, a firm grasp of
underlying probability theory and rigorous techniques, as we present in the book, is
necessary. We hope that students will appreciate this point of view by the end of the
course.

Acknowledgments

Our first thanks is to the many probabilists and computer scientists who developed
the beautiful material covered in this book. We chose not to overload the textbook
with numerous references to the original papers. We have instead provided a reference
list that includes a number of excellent books giving background material as well as
more advanced discussion of the book’s topics.

The book owes a great deal to the comments and feedback of students and
teaching assistants who took the courses CS 155 in Brown and CS 223 at Harvard.
In particular we want to thank Aris Anagnostopoulos, Eden Hochbaum, Rob Hunter,
and Adam Kirsch, who read and commented on early drafts of of the book.

© Copyright Mitzenmacher and Upfal, 2003-2004

13

Special thanks to Dick Karp, who used a draft of the book in teaching CS 174 at
Berkeley during fall 2003. His early comments and corrections were most valuable in
improving the manuscript. Peter Bartlett taught CS 174 at Berkeley in spring 2004,
and also provided many corrections and useful comments.

We thank our colleagues who carefully read parts of the manuscript, pointed
our many errors, and suggested important improvements in content and presentation:
Artur Czumaj, Alan Frieze, Claire Kenyon, Joe Marks, Salil Vadhan, Eric Vigoda,
and the anonymous reviewers who read the manuscript for the publisher.

We also thank Rajeev Matwani and Prabhakar Raghavan for allowing us to use
some of the exercises in their excellent book Randomized Algorithms.

We are grateful to Lauren Cowles of Cambridge University Press for her editorial
help and advise in preparing and organizing the manuscript.

Writing of this book was supported in part by an NSF ITR grant CCR-0121154.

© Copyright Mitzenmacher and Upfal, 2003-2004

Chapter 1

Events and Probability

This chapter introduces the notion of randomized algorithms and reviews some basic
concepts of probability theory in the context of analyzing the performance of simple
randomized algorithms for verifying algebraic identities and finding a minimum cut-
set in a graph.

1.1 Application: Verifying Polynomial Identities

Computers can sometimes makes mistakes, for example due to incorrect programming
or hardware failure. It would be useful to have simple ways to double-check the results
of computations. For some problems, we can use randomness to efficiently verify the
correctness of an output.

Suppose we have a program that multiplies together monomials. Consider the
problem of verifying the following identity, which might be output by our program:

(x+1)(x —2)(x+3)(z —4)(x+5)(z — 6) = 25 — 72% + 25.

There is an easy way to verify whether the identity is correct: multiply together the
terms on the left hand side and see if the resulting polynomial matches the right hand
side. In this example, when we multiply all the constant terms on the left, the result
does not match the constant term on the right, so the identity cannot be valid. More
generally, given two polynomials F'(x) and G(z), we can verify the identity

F(z) = G(z)

by converting the two polynomials to their canonical forms (Z?:o c;zt); two polyno-
mials are equivalent if and only if all the coefficients in their canonical forms are equal.
From this point on let us assume that, as in our example, F'(x) is given as a product
F(z) = [I~,(z — a;) and G(z) is given in its canonical form. Transforming F(z) to
its canonical form by consecutively multiplying the i-th monomial with the product

© Copyright Mitzenmacher and Upfal, 2003-2004

1.1 Application: Verifying Polynomial Identities

15

of the first ¢ — 1 polynomials takes ©(d?) multiplications of coefficients. We assume
in what follows that each multiplication can be done in constant time, although if
the products of the coefficients grow large, it could conceivably require more than
constant time to add and multiply numbers together.

So far, we have not said anything particularly interesting. To check if the
computer program has multiplied monomials together correctly, we have suggested
multiplying the monomials together again to check the result. Our approach for
checking the program is to write another program that does essentially the same
thing that we expect the first program to do. This is certainly one way to double-
check a program: write a second program that does the same thing, and make sure
they agree. There are at least two problems with this approach, both stemming
from the idea that there should be a difference between checking a given answer and
recomputing it. First, if there is a bug in the program that multiplies monomials, the
same bug may occur in the checking program. (Suppose that the checking program
was written by the same person who wrote the original program!) Second, it stands
to reason that we would like to check the answer in less time than it takes to try to
solve the original problem all over again.

Let us instead utilize randomness to obtain a faster method to verify the iden-
tity. We informally explain the algorithm and then set up the formal mathematical
framework for analyzing the algorithm.

Assume that the maximum degree, or the largest exponent of z, in F(z) and
G(z) is d. The algorithm chooses an integer r uniformly at random in the range
{1,...,100d}, where by uniformly at random we mean that all integers are equally
likely to be chosen. The algorithm then computes the values F'(r) and G(r). If
F(r) # G(r) the algorithm decides that the two polynomials are not equivalent, and
if F(r) = G(r) the algorithm decides that the two polynomials are equivalent.

Suppose that in one computation step the algorithm can generate an integer
chosen uniformly at random in the range {1, ...,100d}. Computing the values of F'(r)
and G(r) can be done in O(d) time, which is faster than computing the canonical
form of F'(r). The randomized algorithm, however, may give a wrong answer.

How can the algorithm give the wrong answer?

If F(z) = G(z), then the algorithm gives the correct answer, since it will find
that F'(r) = G(r) for any value of r.

If F(z) # G(x) and F(r) # G(r), then the algorithm gives the correct answer
since it has found a case where F'(z) and G(z) disagree. Thus, when the algorithm
decides the the two polynomials are not the same, the answer is always correct.

If F(x) # G(x) and F(r) = G(r), the algorithm gives the wrong answer. It is
possible that the algorithm decides that the two polynomials are the same when they
are not. For this error to occur, r must be a root of the equation F(z) — G(z) = 0.
The degree of the polynomial F'(z) —G(x) is no larger than d, and by the fundamental

© Copyright Mitzenmacher and Upfal, 2003-2004

1.2 Axioms of Probability

16

theorem of algebra a polynomial of degree up to d has no more than d roots. Thus,
if F(x) # G(x), there are no more than d values in the range {1,...,100d} for which
F(r) = G(r). Since there are 100d values in the range {1,...,100d}, the chance that
the algorithm chooses such a value and returns a wrong answer is no more than 1,/100.

1.2 Axioms of Probability

We turn now to a formal mathematical setting for analyzing the randomized algo-
rithm. Any probabilistic statement must refer to the underlying probability space.

Definition 1. A probability space has three components:

1. A sample space €2, which is the set of all possible outcomes of the random process
modeled by the probability space;

2. A family of sets F representing the allowable events, where each set in F is a
subset of the sample space €);

3. A probability function Pr : F — R, satisfying the definition below.

An element of € is called a simple or elementary event.

In the randomized algorithm for verifying polynomial identities the sample space
is the set of integers {1, ...,100d}. Each choice of an integer r in this range is a simple
event.

Definition 2. A probability function is any function Pr : F — R that satisfies the
following conditions:

1. For any event E, 0 < Pr(E) < 1;

2. Pr(Q?) =1;

3. For any finite or countably infinite sequence of pairwise mutually disjoint events
E\,E, E5, ...

Pr (U E) =Y Pr(E;).

i>1 i>1

In most of this book we will use discrete probability spaces. In a discrete
probability space the sample space € is finite or countably infinite, and the family of
allowable events, F, consists of all subsets of 2. In a discrete probability space, the
probability function is uniquely defined by the probabilities of the simple events.

Again, in the randomized algorithm for verifying polynomial identities, each
choice of an integer r is a simple event. Since the algorithm chooses the integer

© Copyright Mitzenmacher and Upfal, 2003-2004

1.2 Axioms of Probability

17

uniformly at random, all simple events have equal probability. The sample space has
100d simple events, and the sum of the probabilities of all simple events must be 1.
Therefore each simple event has probability 1/100d.

Since events are sets, we use standard set theory notation to express combina-
tions of events. We write E; N Es, for the occurrence of both E; and E,, and E; U F,
for the occurrence of either E; or Ey (or both). For example, suppose we roll two
dice. If E; is the event that the first die is a 1 and E5 is the event that the second
die is a 1, then E; N E5 denotes the event that both dice are 1, and E; U E5 denotes
the event that at least one of the two dice lands on 1. Similarly, we write £y — Ey for
the occurrence of an event that is in £} but not in F,. With the same dice example,
E, — E5 consists of the event where the first die is a 1 and the second die is not. We
use the notation £ as shorthand for Q — E; for example, if E is the event that when
we roll a die we obtain an even number, then E is the event that we obtain an odd
number.

Definition 2 yields the following obvious lemma.

Lemma 1. For any two events FEy and FE,

PI'(El U EQ) = PI'(El) + PI'(EQ) - PI'(E1 N Eg)

Proof. From the definition,

Pr(Ey) = Pr(E; — (E; N Ey)) + Pr(E, N Ey)
PI'(EQ) = PI'(EQ — (E1 N EQ)) + PI"(El N Eg)
PI'(E1 U Eg) = PI'(E1 - (E1 N EQ)) + PI"(EQ - (E1 N EQ)) + PI'(El N Eg)

The lemma easily follows. O

A consequence of Definition 2 is known as the union bound. Although it is very
simple, it is tremendously useful.

Lemma 2. For any finite or countably infinite sequence of events Fy, Es, ...,

Pr (U E) <> Pr(E).

i>1 i>1

Notice that Lemma 2 differs from the third part of Definition 2 in that Defini-
tion 2 is an equality, and it requires the events to be pairwise mutually disjoint.

Lemma 1 can be generalized to the following equality, often referred to as the
inclusion-exclusion principle:

© Copyright Mitzenmacher and Upfal, 2003-2004

1.2 Axioms of Probability

18

Lemma 3. Let Fy, ..., E, be any n events. Then

Pr(Ui,E;) = ZPY(Ei)—ZPr(EiﬂEj)
i=1 i<j
+ Y Pr(EiNE;NE)
1<j<k
= ek (DY Pr(OL)

11 <t <+ <iy

The proof of the inclusion-exclusion principle is left as exercise 7.

We showed before that the only case in which the algorithm may fail to give the
correct answer is when the two input polynomials F'(z) and G(x) are not equivalent.
The algorithm gives an incorrect answer if the random number it chooses is a root of
the polynomial F'(x) — G(z). Let E represent the event that the algorithm failed to
give the correct answer. The elements of the set corresponding to E are the roots of
the polynomial F'(z) — G(z) that are in the set of integers {1,...,100d}. Since the
polynomial has no more than d roots the event E includes no more than d simple
events, and therefore

d 1
Pr(Algorithm fails) = Pr(F) < —— = —.
r(Algorithm fails) r(E) < 100d = 100

It may seem unusual to have an algorithm that can return the wrong answer.
It may help to think of the correctness of an algorithm as a goal that we seek to
optimize in conjunction with other goals. In designing an algorithm we generally seek
to minimize the number of computational steps and the memory required. Sometimes
there is a tradeoff; there may be a faster algorithm that uses more memory, or a slower
algorithm that uses less memory. The randomized algorithm we have presented gives
a tradeoff between correctness and speed. Allowing algorithms that may give an
incorrect answer (but in a systematic way) expands the tradeoff space available in
designing algorithms. Rest assured, however, that not all randomized algorithms give
incorrect answers, as we will see.

For the algorithm described above, even when the polynomials are not equiva-
lent, the algorithm gives the correct answer 99% of the time. Can we improve this
probability? One way is to choose the random number r from a larger range of in-
tegers. If our sample space is the set of integers {1,...,1000d}, then the probability
of a wrong answer is at most 1/1000. At some point, however, the range of values
we can use is limited by the precision available on the machine on which we run the
algorithm.

Another approach is to repeat the algorithm multiple times, using different
random values to test the identity. The property we use here is that the algorithm
has a one-sided error. The algorithm may be wrong only when it outputs that the two

© Copyright Mitzenmacher and Upfal, 2003-2004

1.2 Axioms of Probability

19

polynomials are equivalent. If any run yields a number r such that F(r) # G(r), then
the polynomials are not equivalent. Thus, if we repeat the algorithm a number of
times and find F(r) # G(r) in at least one round of the algorithm, we know that this
is the correct answer. The algorithm outputs that the two polynomials are equivalent
only if there is equality for all runs.

In repeating the algorithm we repeatedly choose a random number in the range
{1,...,100d}. Repeatedly choosing random numbers according to a given distri-
bution is generally referred to as sampling. In this case, we can repeatedly choose
random numbers in the range {1,...,100d} in two ways: we can either sample with
replacement or without replacement. Sampling with replacement means that we do
not remember which numbers we have already tested; each time we run the algorithm,
we choose a number uniformly at random from the range {1,...,100d} regardless of
previous choices, so there is some chance we will choose an r that we have chosen
on a previous run. Sampling without replacement means that once we have chosen a
number 7, we do not allow the number to be chosen on subsequent runs; the number
chosen at a given iteration is uniform over all previously unselected numbers.

Let us first consider the case where sampling is done with replacement. Assume
that we repeat the algorithm k times, and that the input polynomials are not equiva-
lent. What is the probability that in all k iterations our random sampling from the set
{1,...,100d} yields roots of the polynomial F'(x) — G(z), resulting in a wrong output
by the algorithm? If k = 1, we know that this probability is at most —%& = L. If

100d 100 *

k = 2, it seems that the probability that the first iteration finds a root is ﬁ, and
1

the probability that the second iteration finds a root is 155, so the probability that
1

100)2. Generalizing, the probability of choosing

roots for k iterations would be at most (ﬁ)k.

both iterations find a root is at most (

To formalize this, we introduce the notion of independence.
Definition 3. Two events E and F' are independent if and only if
Pr(ENF) = Pr(E)-Pr(F).

More generally, events Fv, Es, ... E} are mutually independent if and only if for any
subset I C [1, k],

Pr (ﬂ E) = []Pr(E).

1€l el

If our algorithm samples with replacement, then in each iteration the algorithm
chooses a random number uniformly at random from the set {1,...,100d}, and thus
the choice in one iteration is independent of the choices in previous iterations. For
the case where the polynomials are not equivalent, let F; be the event that on the i-th

© Copyright Mitzenmacher and Upfal, 2003-2004

1.2 Axioms of Probability

20

run of the algorithm we choose a root r; so that F'(r;) — G(r;) = 0. The probability
that the algorithm returns the wrong answer is given by

Pr(EyNEyN...N Ey).

Since Pr(E;) is at most d/100d, and the events E, Es, ..., Ey are independent, the
probability that the algorithm gives the wrong answer after k iterations is

k k k
d 1
Pr(E1NEyN...NE;) = | | Pr(E;) < | | — = <_>)
o +1100d \ 100

The probability of making an error is therefore at most exponentially in the number
of trials.

Now let us consider the case where sampling is done without replacement. In
this case the probability of choosing a given number is conditioned on the events of
the previous iterations.

Definition 4. The conditional probability that event E occurs given that event F
0CCUTS 1S

Pr(ENF)

PrE | F) = —p

The conditional probability is only well-defined if Pr(F) > 0.

Intuitively, we are looking for the probability of £ N F' within the set of events
defined by F'. Because F' defines our restricted sample space, we normalize the prob-
abilities by dividing by Pr(F), so that the sum of the probabilities of all events is 1.
When Pr(F) > 0, the definition can also be written in the useful form

Pr(E | F)Pr(F) = SHEOE)

Notice that when E and F are independent, and Pr(F’) # 0, we have

Pr(ENF)

Pr(E | F) = 5o

= Pr(E).

This is a property that conditional probability should have; intuitively, if two events
are independent, then information about one event should not affect the probability
of the second event.

Again assume that we repeat the algorithm k times, and that the input polyno-
mials are not equivalent. What is the probability that in all the & iterations our ran-
dom sampling from the set {1,...,100d} yields roots of the polynomial F'(z) — G(z),
resulting in a wrong output by the algorithm?

© Copyright Mitzenmacher and Upfal, 2003-2004

1.2 Axioms of Probability

21

As in the analysis with replacement, we let E; be the event that the random
number 7; chosen in the i-th iteration of the algorithm is a root of F'(z) — G(z), and
the probability that the algorithm returns the wrong answer is given by

Pr(EyNEyN...N Ey).
Applying the definition of conditional probability, we obtain
Pr(ExNE;N...NEy) = Pr(Ey | EiNEyN...NEk_1) -Pr(EsNEyN...NEg_q),
and repeating this argument gives
Pr(EyNE;N...NEy) =

PI'(El) : PI'(EQ | El) : PI'(E3 | E1 N EZ) C PI'(Ek | El N E2 N...N Ekfl).

Can we bound Pr(E; | EyNEyN...N E;_1)? Recall that there are at most d
values r for which F(r) — G(r) = 0; if trials 1 through j — 1 < d have found j — 1 of

them, then when sampling without replacement there are only d — (j — 1) values out
of the 100d — (j — 1) remaining choices for which F(r) — G(r) = 0. Hence

d—(j—1)
Pr(E; | BN EsN...NEj_,) <
H(E; | Evn By) S 000= = 1)

and the probability that the algorithm gives the wrong answer after £ < d iterations
is bounded by

S d-(j-1) 1*
Pr(E,NE;N...NEy) < <(—) .
(B B k)_jI:[llOOd—(j—l)_<100)

Thus, our bounds on the probability of making an error is slightly better without
replacement. You may also notice that if we take d + 1 samples without replacement,
and the two polynomials are not equivalent. then we are guaranteed to find an r
such that F(r) — G(r) # 0. Thus, in d 4 1 iterations we are guaranteed to output
the correct answer. However, computing the value of the polynomial at d 4+ 1 points
takes ©(d?) time using the standard approach, which is no faster than finding the
canonical form deterministically.

Since sampling without replacement appears to give better bounds on the prob-
ability of error, why would we ever want to consider sampling with replacement? In
some cases, sampling with replacement is significantly easier to analyze, so it may be
worth considering for theoretical reasons. In practice, sampling with replacement is
often simpler to code and the effect on the probability of making an error is almost
negligible, making it a desirable alternative.

© Copyright Mitzenmacher and Upfal, 2003-2004

1.3 Application: Verifying Matrix Multiplication

22

1.3 Application: Verifying Matrix Multiplication

We now consider another example where randomness can be used to verify an equality
more quickly than the known deterministic algorithms. Suppose we are given three
nxn matrices A, B, and C. For convenience, assume we are working over the integers
modulo 2. We want to verify whether

AB = C.

One way to accomplish this is to multiply A and B and compare the result to C.
The simple matrix multiplication algorithm takes ©(n?) operations. There exist more
sophisticated algorithms that are known to take roughly ©(n?3") operations.

Once again, we use a randomized algorithm that allows for faster verification,
at the expense of possibly returning a wrong answer with small probability. The
algorithm is similar in spirit to our randomized algorithm for checking polynomial
identities. The algorithm chooses a random vector 7 = (r1,73,...,7,) € {0,1}". It
then computes AB7 by first computing B7 and then A(Bf), and it computes Cr. If
A (B7) # Cf7, then AB # C. Otherwise, return that AB = C.

The algorithm requires three matrix-vector multiplications, which can be done
in time ©(n?) in the obvious way. The probability that the algorithm erroneously
returns that AB = C, when they are not equal, is bounded by the following theorem.

Theorem 1. If AB # C, and T is chosen uniformly at random from {0,1}", then

Pr(ABr =Cr) <

DN =

Proof. Before beginning, we point out that the sample space for the vector 7 is the
set {0,1}", and the event under consideration is AB7 = Cr. We also make note of
the following simple but useful lemma.

Lemma 4. Choosing 7 = (1,79, ...,1,) € {0,1}" uniformly at random is equivalent
to choosing each r; independently and uniformly from {0, 1}.

Proof. 1f each r; is chosen independently and uniformly at random, each of the 2"
possible vectors 7 is chosen with probability 27", giving the lemma. O

Let D= AB — C # 0. Then ABr = Cr implies that D7 = 0. Since D # 0 it
has some non-zero entry; without loss of generality, let that entry be dy;.

For D7 = 0, it must be the case that

Z dljrj = 0,
j=1

© Copyright Mitzenmacher and Upfal, 2003-2004

1.3 Application: Verifying Matrix Multiplication

23

or equivalently

iy

T (1.1)

r =

Now we introduce a helpful idea. Instead of reasoning about the vector 7,
suppose that we choose the 7y independently and uniformly at random from {0, 1} in
order from r, down to r;. Now consider the situation just before r; is chosen. At this
point, the right hand side of equation 1.1 above is determined, and there is at most
one choice for r; that will make the above equality hold. Since there are two choices
for r1, the equality holds with probability at most 1/2, and therefore the probability
that AB7 = C7 is at most 1/2. By considering all variables besides r; as having been
set, we have reduced the sample space to the set of two values {0, 1} for r;, and have
changed the event being considered to whether equation 1.1 holds.

The idea is called the principle of deferred decisions. When there are several
random variables, such as the r; of the vector 7, it often helps to think of some of them
as being set at one point in the algorithm with the rest of them being left random,
or deferred, until some further point in the analysis. Formally, this corresponds to
conditioning on the revealed values; when some of the random variables are revealed,
we must condition on the revealed values for the rest of the analysis. We will see
further examples of the principle of deferred decisions later in the book.

To formalize this argument, we first introduce a simple fact, known as the law
of total probability.

Theorem 2 (Law of Total Probability). Let E, Es, ..., E, be mutually disjoint
events in the sample space §2, and U}, E; = (), then

Pr(B) = 2": Pr(BNE;) = 2": Pr(B | E;) Pr(E;).

Proof. Since the events BN E;, ¢ = 1,...,n are disjoint and cover the entire sample
space €2,

Pr(B) = z”: Pr(BN E;).

Further,
> Pr(BNE;) =) _ Pr(B|E;)Pr(E)
i=1 i=1
by the definition of conditional probability. O
Using this law, summing over all collections of values (z9,x3,24,...,2,) €

© Copyright Mitzenmacher and Upfal, 2003-2004

1.3 Application: Verifying Matrix Multiplication

24

{0,1}"!, we have

Pr(ABr =Cr) = Z Pr((ABr=Cr)N((re,...,rn) = (2,...,2,)))

(z2,..yzn)€{0,1}n 1

,r.L_ d ./r'.
< Z Pr((rlz—w>ﬂ((rz,...,rn):(xQ,...
o di1
(z2,...,xn)€{0,1}
Y dyr;
= Z PI'(?"IZ—M)'PI'(('I“Q,...,TH):(ZUZ,...
o diy
(:DQ,...,ZL‘n)E{O,I}"
1

< - P - = -
=~ Z 9 I'((?”z, 77071,) (372, 7:Un))

(:DQ,...,ZL‘n)E{O,I}"_l
1
= 5

Here we have used the independence of r; and (rs,...,7,) in the third line. a

To improve on the error probability of Theorem 1, we can again use the fact
that the algorithm has a one-sided error and run the algorithm multiple times. If
we ever find an 7 so that ABr # Cr, then the algorithm will correctly return that
AB # C. If we always find ABr = Cr, the algorithm returns that AB = C, and
there is some probability of a mistake. Choosing 7 with replacement from {0,1}"
for each trial, we obtain that after k trials, the probability of error is at most 27*.
Repeated trials increase the running time to ©(kn?).

Suppose we run this verification 100 times. The running time of the random-
ized checking algorithm is still ©(n?), which is faster than the known deterministic
algorithms for matrix multiplication for sufficiently large n. The probability that an
incorrect algorithm passes the verification test 100 times is 271, an astronomically
small number. In practice, the computer is much more likely to crash during the
execution of the algorithm than to return a wrong answer.

An interesting related problem is to evaluate the gradual change in our confi-
dence in the correctness of the matrix multiplication as we repeat the randomized
test. To that end we introduce Bayes’ law.

Theorem 3 (Bayes’ Law). Assume that E, Es, ..., E, are mutually disjoint sets
such that Ul E; = E, then

Pr(E;NB) _ Pr(B| E;)Pr(R;)

Pr(E; | B) = Pr(B) Y. Pr(B|E;)Pr(R;)

As a simple application of Bayes’ law consider the following problem: We are
given three coins and are told that two of the coins are fair and the third coin is
biased, landing heads with probability 2/3. We are not told which of the three coins
is biased. We permute the coins randomly, and then flip each of the coins. The

© Copyright Mitzenmacher and Upfal, 2003-2004

1.3 Application: Verifying Matrix Multiplication

25

first and second coins come up heads, and the third comes up tails. What is the
probability that the first coin is the biased one?

Since the coins are in a random order, before observing the outcomes of the coin
flips, each of the three coins is equally likely to be the biased one.

Let E; be the event that the i-th coin flipped is the biased one, and let B be
the event that the three coin flips came up heads, heads, and tails.

Before we flip the coins we have Pr(E;) = 1/3 for for all i. We can also compute
the probability of the event B conditioned on Ej:

11
PF(B|E1):Pr(B|E2):—-§-§—6,

and

Applying Bayes’ law we have

Pr(E, | B) = Pr(B | Ey) Pr(E1) _ 2
1 S Pr(B|E)Pr(E) 5

Thus, the outcome of the three coin flips increases the probability that the first
coin is the biased one from 1/3 to 2/5.

Returning now to our randomized matrix multiplication test we want to evaluate
the increase in confidence in the matrix identity obtained through repeated tests. In
the Bayesian approach (or using Bayesian statistics) one starts with an prior model,
giving some initial value to the model parameters. This model is then modified, by
incorporating new observations, to obtain a posterior model that captures the new
information.

In the matrix multiplication case, if we have no information about the process
that generated the identity, a reasonable prior assumption is that the identity is
correct with probability 1/2. If we run the randomized test once and it returns that
the matrix identity is correct, how does it change our confidence in the identity?

Let E be the event that the identity is correct, and let B be the event that the
test returns that the identity is correct.

We start with Pr(E) = Pr(E) = 1/2, and since the test has a one side error
bounded by 1/2, we have Pr(B | E) = 1, and Pr(B | E) < 1/2. Applying Bayes’ law
we have

Pr(B | E)Pr(FE) S 1/2 B
Pr(B | E)Pr(E) +Pr(B | E)Pr(E) — 1/2+1/2-1/2

Pr(E | B) = 2/3.

Assume now that we run the randomized test again and it again returns that
the identity is correct. After the first test, I may naturally have revised my prior

© Copyright Mitzenmacher and Upfal, 2003-2004

1.4 Application: A Randomized Min-Cut Algorithm

model, so that I believe Pr(E) > 2/3, and Pr(E) < 1/3. Letting B now be the event
that the new test returns that the identity is correct, since the tests are independent,
as before we have Pr(B | E) =1 and Pr(B | E) < 1/2. Applying Bayes’ law we have

PrE | B) > — 22

= 2/3+1/3-1)2 = 4/5.

In general, if before running the test our prior model is that Pr(E) > 2¢/(2+1),
and the test returns that the identity is correct (event B), then

z 9itl 1
Pr(E | B) > 55— ~ i 1:1 2 +1°
2041 + 22011 + +

Thus, if all 100 calls to the matrix identity test return that the identity is correct,

then our confidence in the correctness of this identity is at least 1 — 21T1+1

1.4 Application: A Randomized Min-Cut Algo-
rithm

A cut-set in a graph is a set of edges whose removal breaks the graph into two or more
connected components. Given a graph G = (V| E)) with n vertices, the minimum cut,
or min-cut, problem is to find a minimum cardinality cut-set in G. Minimum cut
problems arise in many contexts, including the study of network reliability. In the
case where nodes correspond to machines in the network and edges correspond to
connections between machines, the min-cut is the smallest number of edges that can
fail before some pair of machines cannot communicate. Minimum cuts also arise in
clustering problems. For example, if nodes represent Web pages (or any documents
in a hypertext-based system), and two nodes have an edge between them if they are
linked, then small cuts divide the graph into clusters of documents with few links
between clusters. Documents in different clusters are likely to be unrelated.

We analyze a simple randomized algorithm for the min-cut problem, making
use of the definitions and techniques presented in this chapter.

The main operation in the algorithm is edge contraction. In contracting an
edge {u,v} we merge the two vertices u and v into one vertex, eliminate all edges
connecting u and v, and retain all other edges in the graph. The new graph may have
parallel edges but no self-loops. Examples appear in Figure 1.1.

The algorithm consists of n — 2 iterations. In each iteration the algorithm
picks an edge from the existing edges in the graph and contracts that edge. There
are many possible ways one could choose the edge at each step. Our randomized
algorithm chooses the edge uniformly at random from the remaining existing edges.

© Copyright Mitzenmacher and Upfal, 2003-2004

1.4 Application: A Randomized Min-Cut Algorithm

27

1 3 1
3.4 1,34 1,2,3,4
2 4 2 2

(a) A successful run of min-cut.

1 3 1 1 1
5 5 %
3,4 3,4,5
23,45
2 4 2 2
(b) An unsuccessful run of min-cut.

Figure 1.1: An example of two executions of min-cut in a graph with minimum cut
set of size 2.

Each iteration reduces the number of vertices in the graph by one. After n — 2
iterations the graph consists of two vertices. The algorithm outputs the set of edges
connecting the two remaining vertices.

It is easy to verify that any cut-set of a graph in an intermediate iteration of the
algorithm is also a cut-set of the original graph. On the other hand, not every cut-set
of the original graph is a cut-set of a graph in an intermediate iteration, since some
edges of the cut-set may have been contracted in previous iterations. As a result the
output of the algorithm is always a cut-set of the original graph, but not necessarily
the minimum cardinality cut-set (see Figure 1.1).

We prove a lower bound on the probability that the algorithm returns a correct
output.
Theorem 4. The algorithm outputs a min-cut set with probability at least ﬁ
Proof. Let k be the size of the min-cut set of G. The graph may have several cut sets
of minimum size. We compute the probability of finding one specific such set C.

Since C' is a cut-set in the graph, removal of the set C' partitions the set of
vertices into two sets S and V' — S, such that there are no edges connecting vertices in
S to vertices in V' —S. Assume that throughout the execution of the algorithm we only
contract edges connecting vertices in S or vertices in V' — S, but not edges in C'. In
that case all the edges eliminated throughout the execution will be edges connecting
vertices in S or vertices in V' — S, and after n — 2 iterations the algorithm returns a
graph with two vertices connected by the edges in C'. Therefore we conclude that if
the algorithm never chooses an edge of C' in its n — 2 iterations, then the algorithm
returns C' as the minimum cut-set.

© Copyright Mitzenmacher and Upfal, 2003-2004

1.4 Application: A Randomized Min-Cut Algorithm

28

The argument above gives some intuition for why we choose the edge at each
iteration uniformly at random from the remaining existing edges. If the size of the
cut C' is small, and the algorithm chooses the edge uniformly at each step, then the
probability that the algorithm chooses an edge of C' is small, at least when the number
of edges remaining is large compared to C.

Let E; be the event that the edge contracted in iteration ¢ is not in C. Let
F;, = ﬂé-zlEj be the event that no edge of C' was contracted in the first ¢ iterations.
We need to compute Pr(F,_5).

We start by computing Pr(E;) = Pr(F}). Since the minimum cut-set has k&
edges, all vertices in the graph must have degree k or larger. If each vertex is adjacent
to at least k edges then the graph must have at least nk/2 edges. The first contracted
edge is chosen uniformly at random from the set of all edges. Since there are at least
nk/2 edges in the graph, and C has k edges, the probability that we do not choose
an edge of C in the first iteration is given by

2k 2

Let us suppose that the first contraction did not eliminate an edge of C. In
other words, we condition on the event F;. Then after the first iteration we are left
with an n — 1 node graph with minimum cut set of size k. Again, the degree of each
vertex in the graph must be at least k, and the graph must have at least k(n — 1)/2
edges. Thus,

k 2
Pr(Ey | F1))>1————=1-— .
(B [B) 21 =07 n—1
Similarly,
2
Pr(E; | Fioq) > 1— k =1-—
k(n—i+1)/2 n—i+1

To compute Pr(F,_5) we use

PI'(Fn_Q) = PI'(n—2 N Fn_g) = PI'(En_Q | Fn_g) . PI'(Fn_g)
= PI'(n—2 | ang) . PI'(En,:), | Fn,4)....PI'(E2 | Fl) . PI'(FI)

ﬁ<1 n—2+1> Hj(%)
- ()= =000

2
n(n—1)

Y

~.

© Copyright Mitzenmacher and Upfal, 2003-2004

1.5 Exercises 29

Since the algorithm has a one-sided error, we can reduce the error probability
by repeating the algorithm. Assume that we run the randomized min-cut algorithm
n(n — 1)Inn times and output the minimum size cut-set found in all the iterations.
The probability that the output is not a min-cut set is bounded by

9 n(n—1)lnn 1
1 - < —2Inn e
(n(n - 1)) =t e

T

In the first inequality we use the fact that 1 —x <e™".

1.5 Exercises

1. We flip a fair coin ten times. Find the probability of the following events:

(a) The number of heads and the number of tails are equal.
(b) There are more heads than tails.
(c) The i-th flip and the (11 —4)-th flip are the same for i =1,...,5.
(d) We flip at least four consecutive heads.
2. We roll two standard six-sided dice. Find the probability of the following events,
assuming that the outcomes of the rolls are independent:
(a) The two dice show the same number.

(b) The number that appears on the first die is larger than the number on the
second.

(c) The sum of the dice is even.
(d) The product of the dice is a perfect square.

3. We shuffle a standard deck of fifty-two cards, obtaining a permutation uniform
over all 52! possible permutations. Find the probability of the following events:

The first two cards include at least one ace.
b
(c
(d
(e

The first five cards include at least one ace.

(a
(

The first two cards are a pair of the same rank.

The first five cards are all diamonds.

~— ~— ~— ' e

The first five cards form a full house (a three-of-a-kind of one rank and a
pair of another rank).

4. We are playing a tournament, where we stop as soon as one of us wins n games.
We are evenly matched, so the probability each of us wins each game is 1/2,
independently of other games. What is the probability that the loser has won
k games when the match is over?

© Copyright Mitzenmacher and Upfal, 2003-2004

1.5 Exercises

30

d.

7.

After lunch one day, Alice suggests to Bob the following method to determine
who pays. Alice pulls three six-sided dice from her pocket. These dice are not
the standard dice, but have the following numbers on their faces:

e Die A: 1,1,6,6,8,8
e Die B: 2,2,4,4,9.9
e Die C: 3,3,5,5,7,7

The dice are fair, so each side comes up with equal probability. Alice explains
that both Alice and Bob will each pick up one of the dice. They will each roll
their die, and the one who rolls the lowest number loses and will buy lunch. So
as to take no advantage, Alice offers Bob the first choice of the dice.

(a) Suppose that Bob chooses Die A and Alice chooses Die B. Write out all of
the possible events and their probabilities, and show that the probability
that Alice wins is bigger than 1/2.

(b) Suppose that Bob chooses Die B and Alice chooses Die C. Write out all of
the possible events and their probabilities, and show that the probability
that Alice wins is bigger than 1/2.

(c) Since Die A and Die B lead to situations in Alice’s favor, it would seem
that Bob should choose Die C. Suppose that Bob chooses Die C and Alice
chooses Die A. Write out all of the possible events and their probabilities,
and show that the probability that Alice wins is still bigger than 1/2.

Consider the following balls and bin game. We start with 1 black ball and 1
white ball in a bin. We repeatedly do the following: we choose one ball from
the bin uniformly at random, and put the ball back in the bin with another ball
of the same color. We repeat until there are n balls in the bin. Show that the
number of white balls is equally likely to be any number between 1 and n — 1.

(a) Prove Lemma 3, the inclusion-exclusion principle.

(b) Prove that when ¢ is odd,

Pr(U,E;) < Y Pr(E)—> Pr(E;NE))
i=1 i<j
+ Y Pr(EiNE;NE)
1<j<k

— e (1) Z

11 <t < <dy

© Copyright Mitzenmacher and Upfal, 2003-2004

1.5 Exercises

(c) Prove that when ¢ is even,

Pr(Uf,E;) > Y Pr(E;) - Pr(E;NE;)
i=1 1<j
+ Z PI‘(EZ N Ej N Ek)
1<j<k

I Z

11 <t < <dy

8. I choose a number uniformly at random from the range [1,1000000]. Using the
inclusion-exclusion principle, determine the probability that it is divisible by
one or more of the numbers 4, 6, and 9.

9. Suppose that a fair coin is flipped n times. For k > 0, find an upper bound on
the probability that there is a sequence of log, n + k consecutive heads.

10. I have a fair coin and a two-headed coin. I choose one of the two coins randomly
with equal probability and flip it. Given that the flip was heads, what is the
probability that I flipped the two-headed coin?

11. T am trying to send you a single bit, either a 0 or a 1. When I transmit the bit,
it goes through a series of n relays before it arrives to you. Each relay flips the
bit independently with probability p.

(a) Argue that the probability you receive the correct bit is

[(n—=1)/2]
< n

2kt _)2+
2k+1)p (1=p)™"

k=0

(b) We consider an alternative way to calculate this probability. Let us say
the relay has bias ¢ if the probability it flips the bit is (1 — ¢)/2. The
bias ¢ is therefore a real number in the range [—1, 1]. Prove that sending
a bit through two relays with bias ¢; and ¢s is equivalent to sending a bit
through a single relay with bias ¢;¢s.

(c) Prove that the probability you receive the correct bit when it passes
through n relays as described above is

1—(2p—1)"
5 .

12. The following problem is known as the Monte Hall problem, after the host of the
game show Let’s Make a Deal. There are three curtains. Behind one curtain is
a new car, and behind the other two are goats. The game is played as follows:
the contestant chooses the curtain that she thinks the car is behind. Monte
then opens one of the other curtains to show a goat. (Monte may have more

© Copyright Mitzenmacher and Upfal, 2003-2004

1.5 Exercises

32

13.

14.

15.

16.

than one goat to choose from; in this case, assume he chooses which goat to
show uniformly at random.) The contestant can then stay with the curtain she
originally chose or switch to the other unopened curtain. After that, the location
of the car is revealed, and the contestant wins the car or the remaining goat.
Should the contestant switch curtains or not, or does it make no difference?

A medical company touts its new test for a certain genetic disorder. The false
negative rate is small: if someone has the disorder, the probability that the test
returns a positive result is 0.999. The false positive rate is also small: if someone
does not have the disorder, the probability that the test returns a positive result
is only 0.005. Assume that 2 percent of the population has the disorder. If a
person chosen uniformly from the population is tested, and the result comes
back positive, what is the probability that the person has the disorder?

[am playing in a racquetball tournament, and I am up against a player I have
watched but never played before. I consider three possibilities for my prior
model: we are equally talented, and each of us is equally likely to win each
game; [am slightly better, and therefore I win each game independently with
probability 0.6; and he is slightly better, and therefore he wins each game
independently with probability 0.6. Before we play, I think of each of these
three possibilities is equally likely.

In our match we play until one player wins three games. I win the second game,
but he wins the first, third, and fourth. After this match, in my posterior model,
with what probability should I believe that my opponent is slightly better than
[am?

Suppose that we roll ten standard six-sided dice. What is the probability that
their sum will be divisible by six, assuming that the rolls are independent?
(Hint: use the principle of deferred decisions, and consider the situation after
rolling all but one of the dice.)

Consider the following game, played with three standard six-sided dice. If the
player ends with all three dice showing the same number, she wins. The player
starts by rolling all three dice. After this first roll, the player can select any one,
two or all of the three dice and re-roll them. After this second roll, the player
can again select any of the three dice and re-roll them one final time. For the
following questions, assume that the player uses the following optimal strategy:
if all three dice match, the player stops and wins; if two dice match, the player
re-rolls the die that does not match; and if no dice match, the player re-rolls
them all.

(a) Find the probability that all three dice show the same number on the first
roll.

(b) Find the probability that exactly two of the three dice show the same
number after the first roll.

© Copyright Mitzenmacher and Upfal, 2003-2004

1.5 Exercises

33

17.

18.

19.

20.
21.

22.

23.

24.

(c) Find the probability that the player wins, conditioned on exactly two of
the three dice showing the same number after the first roll.

(d) By considering all possible sequences of rolls, find the probability that the
player wins the game.

In our matrix multiplication algorithm, we worked over the integers modulo 2.
Explain how the analysis would change if we worked over the integers modulo
k for k > 2.

We have a function F' : {0,...,n — 1} — {0,...,m — 1}. We know that for
0<z,y<n-—1, F((x +y) mod n) = (F(z) + F(y)) mod m. The only way
we have to evaluate F' is to use a look-up table that stores the values of F'.
Unfortunately, an Evil Adversary has changed the value of 1/5 of the table
entries when we were not looking.

Describe a simple randomized algorithm that given an input z outputs a value
that equals F'(z) with probability at least 1/2. Your algorithm should work
for every value of z, regardless of what values the Adversary changed. Your
algorithm should use as few lookups and as little computation as possible.

Suppose I allow you to repeat your initial algorithm three times. What should
you do in this case, and what is the probability that your enhanced algorithm
returns the correct answer?

Give examples of events where Pr(A | B) < Pr(A4), Pr(A | B) = Pr(A4), and
Pr(A | B) > Pr(A).

Show that if By, Fs, . .., E, are all mutually independent, then so are E;, Es, ..., E,.

Give an example of three random events X, Y, Z where any pair are indepen-
dent, but all three are not mutually independent.

(a) Consider the set {1,...,n}. We generate a subset X of this set as follows:
a fair coin is flipped independently for each element of the set. If the coin
lands heads, the element is added to X, and otherwise it is not. Argue
that the resulting set X is equally likely to be any one of the 2™ possible
subsets.

(b) Suppose that two sets X and Y are chosen independently and uniformly
at random from all the 2" subsets of {1,...,n}. Determine Pr(X C Y)
and Pr(X UY ={1,...,n}). (Hint: use the first part of this problem.)

There may be several different min-cut sets in a graph. Using the analysis of
the randomized min-cut algorithm, argue that there can be at most n(n —1)/2
distinct min-cut sets.

Generalizing on the notion of a cut-set, we define an r-way cut-set in a graph
as a set of edges whose removal breaks the graph into r or more connected
components. Explain how the randomized min-cut algorithm can be used to

© Copyright Mitzenmacher and Upfal, 2003-2004

1.5 Exercises

34

find minimum r-way cut-sets and bound the probability that it succeeds in one
iteration.

25. To improve the probability of success of the randomized min-cut algorithm, it
can be run multiple times.

(a)
(b)

Consider running the algorithm twice. Determine the number of edge
contractions and bound the probability of finding a min-cut.

Consider the following variation: starting with a graph with n vertices,
first contract the graph down to k vertices using the randomized min-
cut algorithm. Make copies of the graph with £ vertices, and now run
the randomized algorithm on this reduced graph ¢ times, independently.
Determine the number of edge contractions and bound the probability of
finding a minimum cut.

Find optimal (or at least near-optimal) values of k£ and ¢ for the variation
above that maximize the probability of finding a minimum cut while using
the same number of edge contractions as running the original algorithm
twice.

26. Tic-tac-toe always ends up in a tie if players play optimally. Instead, we may
consider random variations of tic-tac-toe.

(a)

First consider the following variation: each of the nine squares is labeled
either X or O according to an independent and uniform coin flip. If only
one of the players has one (or more) winning tic-tac-toe combinations, that
player wins. Otherwise, the game is a tie. Determine the probability that
X wins. (You may want to use a computer program to help run through
the configurations.)

Now consider the following variation: X and O take turns, with the X
player going first. On the X player’s turn, an X is placed on a square
chosen independently and uniformly at random from the squares that are
still vacant. O plays similarly. The first player to have a winning tic-tac-
toe combination wins the game; a tie occurs if neither player achieves a
winning combination. Find the probability that each player wins. (Again,
you may want to write a program to help you.)

© Copyright Mitzenmacher and Upfal, 2003-2004

Chapter 2

Discrete Random Variables and
Expectation

In this chapter, we introduce the concepts of discrete random variables and expec-
tation, and develop basic techniques for analyzing the expected performance of al-
gorithms. We apply these techniques to computing the expected running time of
the well-known Quicksort algorithm. In analyzing two versions of Quicksort, we
demonstrate the distinction between an analysis of randomized algorithms, where
the probability space is defined by the random choices made by the algorithm, and
the probabilistic analysis of deterministic algorithms, where the probability space is
defined by some probability distribution on the inputs.

Along the way we define the Bernoulli, binomial, and geometric random vari-
ables, study the expected size of a simple branching process, and analyze the expec-
tation of the coupon collector’s problem — a probabilistic paradigm that reappears
throughout the book.

2.1 Random Variables and Expectation

In studying a random process we are often interested in some value associated with
the random event, rather than in the event itself. For example, in tossing two dice
we are often interested in the sum of the two dice rather than the separate value
of each die. The sample space in tossing two dice consists of 36 equal probability
events, given by the ordered pairs of numbers {(1,1),(1,2),...,(6,5),(6,6)}. If the
quantity we are interested in is the sum of the two dice, then we are interested in
only 11 (non-equal probability) events, representing the 11 possible outcomes of the
sum. Any such function from the sample space to the real numbers is called a random
variable.

Definition 5. A random variable X on a sample space Q) is a real-valued probability

© Copyright Mitzenmacher and Upfal, 2003-2004

2.1 Random Variables and Expectation

36

function on ; that is, X : 2 — R. A discrete random variable is a random variable
that takes on only a finite or countably infinite number of values.

Since random variables are functions, they are usually denoted by a capital
letter such as X or Y, while real numbers are usually denoted by lower-case letters.

For a discrete random variable X and a real value a, the event “X = a” includes
all the basic events of the sample space in which the random variable X assumes the
value a. That is, “X = a” represents the set {s € Q | X(s) = a}. We denote the
probability of that event by

Pr(X =a)= Z Pr(s).
se: X(s)=a

If X is the random variable representing the sum of the two dice, then the event
X = 4 corresponds to the set of basic events {(1,3), (2,2),(3,1)}. Hence

3 1

The definition of independence that we developed for events extends to random
variables.

Definition 6. Two random variables X and Y are independent if and only if
Pr(X=2)Nn(Y =y)) = Pr(X =2)-Pr(Y =y)

for all values x and y. Similarly, random variables X1, Xs, ... Xy are mutually inde-
pendent if and only if for any subset I C [1,k] and any values x;,i € I,

el el

A basic characteristic of a random variable is its expectation. The expectation
of a random variable is a weighted average of the values it assumes, where each value
is weighted by the probability that the variable assumes that value.

Definition 7. The expectation of a discrete random variable X , denoted by E[X], is
given by

E[X] =) iPr(X =),

)

where the summation is over all values in the range of X. The expectation is finite if
> 11| Pr(X = 1) converges; otherwise, the expectation is unbounded.

© Copyright Mitzenmacher and Upfal, 2003-2004

2.1 Random Variables and Expectation

37

For example, the expectation of the random variable X representing the sum of
two dice is
1 2 3 1

E X 24+ —=-3+—=-4 12 =17.
X1 = 36 +36 +36 i " 36

You may try giving a simpler argument for why E[X] = 7 using symmetry.
As an example where the expectation of a discrete random variable is un-

bounded, consider a random variable X that takes on the value 2° with probability
1/2" for i = 1,2, The expected value of X is

o0

E[X] = Z—zl 21_00
=1
Here we use the somewhat informal notation E[X] = oo to express that E[X] is

unbounded.

2.1.1 Linearity of Expectations

A key property of expectation that significantly simplifies its computation is the
linearity of expectations. The linearity of expectations says that the expectation of
the sum of random variables is equal to the sum of their expectations. Formally, we
have

Theorem 5. (Linearity of Expectations) For any finite collection of discrete
random variables X1, Xo, ..., X, with finite expectations,

E XR:X] = XR:E[X

Proof. We prove the statement for two random variables X and Y'; the general case
follows by induction. The summations below are understood to be over the ranges of
the corresponding random variables.

BIX +V] = Y3 (i +4)Pr((X =i) (¥ =)
= iiiPr((Xzi)ﬂ(Y=j>>+Z_ZjPr((X=z')ﬂ(Y=j))
= Z ZPr (Y=j>)+ijJZPr((X=i)ﬂ(Y=j))
= ZzPr i)+ZjPr(Y: L

= E[X] +E[Y].

In the second to last equation we have used Theorem 2, the law of total probability.

The first equality follows from Definition 2. O

© Copyright Mitzenmacher and Upfal, 2003-2004

2.1 Random Variables and Expectation

38

We now use this property to compute the expected sum of two standard dice.
Let X = X + X5, where X, represents the outcome of die 7 for 1 =1, 2.

Applying the linearity of expectations, we have
EX]|=E[X]|+ E[X,] =T.
It is worth emphasizing that linearity of expectations holds for any collection

of random variables, even if they are not independent! For example, consider again
the example above, and let the random variable Y = X; + X?. We have

E[Y] = E[X, + X7] = E[X}] + E[X7],

even though X; and X? are clearly dependent. As an exercise, verify this identity by
considering the six possible outcomes for Xj.

Linearity of expectations also holds for countably infinite summations in certain
cases. Specifically, it can be shown that

Z Xi] = Z E[X;]

whenever Y -7 E[|X;|] converges. The issue of dealing with the linearity of expecta-
tions with countably infinite summations is further considered in exercise 29.

E

We will see later in this chapter more examples in which the linearity of expec-
tations significantly simplifies the computation of expectations.

Another result related to the linearity of expectations is the following simple
lemma:

Lemma 5. For any constant ¢ and discrete random variable X,

E[cX] = cE[X].

Proof. The lemma is obvious for ¢ = 0. For ¢ # 0,

E[cX] = ZjPr(cX:j)
= ¢ _(i/e)Pr(X = j/e)
= ¢Y kPr(X =k)

= cE[X].

© Copyright Mitzenmacher and Upfal, 2003-2004

2.1 Random Variables and Expectation

39

2.1.2 Jensen’s inequality

Suppose that we choose the length X of a side of a square uniformly at random from
the range [1,99]. What is the expected value of the area? We can write this as E[X?].
It is tempting to think of this as being equal to E[X]?, but a simple calculation shows
that this is not correct. In fact, E[X]* = 2500, while E[X?] = 9950/3.

More generally, we can prove that E[X?] > (E[X])%. Consider Y = (X —E[X])%.
The random variable Y is non-negative, and hence its expectation must be non-
negative. Therefore

0<E[Y] = E[X - E[X])]
= E[X2—2XE[]+ (B[X])Y]
= E[X?] - 2E[XE[X]] + (E[X])’
= E[X7] - (E[X])".

In the next to last line, we have used the linearity of expectations, and in this last
line, we have used that E[cX] = cE[X].

The fact that E[X?] > (E[X])? is an example of a more general theorem, known
as Jensen’s inequality. Jensen’s inequality shows that for the class of convex functions,

E[f(X)] = f(E[X]).

Definition 8. A function f : R — R is said to be convex if for any xi,x> and
0< A<,
SOz + (1= Nag) < Af(zr) + (1 = A) f(2).

Visually, a convex function f has the property that if you connect two points
on the graph of the function by a straight line, this line lies on or above the graph
of the function. The following fact, which we state without proof, is often a useful
alternative to the definition above.

Lemma 6. If f is a twice differentiable function, then f is convex if and only if

f'(x) 20

Theorem 6 (Jensen’s Inequality). If f is a convex function, then
E[f(X)] > f(E[X]).

Proof. We prove the theorem assuming that f has a Taylor expansion. Let u = E[X].
By Taylor’s theorem there is a value ¢ such that

f@) = F) + f) e —)+ L=

\Y
=
=
+
™
=
w
|
=

© Copyright Mitzenmacher and Upfal, 2003-2004

2.2 The Bernoulli and Binomial Random Variables

40

since f”(¢) > 0 by convexity. Taking expectations of both sides and applying linearity
of expectations and Lemma 5 yields the result:

E[f(X)] = E[f(u) + f(w)(X = p)
= E[f(]+ f'(w)(E[X] - pn)
= flp) = f(E[X]).
0

An alternative proof of Jensen’s inequality that holds for any random variable
X that takes on only finitely many values is presented in exercise 10.

2.2 The Bernoulli and Binomial Random Variables

Suppose that we run an experiment that succeeds with probability p and fails with
probability 1 — p.

Let Y be a random variable such that

1 if the experiment succeeds,
Y = .
0 otherwise.

Y is called a Bernoulli or an indicator random variable. Note that for a Bernoulli
random variable

EY]|=p-1+(1-p)-0=p=Pr(Y =1).

For example, if we flip a fair coin and consider the outcome “head” a success, then
the expected value of the corresponding indicator random variable is 1/2.

Consider now a sequence of n independent coin flips. What is the distribution
of the number of heads in the entire sequence? In general, consider a sequence of n
independent experiments, each of which succeeds with probability p. Let X represent
the number of successes in the n experiments, then X has a binomial distribution.

Definition 9. A binomial random variable X with parameters n and p, denoted by
B(n,p), is defined by the following probability distribution on j =0,1,2,...,n:

Pr(X = j) = (;‘)pﬂ'(l _pyn,

That is, the binomial random variable X equals ;7 when there are exactly j
successes and n — j failures in n independent experiments, each of which is successful
with probability p.

As an exercise, show that Definition 9 ensures that) 7 Pr(X = j) = 1. This
is necessary for the binomial random variable to be a valid probability function,
according to Definition 2.

© Copyright Mitzenmacher and Upfal, 2003-2004

2.2 The Bernoulli and Binomial Random Variables

41

The binomial random variable arises in many contexts, especially in sampling.
As a practical example, suppose that we want to gather data about the packets going
through a router by postprocessing them. We might want to approximately know the
fraction of packets from a certain destination, or of a certain data type. We do not
have the memory available to store all of the packets, so we choose to store a random
subset, or sample, of the packets for later analysis. If each packet is stored with
probability p, and n packets go through the router each day, the number of sampled
packets each day is a binomial random variable X with parameters n and p. If we
want to know how much memory is necessary for such a sample, a natural starting
point is to determine the expectation of the random variable X.

Sampling in this manner arises in other practical contexts as well. For example,
by sampling the program counter while a program runs, one can determine what parts
of a program are taking the most time. This knowledge can be used to aid dynamic
program optimization techniques such as binary rewriting, where the executable bi-
nary form of a program is modified while the program executes. Since rewriting
the executable as the program runs is expensive, sampling helps the optimizer to
determine when it will be worthwhile.

What is the expectation of a binomial random variable? We can compute it
directly from the definition,

B[X] = zn;j(’;)pfu e

=i =)
& n!
B L eI A
_ npz (n—1)! 'p] (1 p)(n—l)—(j—l)

where the last equation uses the binomial identity

(z+y)" = z": <Z> T

k=0

© Copyright Mitzenmacher and Upfal, 2003-2004

2.3 Conditional Expectation

42

The linearity of expectations allows for a significantly simpler argument. If X
is a binomial random variable with parameters n and p, then X is the number of
successes in n trials, where each trial is successful with probability p. Define a set of
n indicator random variables, X1, ..., X,,, where X; = 1 if the ¢-th trial is successful,
and 0 otherwise. Clearly, E[X;] = p, and X =) " | X;, and so by the linearity of
expectations,

E[X]=E

Z XZ-] = Z E[X,] = np.

The linearity of expectations makes this approach of representing a random variable
by a sum of simpler random variables, such as indicator random variables, extremely
useful.

2.3 Conditional Expectation

Just as we have definition of conditional probability, it is useful to define the condi-
tional expectation of a random variable. The following definition is quite natural.

Definition 10.
EY | Z=2=) yPr(Y =y | Z=2),
y

where the summation is over all y in the range of Y.

The definition says that the conditional expectation of a random variable is,
like the expectation, a weighted sum of the values it assumes. The difference is now
each value is weighted by the conditional probability that the variable assumes that
value.

For example, suppose that we independently roll two standard six-sided dice.
Let X; be the number that shows on the first die, X5 be the number on the second
die, and X be the sum of the numbers on the two dice. Then

8
1 11
E[X|X1:2]:prr(xzx|X1:2):Zx.6:?
T r=3

© Copyright Mitzenmacher and Upfal, 2003-2004

2.3 Conditional Expectation

43

As another example, consider E[X; | X = 5].

EX, | X=5 = ixPr(X1:x|X:5)

B 24: Pr(X; =2NX =5)

Pr(X = 5)

o 1/36
B Z 4/36
= 5/2.

The following natural identity follows from Definition 10:

Lemma 7. For any random variables X and Y,

ZPr E[X | YV =y,

where the sum s over all values in the range of Y.

Proof.

ZPr EX Y=y =) Pr(Y=y)> 2Pr(X=z|Y =y)
= ZZxPr(X:xH/:y)Pr(Y:y)

= ZZxPr(X:xﬂY:y)
= ZxPr(X:x)
= Ex[X]

The interchange of (possibly) infinite summations is justified, because the terms being
summed are all non-negative. O

The linearity of expectations also extends to conditional expectations, as clari-
fied in the lemma below, the proof of which is left as exercise 11.

Lemma 8. For any finite collection of discrete random variables X1, X, ..., X, with
finite expectations and any random variable Y,

E f:)my:y
i=1

:ZE[Xi | Y =yl

© Copyright Mitzenmacher and Upfal, 2003-2004

2.3 Conditional Expectation 44

Perhaps somewhat confusingly, the conditional expectation is also used to refer
to the following random variable.

Definition 11. The expression E[Y | Z] is a random variable f(Z) that takes on the
value E[Y | Z = z| when Z = z.

We emphasize that E[Y | Z] is not a real value; it is actually a function of the
random variable Z. Hence E[Y | Z] is itself a function from the sample space to the
real numbers, and therefore can be thought of as a random variable.

In the example above of rolling two dice:

X1+6

r=X1+1

EX | Xi]=) «Pr(X=z| X)) =

We see that E[X | X] is a random variable whose value depends on Xj.

If E[Y | Z] is a random variable, it has an expectation. Hence it makes sense
to consider E[E[Y" | Z]]. In our example, we found that E[X | X;] = X; + Z. Thus

E[E[X|X1]]:E[X1+g] :g g:z

More generally, we have the following theorem.

Theorem 7.
E[Y] =E[E[Y | Z]].

Proof. From Definition 11, we have E[Y | Z] = f(Z), where f(Z) takes on the value
E[Y | Z = 2] when Z = z. Hence

EEY |Z]] =) E[Y|Z=zPr(Z=2z)

— Z(ZyPr(Y:y|Z:z)> Pr(Z = z2)
— Xzzznyr(Y:y|Z:z)Pr(Z:z)
ey

— i:yyZPr(Y:yﬂZ:z)

= > yPr(Y =y)

= E[Y].

© Copyright Mitzenmacher and Upfal, 2003-2004

2.3 Conditional Expectation

45

We now demonstrate an interesting application of conditional expectations.
Consider a program that includes one call to a process S. Assume that each call
to process S recursively spawns new copies of the process S, where the number of
new copies is a binomial random variable with parameters n and p. We assume that
these random variables are independent for each call to S. What is the expected
number of copies of the process S generated by the program?

To analyze this recursive spawning process, we introduce the idea of generations.
The initial process § is in generation 0. Otherwise, we say that a process § is in
generation i if it was spawned by another process § in generation ¢ — 1. Let Y; denote
the number of S processes in generation . Since we know that Y, = 1, the number
of processes in generation 1 has a binomial distribution. Thus,

E[Y1] = np.
Similarly, suppose that we knew the number of processes in generation ¢ — 1
was ¥;_1, S0 Y;_1 = y;_1. Let Z; be the number of copies spawned by the kth process

spawned in the (i — 1)-st generation, for 1 < k < y; ;. Each Z; is a binomial random
variable with parameters n and p. Then

Yi—1
ZZk | Yi1i=yi
k=1
Yi-1
= ZjPr (sz =j Y= %—1)
§>0 k=1
Yi-1
= D jPr (sz:y)
§>0 k=1
Yi-1
> 2
k=1

= 2 E[Z;]

= Yi—1np.

E[Yi | Yia= yz>1] = E

= E

Here in the third line we have used that the Zj are all independent binomial random
variables, and in particular the value of each 7, is independent of Y; i, allowing
us to remove the conditioning. In the fifth line, we have applied the linearity of
expectations.

Applying Theorem 7, we can compute the expected size of the ith generation
inductively. We have

E[Y;] = E[E[Y; | Y]] = E[Yi_inp] = npE[Y;_].

By induction on 7, and using the fact that Yy = 1, we get
E[Y]] = (np)".

© Copyright Mitzenmacher and Upfal, 2003-2004

2.4 The Geometric Distribution

46

The expected total number of copies of process S generated by the program is given

by
ZYi = ZE[Yi] = Z(np)i-

i>0 i>0 i>0

E

If np > 1, the expectation is unbounded, and if np < 1, the expectation is
1/(1 — np). Thus, the expected number of processes generated by the program is
bounded if and only if expected number of processes spawned by each process is less
than 1.

The process analyzed here is a simple example of a branching process, a proba-
bilistic paradigm extensively studied in probability theory.

2.4 The Geometric Distribution

Suppose that we flip a coin until it lands on head. What is the distribution of the
number of flips? This is an example of a geometric distribution, which arises in the
following situation: we perform a sequence of independent trials until the first success,
where each trial succeeds with probability p.

Definition 12. A geometric random wvariable X with parameter p is given by the
following probability distribution onn =1,2,....

Pr(X =n) = (1-p)""'p.

That is, for the geometric random variable X to equal n, there must be n — 1
failures, followed by a success.

As an exercise, show that the geometric random variable satisfies

ZPr(X =n)=1.

n>1

Again, this is necessary for the geometric random variable to be a valid probability
function, according to Definition 2.

In the context of our example from section 2.2 of sampling packets on a router,
if packets are sampled with probability p, then the number of packets transmitted
after the last sampled packet until the next sampled packet is given by a geometric
random variable with parameter p.

Geometric random variables are said to be memoryless, because the probability
that you will reach your first success n trials from now is independent of the number
of failures you have experienced. Informally, one can ignore past failures, as they do
not change the distribution of the number of future trials until first success. Formally,
we have the following statement,

© Copyright Mitzenmacher and Upfal, 2003-2004

2.4 The Geometric Distribution

47

Lemma 9. For a geometric random variable with parameter p and n > 0,

Pr(X=n+k|X >k) = Pr(X=n).

Proof.

Pr(X =n+k)N(X >k))
Pr(X > k)
Pr(X =n+k)
Pr(X > k)
(1 — p)*t=Tp
> k(L =p)ip
(1 — p)*t=1p
(1 -p)*
= (1-p"'p
= Pr(X =n).

Pr(X=n+k|X>k) =

k

The fourth equation uses the fact that for 0 <z < 1, >7°, o' = £ O

-z

We now turn to computing the expectation of a geometric random variable.
When a random variable takes values in the set of natural numbers N' = {0,1,2,3,...},
there is an alternative formula for calculating its expectation.

Lemma 10. Let X be a discrete random variable that takes on only non-negative
integer values. Then

E[X] = zoo:Pr(XZi).

Proof.

d Pr(X >i) = ZZPr(X:j)

i=1 i=1 j=t

The interchange of (possibly) infinite summations is justified, because the terms being
summed are all non-negative. O

© Copyright Mitzenmacher and Upfal, 2003-2004

2.4 The Geometric Distribution

48

For a geometric random variable X with parameter p,

o0

Pr(X >1i) = Z(l —p)lp=(1-p).

n=i

Hence

E[X] = iPr(XZi)

= Z(l—p)“l
R 271 1

- 1-(1-p)
_ 1

p

Thus, for a fair coin where p = 1/2, on average it takes two flips to see the first head.

There is another approach to finding the expectation of a geometric random
variable X with parameter p, using conditional expectations and the memoryless
property of geometric random variables. Recall that X corresponds to the number of
flips until the first heads when each flip is heads with probability p. Let Y = 0 if the
first flip if tails, and Y = 1 if the first flip is heads. By the identity from Lemma 7,

E[X] = Pr(Y = 0)E[X |V = 0]+Pr(Y = DE[X |Y = 1] = (1-p)E[X | Y = 0]+pE[X | Y = 1].

IfY=1,then X =1,s0 E[X | Y =1]=1. f Y =0, then X > 1. In this case,
let the number of remaining flips after the first flip until the first head be Z. Then

EX]=(1-pE[Z+1]+p-1=(1-pE[Z]+1,

using the linearity of expectations. By the memoryless property of geometric random
variables, Z is also a geometric random variable with parameter p. Hence E[Z] =
E[X], since they both have the same distribution. We therefore have

EX]=(1-pE[Z]+1=(1-p)E[X]+1,
which yields E[X] = 1/p.
This method of using conditional expectations to compute an expectation is
often useful, especially in conjunction with the memoryless property of a geometric
random variable.

2.4.1 Example: Coupon Collector’s Problem

The coupon collector’s problem arises from the following scenario. Suppose that each
box of cereal contains one of n different coupons. Once you obtain one of every type

© Copyright Mitzenmacher and Upfal, 2003-2004

2.4 The Geometric Distribution

49

of coupon, you can send in for a prize. Assuming that the coupon in each box is
chosen independently and uniformly at random from the n possibilities, and that you
do not collaborate with others to collect coupons, how many boxes of cereal do you
need to buy before you obtain at least one of every type of coupon? This simple
problem arises in many different scenarios, and will reappear in several places in the

book.

Let X be the number of boxes bought until at least one of every type of coupon
is obtained. We now determine E[X]. If X; is the number of boxes bought while you
had exactly ¢ — 1 different coupons, then clearly X =" | X;.

The advantage of breaking the random variable X into a sum of n random
variables X;, ¢ = 1,...,n, is that each X; is a geometric random variable. When
exactly ¢ — 1 coupons are found, the probability of obtaining a new coupon is

1—1
p_—

EX] = E

The summation Y | + is known as the harmonic number H(n), and as we show

below, H(n) = Inn 4+ ©(1). Thus, for the coupon collector’s problem, the expected
number of random coupons required to obtain all n coupons is nlnn + ©(n).

Lemma 11. The harmonic number H(n) = Y1 | 1 satisfies H(n) = Inn + O(1).

Proof. Since % is monotonically decreasing we can write

lnn:/x 1;dm<zk

© Copyright Mitzenmacher and Upfal, 2003-2004

2.4 The Geometric Distribution

50

1/2 12 4+

1/3 4 1/3 4

1/(n-1) |
1/

V1)]
n 4 1/
1/(n+1)7

n -
V(n+1)7"

(a) Approximating 1 from above (b) Approximating < from below

Figure 2.1: Approximating the area below f(z) = 1

and

n

1 g/ lda: =Inn.
k o1 T

This is clarified in Figure 2.1, where the area below the curve f(z) = 1/x corresponds
to the integral, and the areas of the shaded regions correspond to the summations
above.

k=2

Hence Inn < H(n) < Inn + 1, proving the claim. O

As a simple application of the coupon collector’s problem, suppose that packets
are sent in a stream from a source host to a destination host along a fixed path of
routers. The host at the destination would like to know which routers the stream of
packets passes through, in case it finds later that some router damaged packets that
it processed. If there is enough room in the packet header, each router can append
its identification number onto the header, giving the path. Unfortunately, there may
not be that much room available in packet header.

Suppose instead that each packet header has space for exactly one router iden-
tification number, and this space is used to store the identification of a router chosen
uniformly at random from all of the routers on the path. This can actually be ac-
complished easily; we consider how in exercise 18. Then from the point of view of the
destination host, determining all the routers on the path is like a coupon collector’s
problem. If there are n routers along the path, the expected number of packets in
the stream that have to arrive before the destination host knows all of the routers on
the path is nH(n) = nlnn + O(n).

© Copyright Mitzenmacher and Upfal, 2003-2004

2.5 Application: The Expected Run-Time of Quicksort

2.5 Application: The Expected Run-Time of Quick-
sort

Quicksort is a simple, and in practice, a very efficient sorting algorithm. The input is
a list of n numbers x{, x5, ..., x,. For convenience, we will assume that the numbers
are distinct. A call to the Quicksort function begins by choosing a pivot element
from the set. Let us assume the pivot is x. The algorithm proceeds by comparing
every other element to z, dividing the list of elements into two sublists: those that
are less than x, and those that are greater than x. Notice that if the comparisons are
performed in the natural order, from left to right, then the order of the elements in
each sublist is the same as in the initial list. Quicksort then recursively sorts these
sublists.

Quicksort Algorithm:

Input: A list S = {x1,...,2,} of n distinct elements over a totally ordered universe.

Output: The elements of S in sorted order.

1. If S has one or zero elements, return S. Otherwise continue.
2. Choose an element of S as a pivot; call it x.

3. Compare every other element of S to x, to divide the other elements into two
sublists:

e S; has all the elements of S that are less than x;

e S those that are greater than x.
4. Use Quicksort to sort S; and Ss.

5. Return the list Sy, z, Ss.

In the worst case, Quicksort requires €2(n?) comparison operations. For example,
suppose our input has the form vy = n, 2o =n—-1,...,2,_1 = 2,2, = 1. Suppose
that we adopt the rule that the pivot should be the first element of the list. The
first pivot chosen is then n, so Quicksort performs n — 1 comparisons. The division
has yielded one sublist of size 0 (which requires no additional work) and another of

size n — 1, with the order n — 1,n — 2,...,2,1. The next pivot chosen is n — 1, so
Quicksort performs n — 2 comparisons, and is left with one group of size n — 2 in the
order n —2,n — 3,...,2,1. Continuing in this fashion, Quicksort performs
n(n—1
m—1)+n—-2)+...24+1= % comparisons.

This is not the only bad case that leads to Q(n?) comparisons; similarly poor per-
formance occurs if the pivot element is chosen from among the smallest few or the

© Copyright Mitzenmacher and Upfal, 2003-2004

2.5 Application: The Expected Run-Time of Quicksort

52

largest few elements each time.

We clearly made a bad choice of pivots for the given input. A reasonable choice
of pivots would require many fewer comparisons. For example, if our pivot always
split the list into two sublists of size at most n/2, then the number of comparisons
C(n) would obey the following recurrence:

C(n) <2C(n/2)+ O(n).

The solution to this equation yields C'(n) = O(nlogn), which is the best possible
result for comparison-based sorting. In fact, any sequence of pivot elements that
always split the input list into two sublists each of size at least c¢n for some constant
¢ give would give an O(nlogn) running time.

This discussion provides some intuition for how we would like pivots to be
chosen. In each iteration of the algorithm there is a good set of pivot elements that
split the input list into two almost equal sublists; it suffices if the sizes of the two
sublists are within a constant factor of each other. There is a also a bad set of
pivot elements, that do not split up the list significantly. If good pivots are chosen
sufficiently often, Quicksort will terminate quickly. How can we guarantee that the
algorithm chooses good pivot elements sufficiently often? We can resolve this problem
in one of two ways.

First, we can change the algorithm to choose the pivots randomly. This makes
Quicksort a randomized algorithm; the randomization makes it extremely unlikely
that we choose the wrong pivots. We show below that the expected number of
comparisons made by a simple randomized Quicksort is 2nInn + O(n), matching up
to constant factors the ©(nlogn) bound for comparison-based sorting. Here, the
expectation is over the random choice of pivots.

A second possibility is that we can keep our deterministic algorithm using the
first list element as a pivot, but consider a probabilistic model of the inputs. A permu-
tation of a set of n distinct items is just one of the n! orderings of these items. Instead
of looking for the worst possible input, we assume that the input items are given to
us in a random order. This may be a reasonable assumption for some applications;
alternatively, this could be accomplished by ordering the input list according to a
randomly chosen permutation before running the deterministic Quicksort algorithm.
In this case, we have a deterministic algorithm, but a probabilistic analysis based on
a model of the inputs. We again show in this setting that the expected number of
comparisons made is 2nInn + O(n). Here, the expectation is over the random choice
of input.

The same techniques are generally used in both analyses of randomized algo-
rithms and probabilistic analyses of deterministic algorithms. Indeed, in this case the
analysis of the randomized Quicksort and the probabilistic analysis of the determin-
istic Quicksort under random inputs is essentially the same.

Let us first analyze Random Quicksort, the randomized algorithm version of

© Copyright Mitzenmacher and Upfal, 2003-2004

2.5 Application: The Expected Run-Time of Quicksort

53

Quicksort.

Theorem 8. Suppose that whenever a pivot is chosen for Random Quicksort, it is
chosen independently and uniformly at random from all possibilities. Then for any
input, the expected number of comparisons made by Random Quicksort is 2nlnn +

O(n).

Proof. Let yi,v2,...,y, be the same values as the input values z,z,...,x,, but
sorted in increasing order. For 7 < j, let X;; be a random variable that takes on the
value 1 if y; and y; are compared at any time over the course of the algorithm, and
0 otherwise. Then the total number of comparisons X satisfies

n—1 n
X = E E Xij,
i=1 j=i+1

and

=

ks
[
@

= i: > E[Xy]

i=1 j=i+1
by the linearity of expectations.

Since Xj; is an indicator random variable that takes on only the values 0 and 1,
E[X;;] is equal to the probability that X;; is 1. Hence all we need to do is compute the
probability that two elements y; and y; are compared. Now y; and y; are compared
if and only if either y; or y; is the first pivot selected by Random Quicksort from the
set Y = {y;, Yi+1,-.-,Yj-1,Y;}. This is because if y; (or y;) is the first pivot selected
from this set, then y; and y; must still be in the same sublist, and therefore they will
be compared. Similarly, if neither is the first pivot from this set, then y; and y; will
be separated into distinct sublists and hence will not be compared.

Since our pivots are chosen independently and uniformly at random from each
sublist, the first time a pivot is chosen from Y%, it is equally likely to be any element
from this set. Therefore the probability that y; or y; is the first pivot selected from Y%,

which is the probability that X;; = 1, is jffﬂ. By using the substitution k = j —i+1

© Copyright Mitzenmacher and Upfal, 2003-2004

2.5 Application: The Expected Run-Time of Quicksort

54

below, we have

n

n—1 9
E[X] = E:E:}TTII

i=1 j=i+1

(i,k):2<k<n;1<i<n-+1—k
n

= Ymt1-k)2

k=2

_ Qn+n§:%>—2m—1)

k=2
n

= @n+m§:%—4n

k=1

Notice that we used a rearrangement of the double summation to obtain a clean form
for the expectation.

Recalling that the summation H(n) =), 1 satisfies H(n) = Inn + ©(1), we
have E[X] = 2nlnn + ©(n). O

Now we consider the deterministic version of Quicksort, on random input. We
assume that the order of the elements in each recursively constructed sublist is the
same as in the initial list.

Theorem 9. Suppose that whenever a pivot is chosen for Quicksort, the first element
of the sublist is chosen. If the input is chosen uniformly at random from all possible
permutations of the values, then the expected number of comparisons made by random
Quicksort is 2nlnn + O(n).

Proof. The proof is essentially the same as for Random Quicksort. Again, y; and y;
are compared if and only if either y; or y; is the first pivot selected by Quicksort from
the set Y. Since the order of elements in each sublist is the same as in the original
list, the first pivot selected from the set Y% is just the first element from Y% in the
input list, and since all possible permutations of the input values are equally likely,
every element in Y% is equally likely to be first. From this, we can again use linearity
of expectations in the same way as in the analysis of Random Quicksort to obtain
the same expression for E[X]. O

© Copyright Mitzenmacher and Upfal, 2003-2004

2.6 Exercises

55

2.6 Exercises

8.

. Suppose we roll a fair k-sided die with the numbers 1 through k£ on the die’s

faces. If X is the number that appears, what is E[X]?

A monkey types on a 26-letter keyboard, with all lowercase letters. Each let-
ter is chosen independently and uniformly at random from the alphabet. If
the monkey types 1,000,000 letters, what is the expected number of times the
sequence “proof” appears?

Give examples of functions f and random variables X where E[f(X)] < f(E[X]),
E[f(X)] = f(E[X]), and E[f(X)] > f(E[X]).

. Prove that E[X*] > E[X]* for any even integer k > 1.

If X is a B(n,1/2) random variable with n > 1, show that the probability that
X is even is 1/2.

Suppose that we independently roll two standard six-sided dice. Let X; be the
number that shows on the first die, X5 be the number on the second die, and
X be the sum of the numbers on the two dice.

(a) What is E[X | X is even]|?

(c) What is E[X; | X =9]?

(d) What is E[X; — X, | X = k] for k in the range [2,12]7

Let X and Y be independent geometric random variables, where X has param-
eter p and Y has parameter q.

(a) What is the probability that X = Y7

(b) What is E[max(X,Y)]?

(c) What is Pr(min(X,Y) = k)?

(d) What is E[X | X <Y]?

You may find it helpful to keep in mind the memoryless property of geometric
random variables.

(a) Alice and Bob decide to have children until either they have their first
girl or they have & > 1 children. Assume that each child is a boy or girl
independently with probability 1/2, and that there are no multiple births.
What is the expected number of girl children that they have? What is the
expected number of boy children that they have?

(b) Suppose Alice and Bob simply decide to keep having children until they
have their first girl. Assuming that this is possible, what is the expected
number of boy children that they have?

Copyright Mitzenmacher and Upfal, 2003-2004

2.6 Exercises

56

11.
12.

13.

14.

Suppose that we roll twice a fair k-sided die with the numbers 1 through &
on the die’s faces, obtaining values X; and X,. What is E[max(Xy, X5)]?
What is E[min(X7, X3)]?

Show from your calculations above that

E[max(X;, X3)] + Emin(Xy, Xs)] = E[X] + E[X,]. (2.1)

Argue why equation (2.1) must be true using the linearity of expectations
instead of a direct computation.

Show using induction that if f : R — R is convex, then for any xy, s, ..., 2,
and)\1,)\2, Cey)\n with Z?:l)\7, = 1,

f (Z Ai%) < Z)\zf(%) (2.2)

Use equation 2.2 to prove that if f : R — R is convex,
E[f(X)] > f(E[X])

for any random variable X that takes on only finitely many values.

Prove Lemma 8.

We draw cards uniformly at random with replacement from a deck of n cards.
What is the expected number of cards we have to draw until we have seen all
the n cards in the deck? If we draw 2n cards, what is the expected number of
cards in the deck that are not chosen at all? Chosen exactly once?

(a)

(b)

Consider the following variation of the coupon collector’s problem. Each
box of cereal contains one of 2n different coupons. The coupons are or-
ganized into n pairs, so that coupons 1 and 2 are a pair, coupons 3 and
4 are a pair, and so on. Once you obtain one coupon from every pair,
you can obtain a prize. Assuming that the coupon in each box is chosen
independently and uniformly at random from the 2n possibilities, what is
the expected number of boxes you have to buy before you can claim the
prize?

Generalize the result of the problem above for the case where there are kn
different coupons, organized into n disjoint sets of k£ coupons, so that you
need one coupon from every set.

The geometric distribution arises as the distribution of the number of times
we flip a coin until it comes up heads. Consider now the distribution of the
number of flips X until the k-th head appears, where each coin flip comes up
heads independently with probability p. Prove that this distribution is given by

n—1

Pr(X =n) = <k B 1>pk(1 —p)

for n > k. (This is known as the negative binomial distribution.)

© Copyright Mitzenmacher and Upfal, 2003-2004

2.6 Exercises

57

15.

16.

17.

18.

19.

20.

21.

For a coin that comes up heads independently with probability p on each flip,
what is the expected number of flips until the k-th head?

Suppose we flip a coin n times to obtain a sequence of flips X;, X,,..., X,,. A
streak of flips is a consecutive subsequence of of flips that are all the same. For
example, if X3, Xy, and X5 are all heads, there is a streak of length length 3
starting at the third flip. (If Xj is also heads, then there is also a streak of
length 4 starting at the third flip.)

(a) Let n be a power of two. Show that the expected number of streaks of
length log,n+11is 1 — o(1).

(b) Show that for sufficiently large n, the probability that there is no streak
of length at least |log, n — 2log, log, n] is less than 1/n. (Hint: break the
sequence of flips up into disjoint blocks of |log, n—2 log, log, n| consecutive
flips, and use the fact that the events that each block is a streak are
independent.)

Recall the recursive spawning process described in section 2.3. Suppose that
each call to process S recursively spawns new copies of the process S, where
the number of new copies is 2 with probability p and 0 with probability 1 — p.
If Y; denotes the number of copies of S in the i-th generation, determine E[Y;].
For what values of p is the expected total number of copies bounded?

The following approach is often called reservoir sampling. Suppose that we have
a sequence of items, passing by one at a time. We want to maintain a sample of
one item that has the property that it is uniformly distributed over all the items
that we have seen at each step. Moreover, we want to accomplish this without
knowing the total number of items in advance or storing all of the items that
we see.

Consider the following algorithm, which stores just one item in memory at all
times. When the first item appears, it is stored in the memory. When the k-th
item appears, it replaces the item in memory with probability 1/k. Explain
why this algorithm solves the problem.

Suppose that we modify the reservoir sampling algorithm above so that when
the kth item appears, it replaces the item in memory with probability 1/2.
Explain what the distribution of the item in memory looks like.

A permutation on the numbers [1, n] can be represented as a function 7 : [1, n] —
[1,n], where (i) is the position of i in the ordering given by the permutation.
A fixed point of a permutation 7 : [1,n] — [1,n] is a value for which 7(x) = z.
Find the expected number of fixed points of a permutation chosen uniformly at
random from all permutations.

Let ay, as,...,a, be a random permutation of {1,2,... n}, equally likely to be
any of the n! possible permutations. When sorting the list aq, ao, ..., a,, the

© Copyright Mitzenmacher and Upfal, 2003-2004

2.6 Exercises

58

22.

23.

24.

25.

element a; has to move a distance of |a; — i| places from its current position to
reach its position in the sorted order. Find

S o —z‘|] ,

=1

E

the expected total distance elements will have to be moved.

Let a1, as,...,a, be a list of n distinct numbers. We say that a; and a; are
inverted if i < j but a; > a;. The Bubblesort sorting algorithm swaps pair-
wise adjacent inverted numbers in the list until there are no more inversions, so
the list is in sorted order. Suppose that the input to Bubblesort is a random
permutation, equally likely to be any of the n! permutations of n distinct num-
bers. Determine the expected number of inversions that need to be corrected
by Bubblesort.

Linear insertion sort can sort an array of numbers in place. The first and second
numbers are compared; if they are out of order, they are swapped, so that they
are in sorted order. The third number is then placed in the appropriate place
in the sorted order. It is first compared with the second, and if it is not in the
proper order, it is swapped and compared with the first. Iteratively, the kth
number is handled by swapping it downward until the first £ numbers are in
sorted order. Determine the expected number of swaps that need to be made
with a linear insertion sort when the input is a random permutation of n distinct
numbers.

We roll a standard fair die over and over. What is the expected number of rolls
until the first pair of consecutive sixes appears? (Hint: the answer is not 36.)

A blood test is being performed on n people. Each person can be tested sepa-
rately, but this is expensive. Pooling can decrease the cost. The blood samples
of k people can be pooled and analyzed together. If the test is negative, this
one test suffices for the group of k£ people. If the test is positive, each of the k
persons must be tested separately, and thus k& + 1 total tests are required for
the k people.

Suppose that we create n/k disjoint groups of k people (where k divides n) and
use the pooling method. Assume that each person has a positive result on the
test independently with probability p.

(a) What is the probability that the test for a pooled sample of k people will
be positive?

(b) What is the expected number of tests necessary?

(c) Describe how to find the best value of k.

(d) Give an inequality that shows for what values of p pooling is better than
just testing every individual.

Copyright Mitzenmacher and Upfal, 2003-2004

2.6 Exercises

59

26.

27.

28.

29.

30.

31.

A permutation 7 : [1,n] — [1,n] can be represented as a set of cycles as follows.
Let there be one vertex for each number ¢, 2 = 1,...,n. If the permutation maps
the number i to the number 7 (i), then a directed arc is drawn from vertex i to
vertex 7 (). This leads to a graph which is a set of disjoint cycles. Notice that
some of the cycles could be self-loops. What is the expected number of cycles
in a random permutation of n numbers?

Consider the following distribution on the integers z > 1: Pr(X =z) = 5272

This is a valid distribution, as > 7, = %2. What is its expectation?

Consider a simplified version of roulette, where you wager = dollars on either red
or black. The wheel is spun, and you receive your original wager plus another
x dollars if the ball lands on your color; if the ball doesn’t land on your color,
you lose your wager. Each color occurs independently with probability % (This
is a simplification because real roulette wheels have one or two spaces that are
neither red nor black, so the probability of guessing the correct color is actually
less than 3.)

The following gambling strategy is a popular one: on the first spin, bet 1 dollar.
If you lose, bet 2 dollars on the next spin. In general, if you have lost on the
first k — 1 spins, bet 2¥~! dollars on the k-th spin. Argue that if you follow this
strategy, you will eventually win a dollar. Now let X be the random variable
that measures your maximum loss before winning (i.e., the amount of money
you have lost before the play on which you win). Show that E[X] is unbounded.
What does it imply about the practicality of this strategy?

Prove that if Xy, Xq,..., is a sequence of random variables such that

S EIX;]

converges, then the linearity of expectations holds:
> x| -3
3=0 j=0

In the roulette problem of exercise 28, we found that with probability 1, you
eventually win a dollar. Let X be the amount you win on the j-th bet. (This
might be 0 if you have already won a previous bet.) Determine E[X;], and
show that if you apply the linearity of expectations, you find that your expected
winnings are 0. Does the linearity of expectations hold in this case? (Compare
with exercise 29.)

E

A variation on the roulette problem of exercise 28 is the following: we repeatedly
flip a fair coin. You pay j dollars to play the game. If the first head comes up
on the k-th flip, you win 2 /k dollars. What is your expected winnings? How
much would you be willing to pay to play the game?

© Copyright Mitzenmacher and Upfal, 2003-2004

2.6 Exercises

32. You need a new staff assistant, and you have n people to interview. You want to
hire the best candidate for the position. When you interview a candidate, you
can give them a score, with the highest score being the best and no ties being
possible. You interview the candidates one by one. Because of your company’s
hiring practices, after you interview the k-th candidate, you either offer the
candidate the job before the next interview, or you lose the chance to ever hire
that candidate. We suppose the candidates are interviewed in a random order,
chosen uniformly at random from all n! possible orderings.

We consider the following strategy: first, interview m candidates, but reject
them all. These candidates give you an idea of how strong the candidates are.
After the m-th candidate, hire the first candidate you interview who is better
than all of the previous candidates you have interviewed.

(a) Let E be the even that we hire the best secretary, and let E; be the event
that i-th candidate is the best and we hire him, and 0 otherwise. Determine
Pr(E;), and show that

m 1

j=m+1 J

(b) Bound — to obtain

n
j:m+1 j,

m(lnn —Inm) < Pr(F) <
n

(In(n — 1) — In(m — 1)).

m
n

(c) Show that m(Inn—Inm)/n is maximized when m = n/e, and explain why
this means Pr(E) > 1/e if we choose the optimal strategy.

© Copyright Mitzenmacher and Upfal, 2003-2004

Chapter 3

Moments and Deviations

In this and the next chapter we examine techniques for bounding the tail distribution,
the probability that a random variable assumes values that are far from its expec-
tation. In the context of analysis of algorithms, these bounds are the major tool
for estimating the failure probability of algorithms and for establishing high proba-
bility bounds on their run-time. Bounds for the tail distribution are often given in
terms of the moments of the random variable. In this chapter we study Markov’s
and Chebyshev’s inequalities and demonstrate their application in an analysis of a
randomized median algorithm. The next chapter is devoted to the Chernoff bound
and its applications.

3.1 Markov’s Inequality
Markov’s inequality, formulated in the next theorem, is often too weak to yield useful
results, but it is a fundamental tool in developing more sophisticated bounds.

Theorem 10. Markov’s inequality: Let X be a random variable that assumes only
non-negative values. Then for all a > 0,

E[X]

Pr(X >a) <
a

Proof. For a > 0, let
j 1 if X >a
| 0 otherwise,
and note that since X > 0,

I<

= |

. (3.1)

Since [is a 0-1 random variable, E[I] = Pr(I = 1) = Pr(X > a).

© Copyright Mitzenmacher and Upfal, 2003-2004

3.2 Variance and Moments of a Random Variable

62

Taking expectations in 3.1 we get

Pr(X >a) =E[I]<E {_] -
m

For example, suppose we use Markov’s inequality to bound the probability of
obtaining more than %n heads in a sequence of n fair coin flips. Let

1 if the i-th coin flip is heads,
X; = .
0 otherwise,

and let X = > X, denote the number of heads in the n coin flips. Since E[X;] =

=1
Pr(X; =1) =3, B[X] =" | E[X;] = 2. Applying Markov’s inequality we get

EX] n/2
Pr(X > 3n/4) < Tn/d = 3ujd

2/3.

3.2 Variance and Moments of a Random Variable

Markov’s inequality gives the best tail bound possible when all we know is the ex-
pectation of the random variable, and the fact that the variable is non-negative (see
exercise 16). It can be improved upon if more information about the distribution of
the random variable is available.

Additional information about a random variable is often expressed in terms of
its moments. The expectation is also called the first moment of a random variable.
More generally, we define the moments of a random variable as follows:

Definition 13. The kth moment of a random variable X is E[X*].

A significantly stronger tail bound is obtained when the second moment (E[X?])
is available as well. Given the first and second moments one can compute the variance
and standard deviation of the random variable. Intuitively, the variance and standard
deviation offer a measure of how far the random variable is likely to be from its
expectation.

Definition 14. The variance of a random variable X 1is defined as
Var[X] = E[(X — E[X])’] = E[X"] — (E[X])*.
The standard deviation of a random variable X 1s

o[X] =/ Var[X].

© Copyright Mitzenmacher and Upfal, 2003-2004

3.2 Variance and Moments of a Random Variable

63

The two forms of the variance in the definition are equivalent, as is easily seen
by using the linearity of expectations. Keeping in mind that E[X] is a constant, we
have

E[(X —E[X])?] = E[X?-2XE[X]+E[X]*]
= E[X?] - 2E[XE[X]] + E[X]?
= E[X?] - 2E[X]E[X] + E[X]?
= E[X7] - (E[X])%

If a random variable X is constant, so it always takes on the same value, its
variance and standard deviation are 0. More generally, if a random variable X takes
on the value 0 with probability 1 —1/k and takes on the value kE[X] with probability
1/k, its variance is (k — 1)(E[X])? and its standard deviation is vk — 1E[X]. These
cases help demonstrate the intuition that the variance (and standard deviation) of a
random variable are small when it takes on values close to its expectation, and are
large when it takes on values far from its expectation.

We have previously seen that the expectation of the sum of two random variables
is equal to the sum of their individual expectations. It is natural to ask whether the
same is true for the variance. We find that the variance of the sum of two random
variable has an extra term, called the covariance.

Definition 15. The covariance of two random variables X and Y is

Cov(X,Y) = E[(X — E[X])(Y — E[Y])].

Theorem 11. For any two random variables X and Y,

Var[X + Y] = Var[X] + Var[Y] + 2Cov(X,Y).

Proof.
Var[X +Y] = E[(X +Y —E[X +Y])?
= E[(X +Y - E[X] - E[Y])?
= E[(X - E[X])’+ (Y - E[Y])* + 2(X — E[X])(Y - E[Y])]

E[(X - E[X])’] + E[(Y - E[Y])’] + 2E[(X - E[X])(Y - E[Y])]
= Var[X]|+ Var[Y] +2Cov(X,Y).

O

The extension of this theorem to a sum of any finite number of random variables
is proven in exercise 14.

The variance of the sum of two (or any finite number of) random variables does
equal the sum of the variances in the case where the random variables are independent.

© Copyright Mitzenmacher and Upfal, 2003-2004

3.2 Variance and Moments of a Random Variable 64

Equivalently, if X and Y are independent random variables, then their covariance is
equal to 0. To prove this result, we first need a result about the expectation of the
product of independent random variables.

Theorem 12. If X and Y are two independent random variables, then

E[X -Y]=E[X] E[Y].

Proof. In the summations below, let ¢ take on all values in the range of X, and let j
take on all values in the range of Y.

BIX-Y] = 3D (-4)-Pr((X =i)n (¥ =)
= 2D (i) Pr(X =) - Pr(Y = j)

= (Zi-Pr(X:i)) (Zj-Pr(Yzj)>
— E[X]-E[Y] J

where the independence of X and Y is used in the second equation. O

Unlike the linearity of expectations, which holds for the sum of random variables
whether they are independent or not, the result that the expectation of the product of
two (or more) random variables is equal to the product of their expectations does not
necessarily hold if the random variables are dependent. To see this, let Y and Z each
correspond to fair coin flips, with Y and Z taking on the value 0 if the flip is heads
and 1 if the flip is tails. Then E[Y] = E[Z] = 1/2. If the two flips are independent,
then Y - Z is 1 with probability 1/4 and 0 otherwise, so indeed E[Y - Z] = E[Y]-E[Z].
Suppose instead that the coin flips are dependent in the following way; the coins are
tied together, so Y and Z either both come up heads or both come up tails together.
Each coin considered individually is still a fair coin flip, but now Y - Z is 1 with
probability 1/2, and so E[Y - Z] # E[Y] - E[Z].

Corollary 1. If X and Y are independent random variables, then
Cov(X,Y) =0,
and
Var[X + Y] = Var[X] + Var[Y].
Proof.

Cov(X,Y) = E[X - E[X])(Y - E[Y])]
— E[X - E[X]]-E[Y - E[Y]]
= 0.

© Copyright Mitzenmacher and Upfal, 2003-2004

3.2 Variance and Moments of a Random Variable 65

In the second equation we used the fact that since X and Y are independent, so are
X — E[X] and Y — E[Y], and hence Theorem 12 applies. For the last equation, we
use the fact that for any random variable 7,

E[(Z - E[Z])] = E[Z] - E[E[Z]] = 0.
Since Cov(X,Y) =0, we have Var[X + Y] = Var[X]| + Var[Y]. O
By induction we can extend the result of Corollary 1 to show that the variance

of the sum of any finite number of independent random variables equals the sum of
their variances.

Theorem 13. Let X, Xo, ..., X,, be mutually independent random variables, then
Var[z X;] = Z Var[X,].
i=1 i=1

3.2.1 Example: Variance of a Binomial Random Variable

The variance of a binomial random variable X with parameters n and p can be
determined directly by computing E[X?]:

E[X?] = Z(@)pj(l—p)"‘jf

=0
- z% (n —n!j)!y'pj(l_p)n W((G*=3)+4)

- n' ? —7 - n' n—j
= ; (n(]_])é?pf(p)" +]Z:; (n_j)!j,P](—p)

= n(n-— 1)p2 + np,

Here we have simplified the summations by using the binomial theorem.
We conclude
Var[X] = E[X?] - (E[X])?
n(n — 1)p* + np — n?p?
np — np*
= np(1—p).

© Copyright Mitzenmacher and Upfal, 2003-2004

3.3 Chebyshev’s inequality

66

An alternative derivation makes use of independence. Recall from section 2.2
that a binomial random variable X can be represented as the sum of n independent
Bernoulli trials, each with success probability p. Such a Bernoulli trial Y has variance

E[(Y —E[Y])’ | =p1—p)*+ (1 —p)(-p)* =p—1p" =p(1 —p).

By Corollary 1, the variance of X is then np(1 — p).

3.3 Chebyshev’s inequality
Using the expectation and the variance of the random variable, one can get a signifi-
cantly stronger tail bound, known as Chebyshev’s inequality:
Theorem 14. Chebyshev’s inequality: For any a > 0,
Var[X]
<

Pr(|X — E[X]| > o)

a2
Proof. We first observe that
Pr(|X — E[X]| > a) = Pr((X - E[X])* > a”).

Since (X — E[X])? is non-negative random variable we can apply Markov’s inequality
to prove:
E[(X —E[X])?] Var[X]

a? a?

Pr((X — E[X])* > a”) <
O

The following useful variants of the Chebyshev’s inequality bound the devia-
tion of the random variable from its expectation in terms of a constant factor of its
standard deviation or expectation:

Corollary 2. For anyt > 1,

Pr(|X —E[X]| > ¢ - 0[X]) < —, and

t2’

Var[X]
Pr(|X — E[X]| > ¢- E[X]) < W

Let us again consider our coin flipping example, and this time use Chebyshev’s
inequality to bound the probability of obtaining more than %n heads in a sequence
of n fair coin flips. Recall that X; = 1 if the ¢-th coin flip is heads and 0 otherwise,
and that X = " X, denotes the number of heads in the n coin flips. To use

© Copyright Mitzenmacher and Upfal, 2003-2004

3.3 Chebyshev’s inequality 67

Chebyshev’s inequality we need to compute the variance of X. Observe first that
since X; is a 0-1 random variable,

Thus,
Var[X;] = E[(X,)’] — (E[X;])* =

Now since X = >"" | X;, and the X;’s are independent, we can use Theorem 13
to compute

Var[X| = Var [Z Xi] = ZVar[Xi] = %

Applying Chebyshev’s inequality yields

Pr(X >3n/4) < Pr(|X — E[X]| > n/4)
Var[X]
(n/4)?
n/4
(n/4)?
4/n

<

In fact, we can do slightly better. Chebyshev’s inequality yields that % is actu-
ally a bound on the probability that X is either smaller than 7 or larger than %", SO
by symmetry the probability that X is bigger than ?jT” is actually 2/n. Chebyshev’s

inequality gives a significantly better bound than Markov’s inequality for large n.

3.3.1 Example: Coupon Collector’s Problem

We apply Markov’s and Chebyshev’s inequalities to the Coupon Collector’s problem.
Recall that the time X to collect n coupons has expectation nH,, where H, =
S L =Inn+ O(1). Hence Markov’s inequality yields

i=1n

1
Pr(X > 2nH,) < 3

To use Chebyshev’s inequality, we need to find the variance of X. Recall again
from Chapter 2.4.1 that X = >_" | X;, where the X; are geometric random variables
with parameter ”’T’“ In this case, the X; are independent, as the time to collect
the i-th coupon does not depend on how long it took to collect the previous i — 1
coupons. Hence

Var[X]| = Var

Z Xi] = Z Var[X;],

© Copyright Mitzenmacher and Upfal, 2003-2004

3.3 Chebyshev’s inequality

68

so we need to find the variance of a geometric random variable.

Let Y be a geometric random variable with parameter p. Then E[Y] = 1/p.

We calculate E[Y?]. The following trick proves useful. We know that for 0 < z < 1,

1 =, .
_ 7
— = Zx

1=0
Taking derivatives, we find
1 i
1-z2 sz
i=0
= Z(z + 1)z’
i=0
2 . (s 1—2
e = Zz(z -z
i=0
=) (i+1)(i+2)"
1=0
We may conclude that
i=1 i=0
= > ([(+1)(i+2)2" =3 (i+Da'+ >
i=0 i=0 i=0
B 2 3 1 N 1
(-2 (-2 (1-w)
2?4
(=)

We use this to find

BN =) p(-p)"

© Copyright Mitzenmacher and Upfal, 2003-2004

3.3 Chebyshev’s inequality

69

Finally, we reach

Var[Y] = E[Y?]-E[Y]?
2—0p 1
T2 »
_ 1-p
-

We have just proven the following useful lemma.

Lemma 12. The variance of a geometric random variable with parameter p is lp;f.

For a geometric random variable Y, E[Y?] can also be derived using conditional
expectations. We use that Y corresponds to the number of flips until the first heads
when each flip is heads with probability p. Let X = 0 if the first flip is tails, and
X =1 if the first flip is heads. By Lemma 7,

E[Y?] = Pr(X =0)E[Y? | X =0]+Pr(X = 1)E[Y? | X = 1]
= (1-pE[Y?| X =0]+pE[Y?| X =1].

If X =1,thenY =1, s0oE[Y?| X =1] =1. If X =0, then Y > 1. In this
case, let the number of remaining flips after the first flip until the first head be Z.
Then

EY?] = (1-pE[(Z+1)]+p-1
= (1-pE[Z] +2(1 - pE[Z] + 1, (3-3)
by the linearity of expectations. By the memoryless property of geometric random

variables, Z is also a geometric random variable with parameter p. Hence E[Z] =1/p
and E[Z?] = E[Y?]. Plugging these values into equation (3.3), we have

EY?] = (1-pEN?]+2(1-p)/p+1=(1-pEN?]+(2—p)/p,
which yields E[Y?] = (2 — p)/p?, matching our other derivation.

We return now to the question of the variance in the coupon collector’s problem.
We simplify the argument by using the upper bound Var[Y] < 1% for a geometric
random variable, instead of the exact result of Lemma 12. Then

n

Var[X] = ZVarX] < Z(2—1—1)2 =n?y" (%)2 < ”26”2.

=1

Here we have used the identity

00 1 2 7_(_2
>(5) =%

© Copyright Mitzenmacher and Upfal, 2003-2004

3.4 Application: A Randomized Algorithm for Computing the Median

70

Now by Chebyshev’s inequality

n?mr?/6 w2 1
Pr(|X —nH,| > nH,) < = =0 —]).
r(|X = nHn| 2 nH,) < (nH,)? _ 6(H,) <ln2n>

In this case, Chebyshev’s inequality again gives a much better bound than
Markov’s inequality. However this is still a fairly weak bound, as we can see by
considering instead a fairly simple union bound argument.

Consider the probability of not obtaining the i-th coupon after nInn -+ cn steps.

This probability is

1 n(lnn+c) 1

1— = < e—(lnn—l—c) ——

n e‘n
By a union bound, the probability that some coupon has not been collected after
nlnn 4+ cn step is only e~ ¢ In particular, the probability that all coupons are not
collected after 2nlnn steps is at most 1/n, a bound that is significantly better than
what can be achieved even with Chebyshev’s inequality.

3.4 Application: A Randomized Algorithm for Com-

puting the Median

Given a set S of n elements, drawn from a totally ordered universe, the median of S
is an element m of S such that at least [%] elements in S are less than or equal to
m, and at least | 5] + 1 elements in S are greater than or equal to m. If the elements

in S are distinct then m is the [§]-th element in the sorted order of S.

The median can be easily found deterministically in O(nlogn) steps by sorting,
and there is a relatively complex deterministic algorithm that computes the median in
O(n) time. Here we analyze a randomized linear time algorithm that is significantly
simpler than the deterministic one, and yields a smaller constant factor in the linear
running time. To simplify the presentation, we assume that n is odd and that the
elements in the input set S are distinct. The algorithm and analysis can be easily
modified to include the case of a multi-set S (see exercise 23) and a set with an even
number of elements.

3.4.1 The Algorithm

The main idea of the algorithm involves sampling, which we first discussed in sec-
tion 1.2. The goal is to find two elements that are close together in the sorted order of
S and have the median lie between them. Specifically, we seek two elements d,u € S
such that

© Copyright Mitzenmacher and Upfal, 2003-2004

3.4 Application: A Randomized Algorithm for Computing the Median

71

1. d <m < u (the median m is between d and u); and

2.forC={seS : d<s<u},|C|=o0 (Ln) (the total number of elements

log
between d and u is small).

Sampling gives us a simple an efficient method for finding two such elements.

We claim that once these two elements are identified, the median can easily be
found in linear time, with the following steps. The algorithm counts (in linear time)
the number /4 of elements of S that are smaller than d, and sorts (in sub-linear, or

o(n), time) the set C'. Notice that since |C| = 0(1), the set C' can be sorted in

logn

time o(n) using any standard sorting algorithm that requires O(m logm) time to sort

m elements. The ([§] — ¢4 + 1)-st element in the sorted order of C'is m, since there

are exactly | % | elements in S that are smaller than that value.

To find the elements d and u, we sample with replacement a multi-set R of [n3/41
elements from S. Recall that sampling with replacement means each element in R is
chosen uniformly at random from the set S, independent of previous choices. Thus,
the same element of S might appear more than once in the multi-set R. Sampling
without replacement might give marginally better bounds, but both implementing
and analyzing it is significantly harder. It is worth noting that we assume that an
element can be sampled from S in constant time.

Since R is a random sample of S we expect m, the median element of S, to be
close to the median element of R. We therefore choose d and u to be elements of R
surrounding the median of R.

We require all the steps of our algorithm to work with high probability, by which
we mean with probability at least 1 — O (n—lc) for some constant ¢ > 0. To guarantee
that with high probability the set C' includes the median m, we fix d and u to be
respectively the ((n/2) —+/n)-th and the ((n/2)+ +/n)-th elements in the sorted order
of R. With this choice, the set C' includes all the elements of S that are between the
2y/n sample points surrounding the median of R. The analysis will clarify that the
choice of the size of R and the choices for d and u are tailored to guarantee that on
the one hand the set C' is large enough to include m with high probability, while on
the other hand the set C' is sufficiently small so that it can be sorted in sub-linear
time with high probability.

A formal description of the algorithm follows:

© Copyright Mitzenmacher and Upfal, 2003-2004

3.4 Application: A Randomized Algorithm for Computing the Median

72

Randomized Median Algorithm:
Input: A set S of n elements over a totally ordered universe.

Output: The median element of S, denoted by m.

1. Pick a (multi)-set R of [n**] elements in S, chosen independently and uniformly
at random with replacement.

2. Sort the set R.
3. Let d be the |1n** — \/n]-th smallest element in the sorted set R.
4. Let u be the [£n* 4+ \/n]-th smallest element in the sorted set R.

5. By comparing every element in S to d and u compute theset C = {z € S : d <
x < u}, and the numbers ¢y = |{xr €S : z<d}|and ¢, =|{z €S : x> u}|.

6. If ¢4 > n/2 or £, > n/2 then FAIL.

7. If |C] < 4n3/* then sort the set C, otherwise FAIL.

8. Output the ([§]| — ¢4+ 1)-st element in the sorted order of C.

3.4.2 Analysis of the Algorithm

Based on our previous discussion, we first prove that the algorithm terminates in
linear time and outputs either a correct answer or FAIL.

Theorem 15. The randomized median algorithm terminates in linear time, and if it
does not output FAIL it outputs the correct median element of the input set S.

Proof. Correctness follows because the algorithm could only give an incorrect answer
if the median was not in the set C. But then either ¢; > n/2 or ¢, > n/2, and
thus Step 6 of the algorithm guarantees that in this case the algorithm outputs FAIL.
Similarly, as long as C' is sufficiently small the total work is only linear in the size
of S. Step 7 of the algorithm therefore guarantees that the algorithm does not take
more than linear time; if the sorting may take too long, the algorithm outputs FAIL
without sorting. O

The interesting part of the analysis that remains after Theorem 15 is to bound
the probability that the algorithm outputs FAIL. We bound this probability by iden-
tifying three “bad” events such that if none of these bad events occurs then the
algorithm does not fail. In a series of lemmas, we then bound the probability of each
of these events, and show that the sum of these probabilities is only O(n~'/%).

Consider the following three events:

© Copyright Mitzenmacher and Upfal, 2003-2004

3.4 Application: A Randomized Algorithm for Computing the Median 73

1. 51: }/1:|{7"€R|70§m}|<%n3/4_\/ﬁ’
2. 52: }/2:|{7"€R|702m}|<%n3/4_\/ﬁ’
3. 53 : |C| > 4n3/4.

Lemma 13. The algorithm fails if and only if at least one of €1, &5, or £3 occurs.

Proof. Failure in step 7 of the algorithm is equivalent to the event £;. Failure in step
6 of the algorithm occurs if and only if ¢4 > n/2 or £, > n/2. But for {; > n/2, the
($n¥* — \/n)th smallest element of R must be bigger than m. This is equivalent to
the event &;. Similarly, £, > n/2 is equivalent to the event &,. O

Lemma 14.)
Pr(&)) < anl/‘i.

Proof. Define a random variable X; by

Y. — 1 the -th sample is less than or equal to the median,
* 1 0 otherwise.

The X; are independent since the sampling is done with replacement, and since
there are ”T’l + 1 elements in S that are less than or equal to the median, The
probability that a randomly chosen element of S is less than or equal to the median
is

(n—=1)/2+1 1 1
PrX;=1)=——=—- 4+ —.
r(Xi) n 2 + 2n

The event & is equivalent to

n3/4

1
=Y X< §n3/4 — /.
=1

Since Y] is the sum of Bernoulli trials, it is a binomial random variable with
parameters n3/* and 1/2 + 1/2n. Hence using the result of section 3.2.1,

1 1) /1 1
VarlY; — 3/4 [= L 4
arli] = n (2 * 2n> <2 2n>

© Copyright Mitzenmacher and Upfal, 2003-2004

3.4 Application: A Randomized Algorithm for Computing the Median

74

Applying Chebyshev’s inequality we have

Pr(&) Pr <Y1 < %n3/4 — \/ﬁ>

< Pr(Yi — BlYi]| > Vi)
< Var[Y]]
n
< in3/4 = ln_%
n 4

O

We similarly obtain the same bound for the probability of the event £,. We
now bound the probability of the third bad event, &;.

Lemma 15. 1
Pr(&;) < 571*1/4.

Proof. If & occurs, so |C] > 4n®*, then at least one of the following two events
OCCUrs:

1. &1 at least 2n%/* elements of C' are greater than the median;

2. &3 at least 2n3/4 elements of C' are smaller than the median.

Let us bound the probability that the first event occurs; the second will have
the same bound by symmetry. If there are at least 2n%* elements of C' above the
median, then the order of w in the sorted order of S was at least %n +2n%/*, and thus
the set R has at least 1n** — \/n samples among the in — 2n%/? largest elements in

S.

Let X be the number of samples among the %n — 2n3/* largest elements in S.
Let X = Z:i/{l X; where

Y. — 1 the i-th sample is among the %n — 2n3/* largest elements in S,
1 0 otherwise.

Now, 1 2
ELX] = E[(X))’] =5 -~
and) , 1 4
Var[X;] = E[(X;)"] — (E[X;])” = 4 pl/z
Thus

© Copyright Mitzenmacher and Upfal, 2003-2004

3.4 Application: A Randomized Algorithm for Computing the Median

75

Again, X is a binomial random variable, and we find

1
E[X] = §n3/4 —2v/n
and
Var[X] = n*/* L on /1 E +2n V) = 1n?’/4 —4n'/t < 1713/4
2 2 4 4
Applying Chebyshev’s inequality yields
1
Pr(&5,) = Pr(X > §n3/4 —/n) (3.4)
Var[X] ini 1
< Pr(X B[] > vy < X a1 g5
n n 4
Similarly,
1
PI'(8372) S an,
and)
Pr(£3) < Pr(&sy) + Pr(&ss) < in*%.

O

Combining the above bounds we conclude that the probability that the algo-
rithm outputs FAIL is bounded by

Pr(&)) + Pr(&) + Pr(&s) < n™ V4,
This yields the following theorem:

Theorem 16. The probability that the randomized median algorithm fails is bounded
by n~ Y4,

By repeating the above algorithm until it succeeds in finding the median we can
obtain an iterative algorithm that never fails, but has a random running time. Since
the samples taken in successive runs of the algorithm are independent, the success
of each run is independent of other runs, and hence the number of runs until success
is achieved is a geometric random variable. As an exercise, you may wish to show
that this variation of the algorithm (that runs until it finds a solution) still has linear
expected running time.

Randomized algorithms that may fail or return an incorrect answer are called
Monte Carlo algorithms. The running time of a Monte Carlo algorithm often does
not depend on the random choices made. For example, in this median algorithm, the
random choices simply give us a random sample; whatever these choices are, we have

© Copyright Mitzenmacher and Upfal, 2003-2004

3.5 Exercises

76

to sort them, count ¢; and /,, and determine the median. The time for these steps
can be upper bounded and does not depend significantly on the random choices.

A randomized algorithm that always returns the right answer is called a Las
Vegas algorithm. We have seen that the Monte Carlo randomized algorithm for the
median can be turned into a Las Vegas algorithm by running it repeatedly until it
succeeds. Again, turning it into a Las Vegas algorithm means the running time is
variable, although the expected running time is still linear.

3.5 Exercises

1. Let X be a number chosen uniformly at random from [1,n]. Find Var[X].
2. Let X be a number chosen uniformly at random from [—k, k]. Find Var[X].

3. Suppose that we roll a standard fair die 100 times. Let X be the sum of the
numbers that appear over the 100 rolls. Use Chebyshev’s inequality to bound
Pr(|X — 350] > 50).

4. Prove that for any real number ¢ and any discrete random variable X, Var[cX] =
c*Var[X].

5. If X and Y are independent random variables, then E[X —Y] = E[X]|—-E[Y] by
the linearity of expectations. Prove that in this case Var[X — Y| = Var[X] +
Var[Y].

6. For a coin that comes up heads independently with probability p on each flip,
what is the variance in the number of flips until the k-th head?

7. A simple model of the stock market suggests that each day, a stock with price ¢
will increase by a factor r > 1 to gr with probability p and will fall to ¢/r with
probability 1 — p. Assuming we start with a stock with price 1, find a formula
for the expected value and the variance of the price of the stock after d days.

8. Suppose that we have an algorithm that takes as input a string of n bits. We
are told that the expected running time is O(n?) if the input bits are chosen
independently and uniformly at random. What can Markov’s inequality tell us
about the worst-case running time of this algorithm on inputs of size n?

9. (a) Let X be the sum of Bernoulli random variables, X = Y 7_, X;. The X;
do not need to be independent. Show that

E[X? = zn:Pr(Xz- =1DEX | X;=1]. (3.6)

© Copyright Mitzenmacher and Upfal, 2003-2004

3.5 Exercises

77

10.
11.

12.

13.

14.

15.

16.

17.

18.

Hint: start by showing that
E[X’ =) E[X;X],
i=1

and then apply conditional expectations.
(b) Use equation 3.6 to provide another derivation for the variance of a bino-
mial random variable with parameters n and p.

For a geometric random variable X, find E[X?®] and E[X*]. (Hint: use Lemma 7.)

Recall the Bubblesort algorithm of Problem 22. Determine the variance of the
number of inversions that need to be corrected by Bubblesort.

Find an example of a random variable with finite expectation and unbounded
variance. Give a clear argument showing that your choice has these properties.

Find an example of a random variable with finite j-th moments for 1 < j < k
but an unbounded (k+ 1)-st moment. Give a clear argument showing that your
choice has these properties.

Prove that for any finite collection of random variables X, Xy, ..., X},
Var) Xj] =) Var[X;]+2)) Cov(X; X;).
i=1 i=1 i=1 j>i

Let the random variable X be representable as a sum of random variables
X =57 X;. Show that if E[X;X;] = E[X;]E[X]] for every pair of ¢ and j
with 1 <i < j <n, then Var[X]=>"" Var[X|].

This problem shows that Markov’s inequality is as tight as it could possibly
be. Given a positive integer k, describe a random variable X assuming only
non-negative values such that

1

Pr(X > kE[X]) = —.

Can you give an example similar to that for Markov’s inequality above that
shows that Chebyshev’s inequality is tight? If not, explain why not.

Show that for a random variable X with standard deviation o[X] and any
positive real number ¢,

(a)
1

142

Pr(X — E[X] > to[X]) <

© Copyright Mitzenmacher and Upfal, 2003-2004

3.5 Exercises

(b)

2
Pr(|X — E[X]| > to]X]) < .
(X — B{X]| 2 to]X]) < -
19. Let Y be a non-negative integer-valued random variable with positive expecta-
tion. Prove

E[YP
(Y]

< Prly #0] < B[y

&

20. (a) Chebyshev’s inequality uses the variance of a random variable to bound its
deviation from its expectation. We can also use higher moments. Suppose
that we have a random variable X and an even integer & for which E[(X —

E[X])*] is finite. Show that

Pr(|X ~BIX)| > +{/B[(X - BX])) <

(b) Why is it difficult to derive a similar inequality when & is odd?

21. A fixed point of a permutation 7 : [1,n] — [1,n] is a value for which = (z) =
z. Find the variance in the number of fixed points of a permutation chosen
uniformly at random from all permutations. (Hint: Let X; be 1 if 7(i) = i, so
that > 7" X, is the number of fixed points. You cannot use linearity to find
Var[} " | X;]|, but you can calculate it directly.)

22. Suppose that we flip a fair coin n times to obtain n random bits. Consider all
m = (g) pairs of these bits in some order. Let Y; be the exclusive-or of the i-th
pair of bits, and let Y = 3" Y, be the number of Y; that equal one.

(a) Show that each Y; is 0 with probability 1/2 and 1 with probability 1/2.
(b) Show that the ¥; are not mutually independent.
(c) Show that the Y; satisfy the property that E[Y;Y;] = E[Y;]E[Y]].
(d) Using exercise 15, find Var[Y].
(e) Using Chebyshev’s inequality, prove a bound on Pr(|Y — E[Y]| > n).
23. Generalize the median-finding algorithm for the case where the input S is a

multi-set. Prove that your resulting algorithm is correct and bound its running
time.

24. Generalize the median-finding algorithm to find the kth largest item in a set of
n items for any given value of k. Prove that your resulting algorithm is correct
and bound its running time.

25. The weak law of large numbers says that if X, X5, X3,... are independent and
identically distributed random variables with mean p and standard deviation
o, then for any constant € > 0
> 6) =0.

. Xi+Xo+.. .+ X,
lim Pr
n

—

n—o0

© Copyright Mitzenmacher and Upfal, 2003-2004

3.5 Exercises

79

Use Chebyshev’s inequality to prove the weak law of large numbers.

© Copyright Mitzenmacher and Upfal, 2003-2004

Chapter 4

Chernoff Bounds

This chapter introduces what are commonly called Chernoff bounds. Chernoff bounds
are extremely powerful, giving exponentially decreasing bounds on the tail distribu-
tion. These bounds are derived by using Markov’s inequality on the moment gener-
ating function of a random variable. We start this chapter by defining and discussing
the properties of the moment generating function. We then derive Chernoff bounds
for the binomial distribution and other related distributions, using a set balancing
problem as an example. To demonstrate the power of Chernoff bounds, we apply
them to the analysis of randomized packet routing schemes on the hypercube and
butterfly networks.

4.1 Moment Generating Functions
Before developing Chernoff bounds, we discuss the special role of the moment gener-
ating function E[e!"].
Definition 16. The moment generating function of a random variable X is
Mx(t) = E[e'].
We are mainly interested in the existence and properties of this function in the
neighborhood of 0. The function My (t) captures all of the moments of X.

Theorem 17. Let X be a random variable with moment generating function Mx (t).
Under the assumption that exchanging the expectation and differentiation operands is

legitimate, then for alln > 1
E[X") = My(0),

where M)(?)(O) is the n-th derivative of Mx(t) evaluated at t = 0.

© Copyright Mitzenmacher and Upfal, 2003-2004

4.1 Moment Generating Functions

81

Proof. Assuming that we can exchange the expectation and differentiation operands,
then
M (1) = E[X"eX).
Computed at ¢ = 0 we get
M (0) = B[X"].

O

The assumption that expectation and differentiation operands can be exchanged
holds whenever the moment generating function exists in a neighborhood around 0,
which will be the case for all distributions considered in this book.

As a specific example, consider a geometric random variable X with parameter
p, as in Definition 12. Then for ¢ < —In(1 — p),

Mx(t) = Ele"]

o0

= Y (1—p)* 'pe’*
k=1
= T P (1—p)re™
p k=1
p
= f(l — (1 —p)e)!

It follows that

MP(t) = p(1— (1 - p)e')~2e
MP (1) = 2p(1—p)(1 = (1 —p)e’) e + p(1 — (1 — p)e’) 2.

Evaluating these derivatives at ¢ = 0 and using Theorem 17 gives E[X]| = 1/p and
E[X?] = (2 — p)/p?, matching our previous calculations from sections 2.4 and 3.3.1.

Another useful property is that the moment generating function of a random
variable, or equivalently, all of the moments of the variable, uniquely defines its
distribution. The proof of the following theorem is beyond the scope of this book:

Theorem 18. Let X and Y be two random variables. If
Mx (t) = My (1)

for all t € (—0,0) for some 6 > 0, then X and Y have the same distribution.

One application of the above theorem is in determining the distribution of a
sum of independent random variables.

© Copyright Mitzenmacher and Upfal, 2003-2004

4.2 Deriving and Applying Chernoff Bounds

Theorem 19. If X and Y are independent random variables then
My 1y (t) = Mx (t) My ().
Proof.
Mx .,y (t) = E[e'X+Y)] = B[] = E[eN|E[eY] = Mx (t) My (1).

Here we have used that X and Y are independent, and hence e’X and e’ are inde-
pendent, to conclude that E[e!*e!'| = E[e!*|E[e!]. O

Thus, if we know Mx (t) and My (), and if we recognize the function My (¢) My (t)
as the moment generating function of a known distribution, then that must be the
distribution of X + Y when Theorem 17 applies. We will see examples of this in
subsequent sections and in the exercises.

4.2 Deriving and Applying Chernoff Bounds

The Chernoff bound for a random variable X is obtained by applying Markov’s in-
equality to e/ for some well chosen value ¢t. From Markov’s inequality, we can derive
the following useful inequality: for any ¢ > 0,

E tX
Pr(X > a) = Pr(etX > e') < L‘i |
In particular,
E tX
Pr(X > a) < min [
t>0 ete
Similarly, for any ¢ < 0,
E tX
Pr(X < a) = Pr(e" >e') < [ei]

Hence

E tX
Pr(X < a) < min]
t<0 ete

Bounds for specific distributions are obtained by choosing appropriate values
for £. While the value of ¢ that minimizes E[e!X]/e™® gives the best possible bounds,
often one chooses a value of ¢ that gives a convenient form. Bounds derived from this
approach are generally referred to collectively as Chernoff bounds. When we speak of
a Chernoff bound for a random variable, it could be one of many bounds derived in
this fashion.

© Copyright Mitzenmacher and Upfal, 2003-2004

4.2 Deriving and Applying Chernoff Bounds

83

4.2.1 Chernoff Bounds for the Sum of Poisson Trials

We now develop the most commonly used version of the Chernoff bound, for the tail
distribution of a sum of independent 0 — 1 random variables, also known as Poisson
trials. (Poisson trials differ from Poisson random variables, which will be discussed
in section 5.3.) The distributions of the random variables in Poisson trials are not
necessarily identical. Bernoulli trials are a special case of Poisson trials where the
independent 0 — 1 random variables have the same distribution, that is, all trials are
Bernoulli random variables that take on the value 1 with the same probability. Also
recall that the binomial distribution gives the number of successes in n independent
Bernoulli trials. Our Chernoff bound will hold for the binomial distribution, and for
the more general setting of the sum of Poisson trials.

Let Xi,..., X, be a sequence of independent Poisson trials with Pr(X; = 1) =
pi- Let X =377 | X;, and let

p=E[X]=E

ZXz'] = ZE[XZ] = sz

For a given § > 0 we are interested in bounds on Pr(X > (1 + 0)u) and
Pr(X < (1 —6)u), i.e. the probability that X deviates from its expectation p by du
or more. To develop a Chernoff bound we need to compute the moment generating
function of X. We start with the moment generating function of each Xj;.

Mx,(t) = E[e"]
= pie' +(1—p)
= 1+pi(ef—1)
epi(et—l),

IN

where in the last inequality we use the fact that for any y, 1 +y < e¥. Taking the
product of the n generating functions we get

Mx(t) = HMXi(t)

n

< H epi(e 1)
i=1

— eZ?:l pi(et_l)
e(et_l)l"‘.

Now that we have determined a bound on the moment generating function, we
are ready to develop concrete versions of the Chernoff bound for a sum of Poisson
trials. We start with bounds on the deviation above the mean.

© Copyright Mitzenmacher and Upfal, 2003-2004

4.2 Deriving and Applying Chernoff Bounds 84

Theorem 20. Let X,...,X,, be independent Poisson trials such that Pr(X;) = p;.
Let X =3%" | X; and p = E[X]. Then the following Chernoff bounds hold:

1. For any § >0,

) I
2. For0 < <1,
Pr(X > (14 6)u) < e H/3, (4.2)
3. For R > 6y,
Pr(X > R) < 27f (4.3)

The first bound of the theorem is the strongest, and it is from this bound that
we derive the other two bounds, which have the advantage of being easier to state
and compute with in many situations.

Proof. Applying Markov’s inequality, we have that for any ¢ > 0,

PI'(X Z (]. + 6):“’) = Pr(etX 2 et(1+5)u)
E[e!Y]

<

<

For any 6 > 0, we can set t = In(1+J) > 0 to get (4.1):
of p

PI‘(X Z (1 +5)M) S <m> .

To obtain (4.2), we need to show that for 0 < § <1,

5
€ —52/3

(1+0)0# = °©
Taking the logarithm of both sides, we obtain the equivalent condition
f(6)=0—(1+0)In(1+9)+6%/3 <0.

Computing the derivatives of f(J) we get

R) 2
= —In(1+9) ;5,

" 1 2

110) = 1453

© Copyright Mitzenmacher and Upfal, 2003-2004

4.2 Deriving and Applying Chernoff Bounds 85

We see that f"(6) < 0 for 0 < 6 < 1/2, and f"(§) > 0 for § > 1/2. Hence
f'(9) first decreases and then increases over the interval [0, 1]. Since f'(0) = 0 and
f'(1) < 0, we can conclude that f'(0) < 0 in the interval [0, 1]. Since f(0) = 0, we
have that f(0) < 0 in that interval, proving (4.2).

To prove (4.3), let R = (1 4+ §)p. Then for R > 6p, § = % — 1 > 5. Hence,
using (4.1),

Pr(X > (14 0)u)

IN

VAN
1\3/\

IN

We obtain similar results bounding the deviation below the mean.
Theorem 21. Let X,..., X, be independent Poisson trials such that Pr(X;) = p;.
Let X =" | X; and p=E[X]. For0<0 <1,

1.
-5

Pr(X < (1-9d)p) < <m> (4.5)

Pr(X < (1—0)u) < e /2 (4.6)

Again, the bound 4.5 is stronger, but equation 4.6 is generally easier to use and
sufficient in most applications.

Proof. Using Markov’s inequality, for any ¢ < 0,

Pr(X < (1—68pu) = Pr(e™ > el1-0k)

<

<
For 0 < § <1, we set t =1In(1 —6) <0 to get (4.5):

Pr(X < (1 - 8)p) < (W)

© Copyright Mitzenmacher and Upfal, 2003-2004

4.2 Deriving and Applying Chernoff Bounds 86

To prove (4.6), we need to show that for 0 < ¢ < 1,

-5
e —82/2

T=a0a <*
Taking the logarithm of both sides, we obtain the equivalent condition
F() = —6— (1= 6)In(1 —6) + 50 < 0
for 0 <4 < 1.
Differentiating f(9) we get
f'(6) = In(1—96)+4,

£1(6) = —1—16 +1.

Since f”(§) < 0 on the range (0,1), and f'(0) = 0, we have f'(6) < 0 in the range
[0,1). Therefore f(d) is monotonically decreasing in that interval. Since f(0) = 0,
f(6) <0 when 0 < § < 1, as required. O

Often the following form of the Chernoff bound, which is derived immediately
from equations (4.2) and (4.5), is used.

Corollary 3. Let Xy,..., X, be independent Poisson trials such that Pr(X;) = p;.
Let X =" X; and p=E[X]. For0<0 <1,

Pr(|X — p| > 6p) < 2e71°/3, (4.7)

In practice we often do not have the exact value of E[X]. Instead we can use
p > E[X] in Theorem 20 and p < E[X] in Theorem 21 (see problem 7).

4.2.2 Example: Coin flips

Let X be the number of heads in a sequence of n independent fair coin flips. Applying
the Chernoff bound of equation (4.7) , we have

@
5
3

wlm
(NI

fﬁr(‘x—E z%\/e)nlnn) < 2%
9
=

This demonstrates that the concentration of the number of heads around the
mean n/2 is very tight; most of the time, the deviations from the mean are on the

order of O(Vnlnn).

© Copyright Mitzenmacher and Upfal, 2003-2004

4.2 Deriving and Applying Chernoff Bounds

87

To compare the power of this bound to Chebyshev’s bound, consider the prob-
ability of having no more than 7 heads or no less than %n heads in a sequence of
n independent fair coin flips. In the last chapter we showed using the Chebyshev’s

bound
mOX—ﬁzﬁ>gi
2 4 n
Already, this bound is worse than the Chernoff bound above! Using the Chernoff
bound in this case, we find

mﬂx—ﬁz@)
7| = 1

e

1n
2e732

IN

< 27,

Thus, Chernoft’s technique gives a bound that is exponentially smaller than the bound
obtained using Chebyshev’s inequality.

4.2.3 Application: Estimating a Parameter

Suppose that we are interested in evaluating the probability that a particular gene
mutation occurs in the population. Given a DNA sample, a lab test can determine if
it carries the mutation. However, the test is expensive and we would like to obtain a
relatively reliable estimate from a small number of samples.

Let p be the unknown value that we are trying to estimate. Assume that we
have n samples, and X = pn of these samples have the mutation. Given a sufficiently
large number of samples we expect the value p to close to the sampled value p. We
express this intuition using the concept of a confidence interval:

Definition 17. A 1 — v confidence interval for a parameter p is an interval [p —
8, p + 0] such that
Pr(pe[p—0,p+0d]) >1—1.

Notice that instead of predicting a single value for the parameter, we give an
interval that is likely to contain the parameter. If p can take on any real value, it
may not make sense to try to pin down its exact value from a finite sample, but it
does make sense to estimate it within some small range.

Naturally we want both the interval size 20 and the error probability v to be as
small as possible. We derive a tradeoff between these two parameters and the number
of samples n. In particular, given that among n samples, chosen uniformly at random
from the entire population, we found the mutation in exactly X = pn samples, we
need to find values of § and v for which

Pr(p € [5— 0,5+ 0]) = Pr(np € [n(p — 8), n(p+9))) > 1— 1.

Now X = np has a binomial distribution with parameters n and p, so E[X]| = np.
If p¢[p—0,p+ 0] then we have one of the following two events:

© Copyright Mitzenmacher and Upfal, 2003-2004

4.3 Better Bounds for Some Special Cases

88

L Ifp < j—6, then X =nj > n(p +) = B[X](1 +).

2. If p> p+9, then np < n(p —9J) =E[X](1 - g).
We can apply Chernoff bounds (4.2) and (4.6) to compute

Pr(pgp—6,p+4d]) = Pr <X<np <1—é>> + Pr <X > np <1+g>>(4.8)

p
(4.9)

= e 2 J+e 3, (410)

As stated, the above bound is not useful since the value of p is unknown. A
simple solution is to use the fact that p <1 to yield

né?2 ns?2

Pr(pg[p—9,p+6]) <e 2 +e 5.

2 52 . -
Setting v = e —|—e_%, we obtain a tradeoff between 0, n, and the error probability

.

We can apply other Chernoff bounds, such as the bound in exercises 13 and 16,
to obtain better bounds. We return to the subject of parameter estimation when we
discuss the Monte-Carlo Method in Chapter 10.

4.3 Better Bounds for Some Special Cases

We can obtain stronger bounds using a simpler proof technique for some special cases
of symmetric random variables.

We consider first the sum of independent random variables where each variable
assumes the values 1 or -1 with equal probability.

Theorem 22. Let X1, ..., X,, be independent random variables with

1

Let X =3%" X;. For anya >0,
Pr(X >a) <e @/

Proof. For any t > 0,
1 1
Xi] — 2ot 4 2ot
Ele™] = 5e + 5e

© Copyright Mitzenmacher and Upfal, 2003-2004

4.3 Better Bounds for Some Special Cases

89

To estimate E[e!*i], we observe that

2 tz

ef=1+t+=+-+=+...
2! 7!

and)
t2) tz

e l=1—t+—+--+(=1)=+...

2!
using the Taylor series expansion for ef. Thus,

1 1
E[e'¥] = §et+§e’t

t2i
2~ (2i)!

t?)z

(7

<D
i>0
= of’/2,

Using this estimate,

E[etX] _ HE[etXi] < eth/Q7

=1

and

Pr(X > a) = Pr(e'™* > e') <

Setting t = a/n yields
Pr(X >a) < e %/,

By symmetry we also have
Pr(X < —a) < e /%",

Combining the two results we have

Corollary 4. Let X4, ..., X,, be independent random variables with

Let X =37 | X;. Then for any a >0,

Pr(|X| > a) < 2¢ /%",

© Copyright Mitzenmacher and Upfal, 2003-2004

1
5

4.3 Better Bounds for Some Special Cases

90

X;+1

Applying the transformation Y; = =4

, We prove

Corollary 5. Let Yy, ...,Y, be independent random variables with
Pr(Y;=1)=Pr(Y; =0) = -.

LetY =" Y, and p=E[Y] = 2.

[\

1. For any a > 0,
Pr(Y > p+a) < e 20/,

2. For any § > 0,

Pr(Y > (1+6)pu) < e 0", (4.11)

Proof. Using the notation of Theorem 22, we have
Y—any—l Xn:x Loty
_i:1Z_2 i=1 Z 22 "

Applying Theorem 22, we get
Pr(Y > p+4a) = Pr(X > 2a) < e7%°/?",

proving the first part of the corollary. The second part follows from setting a = du =
%". Applying Theorem 22, we have

Pr(Y > (14 6)p) = Pr(X > 20p) < ¢ 20 /m = =01,

O

Note that the constant in the exponent of the bound (4.11) is 1 instead of the
1/3 in the bound of (4.2).

Similarly, we have

Corollary 6. Let Y:,...,Y, be independent random variables with
Pr(Y;=1)=Pr(Y; =0) = -.
LetY =>" Y, and u=E[Y] =2

5

1. Forany 0 <a < pu,
Pr(Y < p—a) <e2/m,

2. Forany (0 < 4§ <1,
Pr(Y < (1—0)pu) <e %k, (4.12)

© Copyright Mitzenmacher and Upfal, 2003-2004

4.4 Application: Set Balancing

91

4.4 Application: Set Balancing

Given an n X m matrix A with entries in {0, 1}, let

ayj;p a2 ... Qip by &1
921 929 e Aom, bg o Cy
ap1 Gn2 e Anm bm Cn

Suppose that we are looking for a vector b with entries in {—1, 1} that minimizes

AT, = max |ei].
i=1,...,n

This problem arises in designing statistical experiments. Each column of the matrix A
represents a subject in the experiment and each row represents a feature. The vector
b partitions the subjects into two disjoint groups so that each feature is roughly as
balanced as possible between the two groups. One of the groups serves as a control
group for an experiment that is run on the other group.

Our randomized algorithm for computing a vector b is extremely simple. We
randomly choose the entries of b, with Pr(b; = 1) = Pr(b; = —1) = . The choices for
different entries are independent. Surprisingly, although this algorithm ignores the
entries of the matrix A, the following theorem shows that ||Ab||., is likely to be only
O(vVmlInn). This bound is fairly tight, as in exercise 15, you are asked to show that
in the case where m = n, there exists a matrix A for which ||Ab||s is Q(y/n) for any
choice of b.

Theorem 23. For a random vector b, with entries chosen independently and with
equal probability from the set {—1,1},

_ 2
Pr(||Ab|| > V4dmInn) < —
n
Proof. Consider the i-th row @; = a; 1,, @i m, and let k be the number of 1’s in that

row.

If k < V4mlnn then clearly |a; - b| = |¢;| < V4mInn.
If £ > v4mInn, we note that the k& non-zero terms in the sum

m

Zi = Z ai,jb]’
j=1

are independent random variables, each with probability 1/2 of being either +1 or
—1.

© Copyright Mitzenmacher and Upfal, 2003-2004

4.5 Application: Packet Routing in Sparse Networks *

92

Using the Chernoff bound of Corollary 4, and the fact that m > k,

2
Pr (|ZZ| > \/4mlnn) < e~dminn/2k < =

n2

By the union bound, the probability that the bound fails for any row is at most % O

4.5 Application: Packet Routing in Sparse Net-
works *

A fundamental problem in parallel computing is how to communicate efficiently over
sparse communication networks. We model a communication network by a directed
graph on N nodes. Each node is a routing switch. A directed edge models a com-
munication channel, connecting the two adjacent routing switches. We consider a
synchronous computing model in which an edge can carry one packet in each time
step, and a packet can traverse no more than one edge per step. We assume that
switches have buffers or queues to store packets waiting for transmission through each
of the switch’s outgoing edges.

Given a network topology, a routing algorithm specifies for each pair of nodes
a route, or a sequence of edges, connecting the pair in the network. The algorithm
may also specify a queuing policy for ordering packets in the switches’ queues. For
example, the First In First Out (FIFO) policy orders packets by their order of arrival.
The Furthest to Go (FTG) policy orders packets in decreasing order of the number
of edges they have left to cross in the network.

Our measure of the performance of a routing algorithm on a given network
topology is the maximum time, measured as the number of parallel steps, required to
route an arbitrary permutation routing problem, where each node sends exactly one
packet and each node is the address of exactly one packet.

Of course routing a permutation can be done in just one parallel step if the
network is a complete graph connecting all of the nodes to each other. Practical con-
siderations, however, dictate that a network for a large scale parallel machine must be
sparse. Each node can be connected directly to only few neighbors, and most packets
must traverse intermediate nodes on route to their final destination. Since an edge
may be on the path of more than one packet, and since each edge can only process one
packet per step, parallel packet routing on sparse networks may lead to congestion and
bottlenecks. The practical problem of designing an efficient communication scheme
for parallel computers leads to interesting combinatorial and algorithmic problem,
namely, designing a family of sparse networks connecting any number of processors,
and an accompanying routing algorithm, that routes an arbitrary permutation request
in a small number of parallel steps.

We discuss here a simple and elegant randomized routing technique and analyze

© Copyright Mitzenmacher and Upfal, 2003-2004

4.5 Application: Packet Routing in Sparse Networks *

93

0000 0010 100 101

0100 0110 110 111

0001 0011 100 101

0101 0111 110 111
(d)n=4
Figure 4.1: 1, 2, 3, and 4-dimensional hypercubes

its performance on two related family of networks, the hypercube and butterfly net-
works, using Chernoff bounds. We first analyze the case of routing a permutation on
a hypercube, a network with N processors and O(N log N) edges. We then present a
tighter argument for the butterfly network, which has N nodes and only O(N) edges.

4.5.1 Permutation Routing on the Hypercube

Let V= {0 < i < N —1} be the set of processors in our parallel machine and assume
that N = 2" for some integer n. Let Z = (z1,...,x,) be the binary representation of
the number 0 <o < N — 1.

Definition 18. The n dimensional hypercube (or n-cube) is a network with N = 2"
nodes such that node x has a direct connection to node y iff T and § differ in exactly
one bit.

Note that the total number of directed edges in the n-cube is 2n/V, as each node
is adjacent to n outgoing and n ingoing edges. Also, the diameter of the network is

© Copyright Mitzenmacher and Upfal, 2003-2004

4.5 Application: Packet Routing in Sparse Networks *

94

n; that is, there is a directed path of length up to n connecting any two nodes in the
network, and there are pairs of nodes that are not connected by any shorter path.

The topology of the hypercube allows for a simple bit-fixing routing mechanism:

Bit-fixing routing algorithm:
1. Let @ and b be the origin and the destination of the packet.
2. For 1 =1 to n do:

(a) If a; # b; then traverse the edge (by,...,bi 1,0 ...,0,) —
(bl,...,bi_l,bi,...,an).

That is, to determine the next edge to cross, the algorithm simply considers each bit
in order and crosses the edge if necessary.

Although it seems quite natural, just using the bit-fixing routes can lead to
large congestion and poor performance, as shown in exercise 20. There are certain
permutations on which the bit-fixing routes behave poorly. It turns out, as we will
show, that these routes perform well if each packet is being sent from a source to a
destination chosen uniformly at random. This motivates the following approach: first
route each packet to a randomly chosen intermediate point, and then route it from
this intermediate point to its final destination.

It may seem unusual to first route packets to a random intermediate point. In
some sense, this is similar in spirit to our analysis of Quicksort in section 2.5. We
found there that when the list was sorted in reverse order, Quicksort would take
Q(n?) comparisons, while on a randomly chosen permutation, the expected number
of comparisons would be only O(nlogn). Randomizing the data can lead to a better
running time for Quicksort. Here, too, randomizing the routes that packet take by
routing them through a random intermediate point avoids bad initial permutations.

We show that we can achieve asymptotically optimal parallel time by having
all packets routed in parallel using the following protocol:

Two Phase Routing Algorithm:

Phase I: Route the packet to a randomly chosen node in the network using the bit-
fixing route;

Phase II: Route the packet from its random location to its final destination using
the bit-fixing route.

The random choices are made independently for each packet. Our analysis holds
for any queueing policy that obeys the following natural requirement: if a queue is not
empty at the beginning of a time step, some packet is sent along the edge associated
with that queue during that time step.

Theorem 24. Given an arbitrary permutation routing problem, with probability 1 —
O(N™Y), the two phase routing scheme routes all packets to their destinations on the

© Copyright Mitzenmacher and Upfal, 2003-2004

4.5 Application: Packet Routing in Sparse Networks *

95

n-cube in O(n) = O(log N) parallel steps.

Proof. We first analyze the run-time of the Phase 1. To simplify the analysis we
assume that no packet starts the execution of Phase II before all packets finished the
execution of Phase I. We show later that this assumption can be removed.

We emphasize a fact that we use implicitly throughout. If a packet is routed to
a randomly chosen node Z in the network, we may think of 7 = (z1,...,z,) as being
generated by setting each z; independently to be 0 with probability 1/2 and 1 with
probability 1/2.

For a given packet M, let T7(M) be the number of steps for M to finish Phase
[. For a given edge e, let X;(e) denote the total number of packets that traverse edge
e during Phase I.

In each step of executing Phase I, packet M is either traversing an edge or
it is waiting in a queue while some other packet traverses an edge on M’s route.
This simple observation relates the routing time of M to the total number of packet
transitions through edges on the path of M:

Lemma 16. Let ey, ...,¢e,, be the m < n edges traversed by a packet M in Phase I.
Then

Ty (M) < le(ei).

Let us call any path P = (ej,es,...,ey) of m < n edges that follows the
bit fixing algorithm a possible packet path. We denote the corresponding nodes
Vo, Uty - - - U, With e; = (v;_1,v;). Following the definition of 77 (M), for any pos-
sible packet path P, let

T,(P) = le(ei).

By the above lemma, the probability that Phase I takes more than 7" steps is bounded
by the probability that for some possible packet path P, T;(P) > T. Note that there
at most 2" - 2" = 22" possible packet paths, as there are 2" possible origins and 2"
possible destinations.

To prove the theorem, we need a high probability bound on T} (P). Since T} (P)
is a summation Y ., Xi(e;), it would be natural to try to use a Chernoff bound.
The difficulty here is that the X (e;)’s are not independent random variables, since
a packet that traverses an edge is likely to traverse one of its adjacent edges. To
circumvent this difficulty, we first use a Chernoff bound to prove that with high
probability no more than 6n different packets cross any edge of P. We then condition
on this event to derive a high probability bound on the total number of transitions
these packets make through edges of the path P, again using a Chernoff bound.*

*This approach overestimates the time to finish a phase. In fact, there is a deterministic argument

© Copyright Mitzenmacher and Upfal, 2003-2004

4.5 Application: Packet Routing in Sparse Networks *

96

Let us now fix a specific possible packet path P with m edges. To obtain a high
probability bound on the number of packets that cross an edge of P, let us call a
packet active at a node v;_; on the path P if it reaches v;_; and has the possibility
to cross edge e; to v;. That is, if v;_; and v; differ in the jth bit, then for a packet to
be active at v; its j-th bit cannot have been fixed by the bit-fixing algorithm when
it reaches v;_;. We may also call a packet active if it is active at some vertex on the
path P. We bound the total number of active packets.

For k =1,...,N, let H, be a 0 — 1 random variable such that Hy = 1 if the
packet starting at node k is active, and Hy = 0 otherwise. Notice that the Hj are
independent, since each H; depends only on the choice of the intermediate destination
of the packet starting at node k, and these choices are independent for all packets.
Let H = Zszl Hj, be the total number of active packets.

We first bound E[H]. Consider all the active packets at v;_;. Assume that
Vi—1 = (bl, ey b]'_l, Ajy Ajp1 vy an) and Vi = (bl, Ceey b]'_l, b]', Ajt1y .-, an). Then only
packets that start at one of the of addresses (x,...,%,4a;,...,a,), where % can stand
for either a 0 or a 1, can reach v;_; before the j-th bit is fixed. Similarly, each of these
packets actually reaches v;_; only if its random destination is one of the addresses
(biy...,bj—1,%,...,%). Thus, there are no more than 2/~ possible active packets at
v;_1, and the probability that each of these packets is actually active at v;_; is 20—V,
Hence the expected number of active packets per vertex is 1, and since we need only
to consider the m vertices vy, ..., v,,_1, we have by linearity of expectations that

EH| <m-1<n.

Since H is the sum of independent 0 — 1 random variables we can apply the Chernoff
bound (we use (4.3)) to prove

Pr(H > 6n > 6E[H]) < 27"

The high probability bound for H can help us obtain a bound for T7(P) as
follows. Using

Pr(A) = Pr(4]| B)Pr(B) +Pr(A | B) Pr(B)
< Pr(B)+Pr(4]B),

we find that for a given possible packet path P,

Pr(T:(P) > 30n) Pr(H > 6n) + Pr(T1(P) > 30n | H < 6n)

<
< 27 4 Pr(Ty(P) > 30n | H < 6n).

showing that in this setting the delay of a packet on a path is bounded by the number of different
packets that traverse edges of the path, and there is no need to bound the total number of traversals
of these packets on the path. However, in the spirit of this book we prefer to present the probabilistic
argument.

© Copyright Mitzenmacher and Upfal, 2003-2004

4.5 Application: Packet Routing in Sparse Networks *

Hence if we show
Pr(Ty(P) > 30n | H < 6n) <2771,

we then have
Pr(Ty(P) > 30n) < 273"

which proves sufficient for our purposes.

We therefore need to bound the conditional probability Pr(7(P) > 30n | H <
6n). In other words, conditioning on having no more than 6n active packets that
might use edges of P, we need a bound on the total number of transitions that these
packets take through edges of P.

We first observe that if a packet leaves the path it cannot return to that path
in this phase of the routing algorithm. Indeed, assume that the active packet was at
v;, and the packet moved to w # v;;1. The smallest index bit in which v;;; and w
differ cannot be fixed later in this phase, and therefore the route of the packet and
the path P cannot meet again in this phase.

Now suppose we have an active packet on our path P at node v;. What is the
probability that the packet crosses e;? Let us think of our packet as fixing the bits in
its binary representation of its destination one at a time by independent random coin
flips. The nodes of the edge e; differ in one bit, say the jth bit, in this representation.
It is therefore clear that the probability that the packet crosses edge e; is at most
1/2, since to cross this edge it has to choose the appropriate value for the jth bit. (In
fact the probability might be less than 1/2; the packet might cross some other edge
before choosing the value of the jth bit.)

To obtain our bound, let us think of each point in the algorithm where an active
packet at a node v; on the path P might cross edge e; as a trial. The trial is successful
if the packet leaves the path, and a failure if the packet stays on the path. Notice
that if a trial is successful the packet leaves the path, so if there are at most 6n active
packets, there can be at most 6n successes. Each trial is successful, independently,
with probability at least 1/2. The number of trials is itself a random variable, which
we use in our bound of T;(P).

We claim that the probability that the active packets cross edges of P more
than 30n times is less than the probability that a fair coin flipped 36n times comes
up heads less than 6n times. To see this, think of a coin being flipped for each trial,
with heads corresponding to a success. The coin is biased to come up heads with the
proper probability for each trial, but this probability is always at least 1/2, and the
coins are independent for each trial. Each failure, or tails, corresponds to an active
packet crossing an edge, but once there have been 6n successes, we know there are
no more active packets left that can cross an edge of the path. Using a fair coin
instead of a coin possibly biased in favor of success can only lessen the probability
that the active packets cross edges of PP more than 30n times, as can be shown easily
by induction (on the number of biased coins).

© Copyright Mitzenmacher and Upfal, 2003-2004

4.5 Application: Packet Routing in Sparse Networks *

Letting Z be the number of heads in 36n fair coin flips, we now apply the
Chernoff bound (4.6) to prove:

Pr(Ty(P) > 30n | H < 6n) < Pr(Z < 6n) < e '87(2/3)°/2 — o=tn < 9=3n-1,

It follows that
Pr(T,(P) > 30n) < Pr(H > 6n) + Pr(T,(P) > 30n | H < 6n) <27°",

as we wanted to show. As there are at most 22" possible packet paths in the hypercube,
the probability that there is any possible packet path for which T7(P) > 30n is
bounded by

22n2—3n — 9 n _ O(N—l)

This completes the analysis of Phase I. Consider now the execution of Phase
IT, assuming that all packets completed their Phase I route. In this case Phase II
can be viewed as running Phase I backwards; instead of packets starting at a given
origin and going to a random destination, they start at a random origin and end at
a given destination. Hence no packet spends more than 30n steps in Phase II with
probability 1 — O(N1).

In fact we can remove the assumption that packets begin Phase I only after
Phase I has completed. The argument above allows us to conclude that the total
number of packet traversals across the edges of any packet path during Phase I and
Phase II together is bounded by 60n with probability 1 — O(N~!). Since a packet
can be delayed only by another packet traversing that edge, we find that every packet
completes both Phase T and Phase IT after 60n steps with probability 1 — O(N~!)
regardless of how the phases interact, concluding the proof of Theorem 24. O

Note that the run-time of the routing algorithm is optimal up to a constant
factor since the diameter of the hypercube is n. However, the network is not fully
utilized since 2nN directed edges are used to route just N packets. At any give time
at most 1/2n of the edges are actually being used. This issue is addressed in the next
section.

4.5.2 Permutation Routing on the Butterfly

In this section we adapt the result for permutation routing on the hypercube networks
to routing on butterfly networks, yielding a significant improvement in network uti-
lization. Specifically, our goal in this section is to route a permutation on a network
with N nodes and O(N) edges in O(log V) parallel time steps. Recall that the hyper-
cube network had N nodes but Q(NV log N) edges. While the argument will be similar
in spirit to that for the hypercube network, there is some additional complexity to
the argument for the butterfly network.

We work on the wrapped butterfly network, defined as follows.

© Copyright Mitzenmacher and Upfal, 2003-2004

4.5 Application: Packet Routing in Sparse Networks *

99

\?JA‘?}Q \?JAQ}\ \?ﬁq}q, \049}%

row 000 ® ®

row 001 ®

row 011 ()

row 100 ®

row 101

row 110 W

row 111) ()

Figure 4.2: The Butterfly network

Definition 19. The wrapped butterfly network has N = n2™ nodes. The nodes are
arranged in n columns and 2" rows. A node’s address is a pair (x,r), where 1 < x <
2" is the row number, and 0 < r < n — 1 is the column number of the node. Node
(x,7) is connected to node (y,s) iff s=r+1 mod n and either

1. x =y (the “direct” edge); or

2. x and y differ in precisely the sth bit in their binary representation (the “flip”
edge).

To see the relation between wrapped butterfly and the hypercube observe that
if we collapse the n nodes in each row of the wrapped butterfly into one “super node”
we obtain an n-cube network. Using this correspondence one can easily verify that
there is a unique directed path of length n connecting node (z,r) to any other node
(w,r) in the same column. This path is obtained by bit-fixing, first fixing bits r + 1
to n, then bits 1 to r.

© Copyright Mitzenmacher and Upfal, 2003-2004

4.5 Application: Packet Routing in Sparse Networks *

100

Bit-fixing routing algorithm:
1. Let (x,r) and (y,r) be the origin and the destination of a packet.
2. Fori=0ton—1do:

(a) 7= ((¢+r) mod n)+1;

(b) If a; = b; then traverse the direct edge to column j mod n, else traverse
the flip edge to column 5 mod n.

Our randomized permutation routing algorithm on the butterfly consists of three
phases:

Three Phase Routing Algorithm: For a packet sent from node (x,r) to node
(¥, 5)

Phase I Choose a random w € [1,...,2"]. Route the packet from node (z,r) to
node (w,r) using the bit-fixing route.

Phase II: Route the packet to node (w, s) using direct edges.

Phase III: Route the packet from node (w, s) to node (y, s) using the bit-fixing route.

Unlike our analysis of the hypercube, our analysis here cannot simply bound
the number of active packets that possibly traverse edges of a path. Given the path
of a packet, the expected number of other packets that share edges with this path
when routing a random permutation on the butterfly network is Q(n?) and not O(n)
as in the n-cube. To obtain an O(n) routing time we need a more refined analysis
technique that takes into account the order in which packets traverse edges.

Because of this, we need to consider the priority policy that the queues use
when there are several packets waiting to use the edge. A variety of priority policies
would work here. We assume the following priority rules:

1. The priority of a packet traversing an edge is (i — 1)n+¢, where i is the current
phase of the packet, and ¢ is the number of edge traversals the packet has already
executed in this phase.

2. If at any step more than one packet is available to traverse an edge, the packet
with the smallest priority number is sent first.

Theorem 25. Given an arbitrary permutation routing problem on the N = n2™ node
wrapped butterfly, with probability 1 — O(N™') the three phase routing scheme routes
all packets to their destinations in O(n) = O(log N) parallel steps.

Proof. The priority rule in the edge queues guarantees that packets in a phase cannot
delay packets in earlier phases. We can therefore consider the time for each phase

to complete separately assuming that the execution of the phases do not overlap.

© Copyright Mitzenmacher and Upfal, 2003-2004

4.5 Application: Packet Routing in Sparse Networks *

101

This will give us an upper bound on the the total time for the routing algorithm to
complete.

Let us first consider the second phase. We first argue that each row only trans-
mits at most 4n packets in the second phase. To see this, let X,, be the number
of packets whose intermediate row choice is w in the three phase routing algorithm.
Then X, is the sum of 0 - 1 independent random variables, one for each packet, and
E[X,] = n. Hence, we can directly apply the Chernoff bound (4.2) to find

Pr(X, > 4n) < e /3 =%,
There are 2™ possible rows w. By the union bound, the probability that any row has
more than 4n packets is only 2" - e ™" = O(N1).

We now argue that if each row has at most 4n packets for the second phase,
the second phase takes at most 5n steps to complete. Combined with the above, this
means the second phase takes at most 5n steps with probability 1 — O(N~1). To see
this, note that in the second phase, the routing has a special structure: each packet
moves from edge to edge along its row. Because of the priority rule, each packet can
only be delayed by packets already in a queue when it arrives. Therefore, to upper
bound the number of packets that delay a packet p, we can bound the total number
of packets found in each queue when p arrives at the queue. But in Phase II, the
number of other packets an arriving packet p finds in a queue cannot increase in size
over time, since at each step a queue sends a packet and receives at most one packet.
(It is worth considering the special case when a queue becomes empty at some point
in Phase II. This queue can receive another packet at some later step, but the number
of packets an arriving packet will find in the queue after that point is always zero.)
Since there are at most 4n packets total in the row to begin with, p finds at most 4n
packets that delay it as it moves from queue to queue. As each packet moves at most
n times in the second phase, the total time for the phase is 5n steps.

We now consider the other phases. The first and third phases are again the
same by symmetry, so we consider just the first phase. Our analysis will use a delay
sequence argument.

Definition 20. A delay sequence for an execution of Phase I is a sequence of n edges
€1,...,€ey such that either e; = e;11 or e;y1 1s an outgoing edge from the end vertex of
ei;. The sequence ey, ..., e, further has the property that e; is (one of) the last edges
to transmit packets with priority up to © among e;11 and the two incoming edges of

€it1-
The relation between the delay sequence and the time for Phase I to complete
is given by the following lemma:

Lemma 17. 1. For a given execution of Phase I and delay sequence ey, ..., e,, let
t; be the number of packets with priority i sent through edge e;. Let T; be the
time that edge e; finishes sending all packets with priority number up to i, so

© Copyright Mitzenmacher and Upfal, 2003-2004

4.5 Application: Packet Routing in Sparse Networks *

102

that T, is the earliest time at which all packets passing through e, during Phase
I have passed through it. Then

=1

2. If the execution of Phase I takes T steps, then there is a delay sequence for this
ezecution for which . t; > T.

Proof. By the design of the delay sequence, at time T; the queue of e;; already holds
all of the packets that it will need to subsequently transmit with priority ¢ + 1, and
at that time it has already finished transmitting all packets with priority numbers up
to ¢. Thus,

Tiv1 < T+ tig1-

Since T; = t;, we have

Tnfl + tn
Tn72 + tnfl + tn

i=1

VANVAN

IN

proving the first part of the lemma.

For the second part, assume that Phase I took 1" steps, and let ¢ be an edge that
transmitted a packet at time 7. We can construct a delay sequence with e, = e by
choosing e,,_; to be the edge among e and its two incoming edges that last transmits
packets of priority n — 1, and similarly choosing e,, » down to e;. By the first part of
the lemma Y " ¢, > T. O

We now show that the probability that there is a delay sequence with 7" > 40n
is only O(N’l). We call any sequence of edges ey, ..., e, such that either ¢; = e;,
or e;,1 is an outgoing edge from the end vertex of e; a possible delay sequence. For
a given execution and a possible delay sequence let ¢; be the number of packets with
priority ¢ sent through e;. Let T'=>"" ¢;. We first bound E[T7]. Consider the edge
e; = v — v'. Packets with priority i pass through this edge only if their source is at
distance i — 1 from v. There are precisely 2:~! nodes that are connected to v by a
directed path of length :—1. Since packets are sent in Phase I to random destinations,
the probability that each of these nodes sends a packet that traverses edge e; is 277,
giving .
i—log—i
Ejt;]=2""2"= 3’

and
E[T] =

SE

© Copyright Mitzenmacher and Upfal, 2003-2004

4.5 Application: Packet Routing in Sparse Networks *

103

The motivation for using the delay sequence argument should now be clear.
Each possible delay sequence defines a random variable 7', where E[T] = 3. The
maximum of 7" over all delay sequences bounds the run-time of the phase. So we
need a bound on T that holds with high probability, sufficient to cover all possible
delay sequences. A high probability bound on 7" can now be obtained using an
argument similar to the one used in the proof of Theorem 24. We first bound the

number of different packets that contribute to edge traversals counted in 7T

For j = 1...,N let H; = 1 if any traversal of the packet sent by node j is
counted in 7', and otherwise H; = 0. Clearly, H = ") H; < T, E[H] < E[T] = %,
and the H;’s are independent random variables. Applying the Chernoff bound (4.3)
therefore yields

Pr(H > 5n) < 27°".

Conditioning on the event H < 5n, we now proceed to prove a bound on T,
following the same line as in the proof of Theorem 24. If v is a packet with at least one
traversal counted in T', we consider how many additional traversal of u are counted
in T'. Specifically, if u is counted in t;, we consider the probability that it is counted
in ¢;,1. We distinguish between two cases:

1. If ;41 = e; then u cannot be counted in ¢;,; since its traversal with priority
i+ 1 is in the next column. Similarly, it cannot be counted in any ¢;, j > i.

2. If ;41 # e;, the probability that u continues through e;; (and is counted in
ti+1) is at most 1/2. If it does not continue through e; 1, then it cannot intersect
with the delay sequence in any further traversals in this phase.

As in the proof of Theorem 24, the probability that 7" > 40n is less than the
probability that a fair coin flipped 40n times comes up heads less than 5n times.
(Keep in mind that in this case the first traversal by each packet in H must be
counted as contributing to 7.) Letting Z be the number of heads in 40n fair coin
flips, we now apply the Chernoff bound (4.6)to prove,

Pr(T > 40n | H < 5n) < Pr(Z <b5n) < e 20n(3/40)*/2 < 9
We conclude that

Pr(T > 40n) < Pr(T > 40n | H < 5n) + Pr(H > 5n) < 277"

There are no more than 2N3"~! < n2"3" possible delay sequences. Thus, the
probability that in the execution of Phase I there is a delay sequence with 7" > 40n
is bounded above, using the union bound, by

n2"3"2= L < O(NTY).

© Copyright Mitzenmacher and Upfal, 2003-2004

4.6 Exercises

104

Since Phase III is entirely similar to Phase I, and Phase II also finishes in O(n)
steps with probability 1 — O(N '), we have that the three phase routing algorithm
finishes in O(n) steps with probability 1 — O(N~1).

O

4.6 Exercises

1. Alice and Bob play checkers often. Alice is a better player, so the probability
that she wins any given game is 0.6, independent of all other games. They
decide to play a tournament of n games. Bound the probability that Alice loses
the tournament using a Chernoff bound.

2. We have a standard six-sided die. Let X be the number of times that a 6
occurs over n throws of the die. Let p be the probability of the event X >
n/4. Compare the best upper bounds on p that you can obtain using Markov’s
inequality, Chebyshev’s inequality, and Chernoff bounds.

3. (a) Determine the moment generating function for the binomial random vari-
able B(n,p).

(b) Let X be a B(n,p) random variable and Y be a B(m, p) random variable,
where X and Y are independent. Use the above to determine the moment
generating function of X 4+ Y.

(c) What can we conclude from the form of the moment generating function
of X +Y7

4. Determine the probability of obtaining 55 or more heads when flipping a fair
coin 100 times by an explicit calculation, and compare this with the Chernoff
bound. Do the same for 550 heads and 1000 flips.

5. We plan to conduct an opinion poll to find out the percentage of people in
a community who want its president impeached. Assume that every person
answers either yes or no. If the actual fraction of people who want the president
impeached is p, we want to find an estimate X of p such that

Pr(| X —p/<ep)>1-90

for a given € and 9, with 0 < ¢€,0 < 1.

We query N people chosen independently and uniformly at random from the
community and output the fraction of them who want the president impeached.
How large should N be for our result to be a suitable estimator of p? Use
Chernoff bounds, and express N in terms of p,e and §. Calculate the value of
N from your bound if € = 0.1 and 6 = 0.05 and if you know that p is greater
than 0.2.

© Copyright Mitzenmacher and Upfal, 2003-2004

4.6 Exercises

105

6.

7.

(a) In an election with two candidates using paper ballots, each vote is inde-
pendently misrecorded with probability p = 0.02. Use a Chernoff bound
to bound the probability that more than 4 percent of the votes are mis-
recorded in an election of 1,000,000 ballots.

(b) Assume that a misrecorded ballot always counts as a vote for the other can-
didate. Suppose that Candidate A received 510,000 votes and Candidate
B received 490,000 votes. Use Chernoff bounds to bound the probability
that Candidate B wins the election due to misrecorded ballots. Specifi-
cally, let X be the number of votes for Candidate A that are misrecorded
and let Y be the number of votes for Candidate B that are misrecorded.
Bound Pr((X > k)N (Y < ¢)) for suitable choices of k£ and /.

Throughout the chapter we implicitly assumed the following extension of the
Chernoff bound. Prove that it is true.

Let X = Z?:I X;, where the X;’s are independent 0-1 random variables. Let
pu = E[X]. Choose any p, and pg such that uy < p < pg. Then for any § > 0,

PT(X > (1 -|—5),UH) < <W> H.

Similarly, for any 0 < 0 < 1,
-5

Prix < (-0 < (5)

. We show how to construct a random permutation 7 on [1,n], given a black box

that outputs numbers independently and uniformly at random from [1, k] where
k > n. If we compute a function f : [1,n] — [1, k] with f(i) # f(j) for i # j,
this yields a permutation; simply output the numbers [1,n] according to the
order of the f(i) values. To construct such a function f, do the following for
j=1,...,n: choose f(j) by repeatedly obtaining numbers from the black box
and setting f(j) to the first number found such that f(j) # f(i) for i < j.

Prove that this approach gives a permutation chosen uniformly a random from
all permutations. Find the expected number of calls to the black box that are
needed when £ = n and k = 2n. For the case k = 2n, argue that the probability
that each call to the black box assigns a value to f(j) to some j is at least 1/2.
Based on this, use a Chernoff bound to bound the probability that the number
of calls to the black box is at least 4n.

Suppose that we can obtain independent samples X, X5, ..., of a random vari-
able X, and we want to use these samples to estimate E[X]. Using ¢ samples,
we use >'_, X;/t for our estimate of E[X]. We want the estimate to be within
¢E[X] from the true value of E[X| with probability at least 1 — 4. We may not
be able to use Chernoff’s bound directly to bound how good our estimate is if
X is not a 0 — 1 random variable, and we do not know its moment generating

© Copyright Mitzenmacher and Upfal, 2003-2004

4.6 Exercises

106

function. We develop an alternative approach that requires only having a bound
Var[X]
E[X]

on the variance of X. Let r =

a) Show using Chebyshev’s inequality that O ’"2—2 samples are sufficient to
(a) g y y —
solve the above problem.

(b) Suppose that we only need a weak estimate that is within eE[X] of E[X]

with probability at least 3/4. Argue that only O(e—j) samples are enough
for this weak estimate.

(c) Show that by taking the median of O(log ;) weak estimates, we can obtain
an estimate within eE[X] of E[X] with probability at least 1 —¢. Conclude

r2log1/6
€2)

that we only need O(samples.

10. A casino is testing a new class of simple slot machines. Each game, the player
puts in one dollar, and the slot machine is supposed to return either three
dollars to the player with probability 4/25, one hundred dollars with probability
1/200, and nothing with all remaining probability. Each game is supposed to
be independent of other games.

The casino has been surprised to find in testing that the machines have lost ten
thousand dollars over the first millions games. Derive a Chernoff bound for the
probability of this event. You may want to use a calculator or program to help
you choose appropriate values as you derive your bound.

11. Consider a collection Xi,..., X,, of n independent integers chosen uniformly
from the set {0,1,2}. Let X = > X, and 0 < 0 < 1. Derive a Chernoff
bound for Pr(X > (1 + d)n) and Pr(X < (1 —d)n).

12. Consider a collection Xi,..., X, of n independent geometrically distributed
random variables with mean 2. Let X =>"" | X; and ¢ > 0.

(a) Derive a bound on Pr(X > (1+ 6)(2n)) by applying the Chernoff bound

to a sequence of (14 ¢)(2n) fair coin tosses.

(b) Directly derive a Chernoff bound on Pr(X > (14§)(2n)) using the moment-
generating function for geometric random variables.

(c) Which bound is better?

13. Let Xy,..., X, be independent Poisson trials such that Pr(X;) = p. Let X =
S X, so that E[X] = pn.

(a) Show that for 1 > = > p,
Pr(X > zn) < e~n(@n(@/p)+(1-2) In(1-2)/(1-p))

(b) Let
F(x,p) = zIn(z/p) + (1 —) In((1 —z)/(1 - p)).
Show that when 0 < z,p < 1, F(z,p) — 2(x — p)®> > 0. (Hint: take the
second derivative of F'(x,p) — 2(z — p)? with respect to x.)

© Copyright Mitzenmacher and Upfal, 2003-2004

4.6 Exercises

107

14.

15.

16.

17.

(c) Using the above, argue that

2

Pr(X > (p+e€)n) <e 2.

(d) Use symmetry to argue that

2

Pr(X > (p—e)n) <e 2",
and conclude that

Pr(|X — pn| > en) < 2e 27,

Modify the proof of Theorem 20 to show the following bound for a weighted
sum of Poisson trials: Let Xy,..., X, be independent Poisson trials such that
Pr(X;) = p; and let a4,...,a, be real numbers in [0,1]. Let X = > a;X;
and p = E[X]. Then the following Chernoff bound holds: For any § > 0,

Pr(X > (1+6)p) < <(1+67;)1+5>“

Prove a similar bound for the probability that X < (1 —0)u, for any 0 < 6 < 1.

Let X4,...,X, be independent random variables such that
Pr(X;=1-p;) =p; and Pr(X; = —p;) =1—p;.
Let X =" | X;. Prove
Pr(|X| > a) < 2e72¢/7,
(Hint: you may need to assume the inequality
pieP) (1 —pyle i < N/,
This inequality is difficult to prove directly.)

Let Xi,..., X, be independent Poisson trials such that Pr(X;) = p;. Let X =
Sora;X; and g = E[X]. Use the result of Problem 15 to prove that for any
0<d<1,

Pr(|X — p| > op) < 2072078/,

Suppose that we have n jobs to distribute among m processors. For simplicity,
we assume that m divides n. A job takes 1 step with probability p and £ > 1
steps with probability 1 — p. Use a Chernoff bound to determine bounds on
when all jobs will be completed if we randomly assign exactly n/m jobs to each
processor.

© Copyright Mitzenmacher and Upfal, 2003-2004

4.6 Exercises

108

18.

19.

20.

In many wireless communication systems, each receiver listens on a specific
frequency. The bit b(t) sent at time ¢ is represented by a 1 or —1. Unfortunately,
noise from other nearby communications can affect the receiver’s signal. A
simplified model of this noise is the following: there are n other senders, and
the ith has strength p;. At any time ¢ the ¢th sender is also trying to send a bit
b;(t), represented by 1 or —1. The receiver obtains the signal s(¢) given by

s(t) =b(t) + Zpibi(t)‘

If s(¢) is closer to 1 than —1, the receiver assumes that the bit sent at time ¢
was a 1; otherwise, the receiver assumes that is was a —1.

Assume that all the bits b;(¢) can be considered independent, uniform random
variables. Give a Chernoff bound to estimate the probability that the receiver
makes an error in determining b(¢).

Recall that a function f is said to be convex if for any =, 22, and 0 < X\ <1,
FAzy + (1= N)xg) < Af(@q) + (1= A) f(2).

(a) Let Z be a random variable that takes on a (finite) set of values in the
interval [0,1], and let p = E[Z]. Define the Bernoulli random variable X
by Pr(X =1) = p and Pr(X =0) =1 — p. Show that E[f(Z)] < E[f(X)]
for any convex function f.

(b) Use the fact that f(x) = €' is convex for any ¢ > 0 to obtain a Chernoft-
like bound for Z based on a Chernoff bound for X.

We prove that the randomized Quicksort algorithm sorts a set of n numbers in
time O(nlogn) with high probability. Consider the following view of Quicksort.
Every point in the algorithm where it decides on a pivot element is called a node.
Suppose the size of the set to be sorted at a particular node is S. The node is
called good if the pivot element divides the set into two parts, each of size not
exceeding 25/3. Otherwise the node is called bad. The nodes can be thought
of as forming a tree in which the root node has the whole set to be sorted and
its children have the two sets formed after the first pivot step and so on.

(a) Show that the number of good nodes in any path from the root to a leaf
in the above tree is not greater than clog, n, where ¢ is some positive
constant.

(b) Show that with high probability (greater than 1 — 1/n?), the number of
nodes in a given root to leaf path of the above tree is not greater than
¢ log, n where ¢ is another constant.

(c) Show that with high probability (greater than 1 — 1/n), the number of
nodes in the longest root to leaf path is not greater than ¢ log,n. (Hint:
How many nodes are there in the tree?)

© Copyright Mitzenmacher and Upfal, 2003-2004

4.6 Exercises

109

21.

22.

23.

24.

25.

(d) Use the above to show that the running time of Quicksort is O(nlogn)
with probability 1 — 1/n.

Consider the bit-fixing routing algorithm for routing a permutation on the n-
cube. Suppose that n is even. Write each source node s as the concatenation
of two binary strings as and b, each of length n/2. Let the destination of s’s
packet be the concatenation of b, and a,. Show that this permutation causes
the bit-fixing routing algorithm to take Q(v/N) steps.

Consider the following modification to the bit-fixing routing algorithm for rout-
ing a permutation on the n-cube. Suppose that in the bit-fixing algorithm each
packet randomly orders the bit positions in the representation of its source and
then corrects the mismatched bits in that order. Show that there is a permuta-
tion for which this algorithm requires 2% steps with high probability.

Assume that we use the randomized routing algorithm for the n-cube network
to route a total of up to p2™ packets, where each node is the source of no more
than p packets, and each node is the destination of no more than p packets.

(a) Give a high probability bound on the run time of the algorithm.

(b) Give a high probability bound on the maximum number of packets at any
node at any step of the execution of routing algorithm.

Show that the expected number of packets that traverse any edge on the path
of a given packet when routing a random permutation on the wrapped butterfly
network of N = n2" nodes is Q(n?).

In this problem, we design a randomized algorithm for the following packet
routing problem: we are given a network which is an undirected connected
graph G where nodes represent processors and the edges between the nodes
represent wires. We are also given a set of N packets to route. For each packet
we are given a source node, a destination node, and the exact route (path in
the graph) that the packet should take from the source to its destination. (We
may assume that there are no loops in the path.) In each time step, only one
packet can traverse an edge. A packet can wait at any node during any time
step and we assume unbounded queue sizes at each node.

A schedule for a set of packets specifies the timing for the movement of packets
along their respective routes. That is, it specifies which packet should move
and which should wait at each time step. Our goal is to produce a schedule for
the packets that tries to minimize the total time and the maximum queue size
needed to route all the packets to their destinations.

(a) The dilation d is the maximum distance traveled by any packet. The
congestion ¢ is the maximum number of packets that must traverse a single
edge during the entire course of the routing. Argue that the time required
for any schedule should be at least Q(c + d).

© Copyright Mitzenmacher and Upfal, 2003-2004

4.6 Exercises 110

(b) Consider the following unconstrained schedule, where many packets may
traverse an edge during a single time step. Assign each packet an inte-
gral delay chosen randomly, independently and uniformly from the inter-
val [1, %], where « is a constant. A packet that is assigned a delay
of x waits in its source node for x time steps, and then moves on to its
final destination through its specified route without ever stopping. Give
an upper bound on the probability that more than O(log(Nd)) packets use

a particular edge e at a particular time step t.

(c) Again using the unconstrained schedule above, show that the probability
that more than O(log(INd)) packets pass through any edge at any time
step is at most 1/(Nd) for a sufficiently large a.

(d) Use the unconstrained schedule to devise a simple randomized algorithm
that with high probability produces a schedule following the constraint of
only one packet crossing an edge per time step of length O(c + dlog(Nd))
using queues of size O(log(Nd)).

© Copyright Mitzenmacher and Upfal, 2003-2004

Chapter 5

Balls, Bins, and Random Graphs

In this chapter, we focus on one of the most basic of random processes: m balls
are thrown randomly into n bins, each ball landing in a bin chosen independently
and uniformly at random. We use the techniques we have developed previously to
analyze this process and develop a new approach based on what is known as the
Poisson approximation. We demonstrate several applications of this model, including
a more sophisticated analysis of the coupon collector’s problem and an analysis of
the Bloom filter data structure. We also introduce a closely related model of random
graphs, and show an efficient algorithm for finding a Hamiltonian cycle on a random
graph with sufficiently many edges. Even though finding a Hamiltonian cycle is NP-
hard in general, our result shows that for a randomly chosen graph, the problem is
solvable in polynomial time with high probability.

5.1 Application: The Birthday Paradox

Sitting in lecture, you notice that there are thirty people in the room. Is it more likely
that some two people in the room share the same birthday, or that no two people in
the room share the same birthday?

We can model this problem by assuming that the birthday of each person is
a random day from a 365-day year, chosen independently and uniformly at random
for each person. This is obviously a simplification; for example, we assume that a
person’s birthday is equally likely to be any day of the year, we avoid the issue of
leap years, and we ignore the possibility of twins! As a model, however, it has the
virtue of being easy to understand and analyze.

One way to calculate this probability is to directly count the configurations
where two people do not share a birthday. It is easier to think about the configurations
where people do not share a birthday rather than the configurations where some two

people do. Thirty days must be chosen from the 365; there are (33605) ways to do this.

© Copyright Mitzenmacher and Upfal, 2003-2004

5.1 Application: The Birthday Paradox

112

These thirty days can be assigned to the people in any of the 30! possible orders.
Hence there are (33605)30! configurations where no two people share the same birthday,
out of the 3653 ways the birthdays could occur. Thus, the probability is

() 30!
3655

(5.1)

We can also calculate this probability by considering one person at a time. The
first person in the room has a birthday. The probability the second person has a
different birthday is (1 — 1/365). The probability that the third person in the room
then has a birthday different from the first two, given that the first two people have
different birthdays, is (1—2/365). Continuing on, the probability that the k-th person
in the room has a different birthday than the first £ — 1, assuming that the first k¥ —1
have different birthdays, is (1 — (k — 1)/365). So the probability that thirty people
all have different birthdays is the product of these terms, or

(- a) (1 a) (1 a) - ()

You can check that this matches the expression (5.1).

Calculations reveal that to four decimal places this product is 0.2937, so when
thirty people are in the room there is over a 70% chance that two share the same
birthday. A similar calculation shows that only twenty-three people need to be in the
room before it is more likely than not that two people share a birthday.

More generally, if there are m people and n possible birthdays, the probability
that all m have different birthdays is

()62 D) (-2 6-2)

j=1

Using the fact that 1 — % ~ e ¥/" when k is small compared to n, we see that if m is
small compared to n, then

m—1 . m—1
] =
1—-=) = ifn
1(0-7) = 1T
j=1 j=1

— o Xti/m
— efm(mfl)/Zn
~ e ™/

Hence the value for m at which the probability that m people all have different
birthdays is 1/2 is approximately given by the equation

2

mo_ In 2,
2n

© Copyright Mitzenmacher and Upfal, 2003-2004

5.2 Balls into Bins

113

or m = vV2nln2. For the case n = 365, this approximation gives m = 22.49 to two
decimal places, matching the exact calculation quite well.

Quite tight and formal bounds can be established using bounds in place of
the approximations above, which is considered in exercise 3. The following simple
arguments, however, give loose bounds and good intuition. Let us consider each
person one at a time, and let Fj be the event that birthday of the k-th person does
not match any of the birthdays of the first £ — 1 people. Then the probability that
the first k& people fail to have distinct birthdays is

k
Pr(EiUE,...UE) < > Pr(E)
=1
Fi—1
k(k—1)
2n

If £ < \/n, this probability is less than 1/2, so with |\/n| people the probability is
at least 1/2 that all birthdays will be distinct.

IN

Now assume that the first [\/n] people all have distinct birthdays. Each person
after that has probability at least \/n/n = 1/4/n of having the same birthday as one
of these first [y/n] people. Hence the probability that the next [\/n] people all have
different birthdays than the first [y/n] people is at most

1 [vn] 1
1—— < —<1/2.
(ﬁ) o <V

Hence, once there are 2[/n| people, the probability is at most 1/e that all birthdays
will be distinct.

5.2 Balls into Bins

5.2.1 The Balls and Bins Model

The birthday paradox is an example of a more general mathematical framework, often
formulated in terms of balls and bins. We have m balls that are thrown into n bins,
with the location of each ball chosen independently and uniformly at random from
the n possibilities. What does the distribution of the balls in the bins look like? The
question behind the birthday paradox is whether or not there is a bin with two balls.

There are a variety of interesting questions that we could ask about this random
process. For example, how many of the bins are empty? How many balls are in the

© Copyright Mitzenmacher and Upfal, 2003-2004

5.2 Balls into Bins

114

most full bin? Many of these questions have applications to the design and analysis
of algorithms.

Our analysis of the birthday paradox showed that when m balls are randomly
placed into n bins, and m? = Q(n), then at least one of the bins is likely to have more
than one ball in it. Another interesting question is what is the maximum number
of balls in a bin, or the maximum /load. Let us consider the case where m = n, so
the number of balls equals the number of bins, and the average load is 1. Of course
the maximum possible load is n, but it is very unlikely that all n balls land in the
same bin. We seek an upper bound that holds with probability tending to 1 as n
grows large. We can show that the maximum load is not more than 3Inn/Inlnn
with probability at most 1/n for sufficiently large n via a direct calculation and a
union bound. This is a very loose bound; although the maximum load is in fact
Q(Inn/Inlnn) with probability close to 1, as we show later, the constant factor 3 we
use here is chosen to simplify the argument and could be reduced with more care.

Lemma 18. When n balls are thrown independently and uniformly at random into
n bins, the probability that the mazimum load is more than 3Inn/Inlnn is at most
1/n for n sufficiently large.
Proof. The probability that bin 1 receives at least M balls is at most

n 1\M

M) \n ’
This follows from a union bound; there are (]\"4) distinct sets of M balls, and for
any set of M balls the probability that all land in bin 1 is (1/n)*. We now use the

inequalities
n\ (1\Y 1 e \M
)
M) \n M! M

Here the second inequality follows from the following general bound on factorials.

Since . .
k kK,
Hl =

1=0

o 2

Applying a union bound again, we find that for M > 3Inn/Inlnn, the probability

we have

© Copyright Mitzenmacher and Upfal, 2003-2004

5.2 Balls into Bins

115

that any bin receives at least M balls is bounded above by
< o)M _ elnlnn 3lnn/Inlnn
" M =" 3lnn

Inlnn 3lnn/Inlnn
< n
- < Inn)

1 Inlnlnn—Inlnn aies
plnn (ennnnfnnn) Inlnn

3(lnn)(Ilnlnlnn)
Inlnn

—2Inn+

|
@

IN
SHE

for n sufficiently large. O

5.2.2 Application: Bucket Sort

Bucket sort is an example of a sorting algorithm that, under certain assumptions on
the input, breaks the Q(nlogn) lower bound for standard comparison-based sorting,.
For example, suppose that we have a set of n = 2™ elements to be sorted, where each
element is an integer chosen independently and uniformly at random from the range
[0,2%), where k > m. Using Bucket sort, we can sort the numbers in expected time
O(n). Here the expectation is over the choice of the random input, as Bucket sort is
a completely deterministic algorithm.

Bucket sort works in two stages. In the first stage, we place the elements into
n buckets. The j-th bucket holds all elements whose first m binary digits correspond
to the number j. For example, if n = 2!°, bucket 3 contains all elements whose first
10 binary digits are 0000000011. When ;5 < k, the elements of the j-th bucket all
come before the elements in the k-th bucket in the sorted order. Assuming that each
element can be placed in the appropriate bucket in O(1) time, this stage requires
only O(n) time. Because of the assumption that the elements to be sorted are chosen
uniformly, the number of elements that land in a specific bucket follows a binomial
distribution B(n,1/n). Buckets can be implemented using linked lists.

In the second stage, each bucket is sorted, using any standard quadratic time
algorithm (such as Bubblesort or Insertion sort). Concatenating the sorted lists
from each bucket in order gives us the sorted order for the elements. It remains to
show that the expected time spent in the second stage is only O(n).

The result relies on our assumption regarding the input distribution. Under the
uniform distribution, Bucket sort falls naturally into the balls and bins model: the

elements are balls, buckets are bins, and each ball falls uniformly at random into a
bin.

Let X; be the number of elements that land in the k-th bucket. The time to
sort the j-th bucket is then at most ¢(X;)? for some constant c. The expected time

© Copyright Mitzenmacher and Upfal, 2003-2004

5.3 The Poisson distribution

116

spent sorting in the second stage is at most

n

Zc(Xj)2] = cZE [X?] = enE [X7],

j=1

E

where the first equality follows from the linearity of expectations, and the second
follows from symmetry, as E[X?] is the same for all buckets.

As X is a binomial random variable B(n, 1/n), using the results of section 3.2.1
we have
E[Xf]:mnigl)+1:2—l<2.
n n
Hence the total expected time spent in the second stage is at most 2¢n, so BucketSort
runs in expected linear time.

5.3 The Poisson distribution

We now consider the probability that a given bin is empty in the balls and bins model
with m balls and n bins, as well as the expected number of empty bins. For the first
bin to be empty, it has to be missed by all m balls. Since each ball hits the first bin
with probability 1/n, the probability the first bin remains empty is

1—l A e m/m
n Y

and of course this probability is the same for all bins by symmetry. If X; is a random
variable that is 1 when the jth bin is empty and 0 otherwise, then E[X;] = (1 —)™,
Let X be a random variable that represents the number of empty bins. Then by the
linearity of expectations

zn:Xi] = XR:E[XZ] =n (1 - %)m ~ ne ™",
i=1 i=1

Thus, the expected fraction of empty bins is approximately e=™/". This approxima-
tion is very good even for moderately size values of m and n, and we use it frequently
throughout the chapter.

E[X]=E

We can generalize the above argument to find the expected fraction of bins with
r balls, for any constant r. The probability that a given bin has r balls is

)2 (2) gy

When m and n are large compared to r, the second factor on the right hand side
is approximately (m/n)", and the third factor is approximately e~"/™. Hence the

© Copyright Mitzenmacher and Upfal, 2003-2004

5.3 The Poisson distribution

117

probability p, that a given bin has r balls is approximately

e ™" (m/n)"

r!

, (5.2)

Pr &

and the expected number of bins with exactly r balls is approximately np,. We
formalize this relationship in Section 5.3.1.

The above calculation naturally leads us to consider the following distribution.

Definition 21. A discrete Poisson random variable X with parameter p is given by
the following probability distribution on 57 =0,1,2,....
e_ﬂ‘uj

PriX =j) =—

(Note that Poisson random variables differ from Poisson trials, discussed in
section 4.2.1.)

Let us verify that the definition gives a proper distribution, in that the sum of
the probabilities is 1. We have

Sorix=j) = Y
j=0 Jj=0

g!
Al [l
= ° Z 4!
Jj=0
= 1,
where we have used the well-known expansion e = Z;io j—],

Next we show that the expectation of this random variable is p.

E[X] =) jPr(X =)
j=0
= Z] 7
=
o e_l"‘uj_l
-y
= (-1
= “Z 7
I

In the setting of throwing m balls into n bins, the distribution of the number of balls
in a bin is approximately Poisson with x4 = m/n, which is exactly the average number
of balls per bin, as one might expect.

© Copyright Mitzenmacher and Upfal, 2003-2004

5.3 The Poisson distribution

118

An important property of the Poisson distributions is given in the following
lemma:

Lemma 19. The sum of a finite number of independent Poisson random variables is
a Poisson random variable.

Proof. We consider two independent Poisson random variables X and Y with means
i1 and pg; the case of more random variables is simply handled by induction. Now

Pr(X+Y =j) = Y Pr(X=k)nNY =j—Fk)

—(p1+p2) J : .
€ J —k
= Y ()
k=0

J!

In the last equality we used the Binomial theorem to simplify the summation. O

We can also prove Lemma 19 using moment generating functions.

Lemma 20. The moment generating function of a Poisson random variable with
parameter | s

M,(t) = (1),

Proof. For any t,

o] -,k . o] —uet t\k .
E[etX] _ Z e k'lﬁ otk — eu(e -1) € k(!ﬂe) _ eu(e —1)_

i
(o=}
i
(o=}

O

Given two independent Poisson random variables X and Y with means p; and
to we apply Theorem 19 to prove

Mxiy(t) = Mx - My(t) = e(#1+u2)(et71),

which is the moment generating function of a Poisson random variable with mean p; +
fto. By Theorem 18, the moment generating function uniquely defines the distribution,
and hence the sum X + Y is a Poisson random variable with mean p; + po.

© Copyright Mitzenmacher and Upfal, 2003-2004

5.3 The Poisson distribution 119

Next we develop a Chernoff bound for Poisson random variables which we will
use later in this chapter:

Theorem 26. Let X be a Poisson random variable with parameter .

1. If x > p, then Pr(X > x) < e_“l{eu)z;

T

2. If x < p, then Pr(X <z) < e"‘(eu)m;

:L-I

Proof. For any t > 0 and x > pu,

E[etX] .

Pr(X > z) = Pr(e"* >e*) < iz

Plugging the expression for the moment generating function of the Poisson distribu-
tion we get

Pr(X >z) < oo 1) st
Choosing t = In(x/u) > 0 gives

Pr(X >a) < e #oh@n
e M(ep)”

For any t < 0 and x < p,

Pr(X <) =Pr(e’* > ') <
Hence
Pr(X <z) < en(e'-1) ot
Choosing t = In(z/pu) < 0, gives
Pr(X <z) < ev-#-ein(@/w

e M(ep)”
xr

5.3.1 Limit of the Binomial Distribution

We have shown that when throwing m balls randomly into n bins, the proba-
bility p, that a bin has r balls is approximately the Poisson distribution with mean
m/n. In general the Poisson distribution is the limit distribution of the binomial
distribution with parameters n and p, when n is large and p is small. More precisely,
we have the following limit result:

© Copyright Mitzenmacher and Upfal, 2003-2004

5.3 The Poisson distribution

120

Theorem 27. Let X,, be a binomial random variable with parameters n and p, where
p 18 a function of n and lim,_,., np = X is a constant independent of n. Then for any

fized k,

A\ k
lim Pr(X, = k) = © 2

n—00 k!

This theorem directly applies to the balls and bins scenario. Consider the
situation where there are m balls and n bins, where m is a function of n and
lim, ;oo m/n = A. Let X, be the number of balls in a specific bin. Then X, is
a binomial random variable with parameters m and 1/n. Theorem 27 therefore ap-
plies, and says that

—m/n r
lim Pr(X, =7r) = M

)
n—00 rl

matching the approximation 5.2.

Before proving Theorem 27, it is worth describing other applications of it. Dis-
tributions of this type arise frequently, and are often modeled by Poisson distributions.
For example, consider the number of spelling or grammatical mistakes in a book, in-
cluding this one. One model for such mistakes is that each word is likely to have an
error with some very small probability p. The number of errors is then a binomial
random variable with large n and small p, that can be treated as a Poisson random
variable. As another example, consider the number of chocolate chips inside a choco-
late chip cookie. One possible model is to split the volume of the cookie into a large
number of small disjoint compartments, so that a chip lands in each compartment
with some probability p. With this model, the number of chips in a cookie roughly
follows a Poisson distribution. We will further see how the Poisson distribution in
similar continuous settings in Chapter 8.

Proof. We can write
n _
Pr(Xn = k) = <k>pk(1 _ p)n k-

In what follows, we make use of the bound that for |z| <1,
e’(1—2%) <1+x<e", (5.3)

which follows from the Taylor series expansion of e®. (This is left as exercise 5.) Then

_ n* (1-p)"
Pr(X, =k) < P A=pF

© Copyright Mitzenmacher and Upfal, 2003-2004

5.4 The Poisson approximation

121

The second line follows from the first using equation (5.3) and the fact that (1 —p)* >
1 — pk for £ > 0. Also,

_ (n—k+1)% . N
Pr(X, =k) > Tp (1-p)
((n_k+1)p)k —pn 2\n
> o e (1 —p’)
e P ((n—k+1)p)*
> o (1 —p*n).
Combining we have
e P(np)* 1 e P ((n—k+1)p)k .
<Pr(X,=k) < 1— .
W1 =)< K| (1=p™)
In the limit as n goes to infinity, p goes to 0, since the limiting value of pn is the
constant A. Hence ﬁ goes to 1, 1 — p?n goes to 1, and the difference between

(n — k+ 1)p and np goes to 0. It follows that

—pn k -\ k
lim © (np)® 1 e (\) ,
n—00 k! 1—pk k!
e (" Nes
. e P ((n—k+1)p 2y eTM(A
Jm, ! (L=pn)=—
Since lim,,_,, Pr(X,, = k) is squeezed between these two values, the theorem follows.

O

5.4 The Poisson approximation

The main difficulty in analyzing balls and bins problems is that it is often hard to
handle the dependencies that naturally arise in such systems. For example, if we
throw m balls into n bins, and we find that bin 1 is empty, then it is less likely that
bin 2 is empty, since we now know that the m balls must now be distributed among
n —1 bins. More concretely, if we know the number of balls in the first n — 1 bins, the
number of balls in the last bin is completely determined. The loads of the various bins
are not independent, and independent random variables are generally much easier to
analyze, since we can apply Chernoff bounds. It is therefore useful to have a general
way to circumvent these sorts of dependencies.

We have already shown that after throwing m balls independently and uniformly
at random into n bins, the distribution of the number of balls in a given bin is
approximately Poisson with mean . We would like to say that the joint distribution
of the number of balls in all the bins is well approximated by assuming the load at

each bin is an independent Poisson random variable with mean >*. This would allow

© Copyright Mitzenmacher and Upfal, 2003-2004

5.4 The Poisson approximation

122

us to treat bin loads as independent random variables. We show here that we can
do this when we are concerned with sufficiently rare events. Specifically, we show in
Corollary 7 that taking the probability of an event using this Poisson approximation
for all of the bins and multiplying it by ey/m gives an upper bound for the probability
of the event when m balls are thrown into n bins. For rare events, this extra e/m
factor will be significant. To achieve this result, we now introduce some technical
machinery.

Suppose that m balls are thrown into n bins independently and uniformly at
random, and let Xi(m) be the number of balls in the ¢-th bin, where 1 < i < n. Let

Yl(m), ceey Y™ be independent Poisson random variables with mean . We derive a

useful relationship between these two sets of random variables. Tighter bounds for
specific problems can often be obtained with more detailed analysis, but this approach
is quite general and easy to apply.

The difference between throwing m balls randomly and assigning each bin a
number of balls that is Poisson distributed with mean “* is that in the first case
we know there are m balls in total, while in the second case all we have is that m
is the expected number of balls in all of the bins. But suppose when we use the
Poisson distribution we end up with m balls. In this case, we do indeed have that

the distribution is the same as if we threw m balls into n bins randomly.

Theorem 28. The distribution of (Y™, ...,Y.\™) conditioned on 3, Y™ = k is
the same as (ka), . ,quk)), regardless of the value of m.

Proof. When throwing k balls into n bins, the probability that (ka), e ,szk)) =
(k1,...,ky) for any ki, ..., k, satisfying > . k; = k is given by

k
|
1,R2;5..5kn

nF (k) (ko)) - - (k)b

Now for any ki, . .., k, with 3=, k; = k, consider the probability that (Y™™, ..., ¥,™)

ki, ..., k), conditioned on (Y™, ..., V™) satisfying 3. V™ = £.
1 171

The probability that Y™ = k; is e ™/™(m/n)¥ /k;!, as the Y™ are independent

Poisson random variables with mean m/n. Also, by Lemma 19, the sum of the Yi(m)

© Copyright Mitzenmacher and Upfal, 2003-2004

5.4 The Poisson approximation

123

is itself a Poisson random variable with mean m. Hence

Pr((Y,™ = k)N (Y{™ = ko) ... (Y™ = k) [Tie, T
Pr(yr, V™ = k) e
!
(k) (ko!) - . (ken)mF”

proving the theorem. O

With this relationship between the two distributions, we can prove strong results
about any function on the loads of the bins.

Theorem 29. Let f(z1,...,x,) be a non-negative function. Then

E[f(XI™, ., X)) < ey/m Blf(Y\™,..., Y™ (5.4)

n

o0 n n

k=0 i=1 i—1
> B[00 YV = mPr(3Y = m)
i=1 i=1

= Ef(X{™, . XM v = m),

where the last equality follows from the fact that the joint distribution of the Yi(m)
given S V"™ = m is exactly that of the X™, as shown in Theorem 28. As
S, Yi(m) is Poisson distributed with mean m, we now have

We use the following loose bound on m/!, which we prove below:
mt < ey (2)".
e

This yields

and the theorem is proven. O

We prove the upper bound we used for factorials, which closely matches the
loose upper bound we used in Lemma 18.

© Copyright Mitzenmacher and Upfal, 2003-2004

5.4 The Poisson approximation 124

Lemma 21.
n

n! <eyn (ﬁ>
e
Proof. We use the fact that
In(n!) = Zlni.
i=1

We first claim that for i > 2

/ nzde > ln(z—12)+lnz‘
i1

This follows from the fact that Inz is concave; its second derivative is —1/z% and
hence always negative. Therefore

" - Inn
Inxdx > Ini — —,
J ez

or equivalently

1
nlnn —n+1>In(n!) — %

The result now follows simply by exponentiating. O

Theorem 29 holds for any non-negative function on the number of balls in
the bins. In particular, if the function is the indicator function that is 1 if some
event occurs and 0 otherwise, then the theorem gives bounds on the probability of
events. Let us call the scenario in which the number of balls in the bins are taken
to be independent Poisson random variables with mean “* the Poisson case, and the
scenario where m balls are thrown into n bins independently and uniformly at random
the ezact case.

Corollary 7. Any event that takes place with probability p in the Poisson case takes
place with probability at most pe\/m in the exact case.

Proof. Let f be the indicator function of the event. In this case, E[f] is just the
probability that the event occurs, and the result follows immediately from Theo-
rem 29. 0

This is a quite powerful result. Is says that any event that happens with small
probability in the Poisson case also happens with small probability in the exact case,
where balls are thrown into bins. Since in the analysis of algorithms we often want
to show that certain events happen with small probability, this result says that we
can utilize an analysis of the Poisson approximation to obtain a bound for the exact

© Copyright Mitzenmacher and Upfal, 2003-2004

5.4 The Poisson approximation 125

case. The Poisson approximation is easier to analyze because the numbers of balls in
each bin are independent random variables.*

We can actually do even a little bit better in many natural cases. The proof of
the following theorem is outlined in exercise 14.

Theorem 30. Let f(xy,...,x,) be a non-negative function such that E[f(Xl(m), . ,XT(Lm))]
18 either monotonically increasing or monotonically decreasing in m. Then

ElA(XM™, X < 2B[F(™, v). (5.6)

n n

The following corollary is immediate.

Corollary 8. Let £ be an event whose probability is either monotonically increasing
or monotonically decreasing in the number of balls. If £ has probability p in the
Poisson case, then £ has probability at most 2p in the exact case.

To demonstrate the utility of this corollary, we again consider the maximum
load problem for the case m = n. We have shown via a union bound argument that
the maximum load is at most 31Inn/Inlnn with high probability. Using the Poisson
approximation, we prove the following similar lower bound on the maximum load:

Lemma 22. When n balls are thrown independently and uniformly at random into
n bins, the mazimum load is at least Inn/Inlnn with probability at least 1 — 1/n for
n sufficiently large.

Proof. In the Poisson case, the probability that bin 1 has load at least M = Inn/Inlnn
is at least ﬁ, which is the probability it has load exactly M. In the Poisson case, all
bins are independent, so the probability that no bin has load at least M is at most

1 n
_ —n/(eM!)
<1 . !) <e .

We now need to choose M so that e /(M) < =2 and then by Theorem 29, we
have that the probability that the maximum load is not at least M in the exact case
when balls are thrown into bins is at most ey/n/n? < 1/n. This will give the lemma.
As the maximum load is clearly monotonically increasing in the number of balls, we
could also apply the slightly better Theorem 30, but this does not affect the argument
substantially.

It therefore suffices to show that M! < 54— or equivalently In M! < Inn —
Inlnn — In(2e). From our bound (5.5),

o) su ()

(&

*There are other ways to handle the dependencies in the balls and bins model. In chapter 12, we
describe a more general way to deal with dependencies using martingales that applies here. Also,
there is a theory of negative dependence that applies to balls and bins problems that also allows
these dependencies to be dealt with nicely.

© Copyright Mitzenmacher and Upfal, 2003-2004

5.4 The Poisson approximation 126

when n and hence M =Inn/Inlnn are suitably large. Hence, for n suitably large,

InM! < MInM—-M+InM

1 1
= 1n (Inlnn —Inlnlnn) — el + (Inlnn —Inlnlnn)
Inlnn nlnn
Inn
< Inn-—
Inlnn

< Inn—Inlnn — In(2e),

Inn

where in the last two inequalities we used the fact that Inlnn = o(1%).

5.4.1 Example: Coupon Collector’s Problem, Revisited *

The coupon collector’s problem, introduced in section 2.4.1, can be thought of as a
balls and bins problem. Recall that in the coupon collector’s problem, there are n
different types of coupons, each cereal box yields a coupon chosen independently and
uniformly at random from the n types, and you needed to buy cereal boxes until you
collect one of each coupon. If we think of coupons as bins and cereal boxes as balls,
the question becomes the following: if balls are thrown independently and uniformly
at random into bins, how many balls are thrown until all bins have at least one ball?
We previously have shown in section 2.4.1 that the expected number of cereal boxes
necessary is nH(n) ~ nlnn, and in section 3.3.1 we showed that when there are
nlnn + cn cereal boxes, the probability that not all coupons are collected is at most
e~ ¢. These results translate immediately to the balls and bins setting. The expected
number of balls that must be thrown before each bin has at least one ball is nH (n),
and when nlnn + cn balls are thrown the probability that not all bins have at least

one ball is e~¢.

We have seen in Chapter 4 that Chernoff bounds yield concentration results for
sums of independent 0-1 random variables. We will use here a Chernoff bound for
the Poisson distribution to obtain much stronger results for the coupon collector’s
problem.

Theorem 31. Let X be the number of coupons observed before obtaining one of each
of n types of coupons. Then for any constant c,

lim Pr[X >nlnn+cen)=1—-e°"

n—o0

This theorem says that for large n, the number of coupons required should
be very close to nlnn. For example, over 98% of the time the number of coupons
required lies between nlnn — 4n and nlnn + 4n. This is an example of a sharp
threshold, where the random variable is closely concentrated around its mean.

Proof. We look at the problem as a balls and bins problem. We begin by considering
the Poisson approximation, and then justify that the Poisson approximation gives

© Copyright Mitzenmacher and Upfal, 2003-2004

5.4 The Poisson approximation

127

the correct answer in the limit. For the Poisson approximation, we suppose that the
number of balls in each bin is a Poisson random variable with mean Inn + ¢, so that
the expected total number of balls is m = nInn 4+ cn. The probability that a specific
bin is empty is then

—C

ef(ln n+c) _

n .

Since under the Poisson approximation, all bins are independent, the probability that
no bin is empty is
e “\" —
(1 —) ~e ® .
n

The last approximation is appropriate in the limit as n grows large so we apply it
here.

To show the Poisson approximation is accurate, we undertake the following
steps. Consider the experiment where each bin has a Poisson number of balls, each
with mean Inn+c. Let £ be the event that no bin is empty, and let X be the number
of balls thrown. We have seen that

lim Pr(§) =e™® "

n—00

We use Pr(&) by splitting it as follows:

Pr(£) = Pr(EN(|X —m| <V2mlnm))+Pr(EN(|X —m| > V2mlnm))
= Pr(€ || X —m| <V2mlum)- - Pr(|X —m| < V2mlnm)
+Pr(€ || X —m|>V2mlnm) - Pr(|X —m| > vV2mlnm). (5.7)
The above representation proves helpful once we show two facts. First, we show that
Pr(|X —m| > v2mlnm) is o(1); that is, the probability that in the Poisson case the
number of balls thrown deviates significantly from its mean m is o(1). This guarantees

that the second term in the summation on the right of equation (5.7) is o(1). Second,
we show that

|Pr(€ | |X —m| <Vv2mlnm) —Pr(€ | X =m)| = o(1).

That is, the difference between our experiment coming up with exactly m balls or
just almost m balls makes an asymptotitically negligible difference in the probability
that every bin has a ball. With these two facts, equation (5.7) becomes

Pr(£) = Pr(€||X —m|<V2mInm) - Pr(|X —m| < V2mInm)
+Pr(€ | | X —m|>V2mInm) - Pr(|X —m| > V2mInm)
= Pr(&]|X —m|<V2mlnm) - (1-0(1)) +o(1)
= Pr(£ | X =m)(l—-o0(1))+0(1),

© Copyright Mitzenmacher and Upfal, 2003-2004

5.4 The Poisson approximation

128

and hence

lim Pr(€) = lim Pr(€ | X =m).

n—0o0 n—o0

But from Theorem 28, the quantity on the right is equal to the probability that every
bin has at least one ball when m balls are thrown randomly, since conditioning on m
total balls with the Poisson approximation is equivalent to throwing m balls randomly
into the n bins. The theorem therefore follows, once we have shown these two facts.

To show that Pr(|X —m| > v2mInm) is o(1), consider that X is a Poisson ran-
dom variable with mean m, since it a sum of independent Poisson random variables.
We use the Chernoff bound for the Poisson distribution (Theorem 26) to bound this
probability. We write the bound as

PI'(X > ZU) < emfmfmln(m/m).
For x = m + v2mInm, using the fact that In(1 + 2) > z — 2?/2 for 2 > 0,

Pr(X >m+ \/M) < e\/m—(m\/m) 1n(1+\/21nT/7n)

e\/2mlnmf(m+\/2mlnm)(\/2lnm/mflnm/m)
_ e—lnm+\/2mlnm(lnm/m) — 0(1)

A similar argument holds if z < m, so Pr(|X —m| > v2mInm) = o(1).

IN

We now show the second fact, that
|Pr(€ | | X —m| < Vv2mlnm) — Pr(€|X = m)|

is small. Note that Pr(€ | X = k) is increasing in k, since this probability corresponds
to the probability that all bins are non-empty when £ balls are thrown independently
and uniformly at random. The more balls that are thrown, the more likely all bins
are non-empty. It follows that

Pr(€| X =m—Vv2mlnm) < Pr(€ || X—m| <V2mlnm) < Pr(€ | X = m+Vv2mlnm).

Hence we have the bound
|Pr(€ | | X —m| <V2mlInm) —Pr(£|X =m)| <
Pr(€ | X =m+Vv2mlnm) —Pr(€ | X =m —V2mlnm),

and we show the right-hand side is o(1). This is the difference between the probability
that all bins receive at least one ball when m — v/2m Inm balls are thrown and when
m + v2mlInm balls are thrown. This difference is equivalent to the probability of
the following experiment: we throw m — v2mlInm balls and there is still at least
one empty bin, but after throwing an additional 2v/2m Inm balls, all bins are non-
empty. For this to happen, there must be at least one empty bin after m —+v/2mlnm
balls; the probability that one of the next 2v/2m Inm balls covers this bin is at most
2v/2mInm= = o(1) by the union bound. Hence this difference is o(1) as well.

O

© Copyright Mitzenmacher and Upfal, 2003-2004

5.5 Application: Hashing

129

5.5 Application: Hashing

5.5.1 Chain Hashing

The balls and bins model is also useful for modeling hashing. For example, consider
the application of a password checker, that prevents people from using common,
easily cracked passwords by keeping a dictionary of unacceptable passwords. When
a user tries to set up a password, the application would like to check if the requested
password is part of the unacceptable set. One possible approach for a password
checker would be store the unacceptable passwords alphabetically and do a binary
search on the dictionary to check if a proposed password in unacceptable. A binary
search would require ©(logm) time for m words.

Another possibility is to place the words into bins, and then search the appro-
priate bin for the word. The words in a bin would be represented by a linked list.
This can be accomplished by using a hash function. A hash function f from a uni-
verse U into a range [0,n — 1] can be thought of as a way of placing items from the
universe into n bins. Here the universe U would consist of possible password strings.
The collection of bins is called a hash table. This approach to hashing is called chain
hashing, since items that fall in the same bin are chained together in a linked list.

Using a hash table turns the dictionary problem into a balls and bins problem.
If our dictionary of unacceptable passwords consists of m words and the range of
the hash function is [0,n — 1], then we can model the distribution of words in bins
with the same distribution as m balls placed randomly in n bins. We are making
a rather strong assumption, in that we are presuming that our hash function maps
words into bins in a fashion that appears random, so that the location of each word
is independent and identically distributed. There is a great deal of theory behind
designing hash functions that appear random, and we will not delve into that theory
here. We simply model the problem by assuming that hash functions are random. In
other words, we assume that for each = € U, the probability that f(x) = jis 1/n (for
0 < j <n-—1), and that the values of f(z) for each x are independent of each other.
Notice that this does not mean that every time we evaluate f(x), we get a different
random answer! The value of f(i) is fixed for all time; it is just equally likely to take
on any value in the range.

Let us consider the time to do a search when there are n bins and m words.
To search for an item, we hash it to find the bin that it lies in, and then search
sequentially through the linked list for it. If we search for a word that is not in our
dictionary, the expected number of words in the bin the word hashes to is m/n. If we
search for a word that is in our dictionary, the expected number of other words in that
word’s bin is (m — 1) /n, so the expected number of words in the bin is 1+ (m —1)/n.
If we choose n = m bins for our hash table, then the expected number of words we
have to search through in a bin is constant. If the hashing takes constant time, then
the total expected time for the search is constant.

© Copyright Mitzenmacher and Upfal, 2003-2004

5.5 Application: Hashing

130

The maximum time to search for a word, however, is proportional to the maxi-
mum number of words in a bin. We have shown that when n = m this maximum load
is ©(Inn/Inlnn) with probability close to 1, and hence with high probability this is
the maximum time to do a search in such a hash table. While this is still better than
the time for standard binary search, it is much higher than the average, which can
be a drawback for many applications.

Another drawback of chain hashing can be wasted space. If we use n bins for
n items, several of the bins will be empty, potentially leading to wasted space. The
space wasted can be traded off against the search time by making the average number
of words per bin larger than 1.

5.5.2 Hashing: Bit strings

If we want to save space instead of time, we can use hashing in another way. Again,
we consider the problem of keeping a dictionary of unsuitable passwords. Assume
that a password is restricted to be 8 ASCII characters, which requires 64 bits (8
bytes) to represent. Suppose we use a hash function to map each word into a thirty-
two bit string. This string will serve as a short fingerprint for the word; just as a
fingerprint is a succinct way of identifying people, the fingerprint string is a succinct
way of identifying a word. We keep the fingerprints in a sorted list. To check if a
proposed password is unacceptable, we calculate its fingerprint and look for it on the
list, say by a binary search.” If the fingerprint is on the list, we declare the password
unacceptable.

In this case, our password checker may not give the correct answer! It is pos-
sible for a user to input an acceptable password, only to have it rejected because
its fingerprint matches the fingerprint of an unacceptable password. Hence there is
some chance that hashing will yield a false positive; it will falsely declare a match
when there is not an actual match. The problem is that unlike fingerprints for human
beings, our fingerprints do not uniquely identify the associated word. This is the
only type of mistake this algorithm can make; it does not allow a password that is
in the dictionary of unsuitable passwords. In the password application, allowing false
positives means our algorithm is overly conservative, which is probably acceptable.
Letting easily cracked passwords through, however, would probably not be acceptable.

To place the problem in a more general context, we describe it as an approzimate
set membership problem. Suppose we have a set S = {s1, sg,..., Sy} of m elements
from a large universe U. We would like to represent the elements in such a way
that we can quickly answer queries of the form “Is z an element of S7” We would
also like the representation to take as little space as possible. To save space, we
would be willing to allow occasional mistakes in the form of false positives. Here the

'In this case the fingerprints will be uniformly distributed over all thirty-two bit strings. There
are faster algorithms for searching over sets of numbers with this distribution, but we will not concern
ourselves with this point here.

© Copyright Mitzenmacher and Upfal, 2003-2004

5.5 Application: Hashing

131

unallowable passwords is our set S.

How large should the range of the hash function used to create the fingerprints
be? Specifically, if we are working with bits, how many bits should we use to create a
fingerprint? Obviously, we want to choose the number of bits that gives an acceptable
probability for a false positive match. If the set S has size m, and we use b bits
for the fingerprint, the probability of a false positive for an acceptable password is
1—(1—1/2%)™ >1—e"™?" If we want this probability of a false positive to be less
than a constant ¢, we need

e >1_¢

which implies that
m
b > log,
In

(1/(1=¢))
That is, we need b = Q(log, m) bits. On the other hand, if we use b = 2log, m bits,
then the false positive probability falls to

1\" 1
1-(1-—) <=
m m

In our example, if our dictionary has 2'% = 65,536 words, then using thirty-two bit
hashes yields a false positive probability of just less than 1/65, 536.

5.5.3 Bloom filter

We can generalize the hashing ideas of sections 5.5.1 and 5.5.2 to achieve more in-
teresting tradeoffs between the space required and the false positive probability. The
resulting data structure for the approximate set membership problem is called a Bloom
filter, named after B. Bloom who described it in an article in 1970.

A Bloom filter consists of an array of n bits, A[0] to A[n — 1], initially all
set to 0. A Bloom filter uses k£ independent random hash functions hq,..., hy with
range {0,...,n — 1}. We make the usual assumption for analysis that these hash
functions map each element in the universe to a random number uniform over the
range {0,...,n — 1}. Suppose that we use a Bloom filter to represent a set S =
{s1,89,...,8m} of m elements from a large universe U. For each element s € S, the
bits A[h;(s)] are set to 1 for 1 <i < k. A bit location can be set to 1 multiple times,
but only the first change has an effect. To check if an element z is in S, we check
whether all array locations A[h;(x)] for 1 < i < k are set to 1. If not, then clearly z
is not a member of S, because if x was in S, then all locations A[h;(z)] for 1 <i <k
are set to 1 by construction. If all A[h;(z)] are set to 1, we assume that z is in S,
although we could be wrong. We would be wrong if all of the positions A[h;(x)] were
set to 1 by elements of S even though z is not in the set. Hence Bloom filters may
yield false positives. Figure 5.1 shows an example.

The probability of a false positive for an element not in the set, or the false pos-
itiwe probability, can be calculated in a straightforward fashion, given our assumption

© Copyright Mitzenmacher and Upfal, 2003-2004

5.5 Application: Hashing

132

Start with an array of O's.
olo|jofofofofofofofoj0O]|oO

Each element of Sis hashed k times; each
hash gives an array location to set to 1.

X X,
[N
1{ofafz]ofofz]o

To check if yisin S check the k hash
locations. If a0 appears, yisnotin S

y
Sy T—
111100110

If only 1s appear, concludethat yisin S.
This may yield false positives.

y
e
1101111101011

0O O(1(0

Figure 5.1: An example of how a Bloom filter functions.

that the hash functions are random. After all the elements of S are hashed into the
Bloom filter, the probability that a specific bit is still 0 is

km
1 — l ~ efkm/n'
n

We let p = e ¥/ To simplify the analysis, let us temporarily assume that a fraction
p of the entries are still 0 after all of the elements of S are hashed into the Bloom
filter.

The probability of a false positive is then

(1 = (1 = %)kmy ~ (1 — e hmmyt = (1 = p)k.

We let f = (1 — e_’“m/”)lC = (1 — p)*. From now on, for convenience, we use the
asymptotic approximations p and f to represent respectively the probability a bit in
the Bloom filter is 0 and the probability of a false positive.

© Copyright Mitzenmacher and Upfal, 2003-2004

5.5 Application: Hashing

133

Suppose that we are given m and n and we wish to optimize the number of hash
functions k£ to minimize the false positive probability f. There are two competing
forces: using more hash functions gives us more chances to find a 0 bit for an element
that is not a member of S, but using fewer hash functions increases the fraction of
0 bits in the array. The optimal number of hash functions that minimizes f as a
function of k is easily found taking the derivative. Let ¢ = kIn(1 — e~*™/"), so that
f = e? and minimizing the false positive probability f is equivalent to minimizing ¢
with respect to k. We find

It is easy to check that the derivative is 0 when £ = (In2)-(n/m), and that this
point is a global minimum. In this case the false positive probability f is (1/2)* ~
(0.6185)™™. The false positive probability falls exponentially in n/m, the number of
bits used per item. In practice, of course, £ must be an integer, so the best possible
choice of £ may lead to a slightly higher false positive rate.

A Bloom filter is like a hash table, but instead of storing set items, we just use
one bit to keep track of whether or not an item hashed to that location. If k = 1,
we have just one hash function, and the Bloom filter is equivalent to a hashing-based
fingerprint system, where the list of the fingerprints are stored in a 0-1 bit array. Thus
Bloom filters can be seen as a generalization of the idea of hashing-based fingerprints.
As we saw when using fingerprints, to get even a small constant probability of a false
positive required Q(logm) fingerprint bits per item. In many practical applications,
Q(logm) bits per item can be too many. Bloom filters allow a constant probability
of a false positive while keeping n/m, the number of bits of storage required per
item, constant. For many applications, the small space requirement make a constant
probability of error acceptable. For example, in the password application, we may be
willing to accept false positive rates of 1 or 2 per cent.

Bloom filters are highly effective even if n = e¢m for a small constant ¢, such as
¢ = 8. In this case, when k£ = 5 or £ = 6 the false positive probability is just over
0.02. This contrasts with the approach of hashing each element into ©(logm) bits.
Bloom filters require significantly fewer bits while still achieving a very good false
positive probability.

It is also interesting to frame the optimization another way. Consider f, the
probability of a false positive, as a function of p. We find

f= (1-pfF
(1-— p)(—lnp)-(m/n)
— (e—1n<p>~1n(1—p>)m/”. (5.8)

From the symmetry of this expression, it is easy to check that p = 1/2 minimizes
the false positive probability f. Hence the optimal results are achieved when each bit

© Copyright Mitzenmacher and Upfal, 2003-2004

5.5 Application: Hashing

134

of the Bloom filter is 0 with probability 1/2. An optimized Bloom filter looks like a
random bit string.

To conclude, we reconsider our assumption that the fraction of entries that are
still 0 after all of the elements of S are hashed into the Bloom filter is p. Each bit
in the array can be thought of as a bin, and each time an item is hashed, it is like
throwing a ball. The fraction of entries that are still 0 after all of the elements of
S are hashed is therefore equivalent to the fraction of empty bins after mk balls are
thrown into n bins. Let X be the number of such bins when mk balls are thrown.
The expected fraction of such bins

, (1)km
p=|1-—— .
n

The events of different bins being empty are not independent, but we can apply
Corollary 7, along with the Chernoff bound of equation (4.7) to obtain

Pr(|X — np'| > en) < 2ey/ne "/

Actually, Corollary 8 applies as well, since the number of 0 entries, which corresponds
to the number of empty bins, is monotonically decreasing in the number of balls
thrown. The bound tells us fraction of empty bins is close to p’ (when n is reasonably
large), and p' is very close to p. Our assumption that the fraction of 0 entries in the
Bloom filter is p is therefore quite accurate for predicting actual performance.

5.5.4 Breaking symmetry

As our last application of hashing, we consider how hashing provides a simple way
to break symmetry. Suppose that n users want to utilize a resource, such as time
on a supercomputer. They have to use the resource sequentially, one at a time. Of
course each user wants to be scheduled as early as possible. How can we decide a
permutation of the users quickly and fairly?

If each user has an identifying name or number, hashing provides one possible
solution. Hash each user’s identifier into 2° bits, and use the permutation given by
the sorted order of the resulting numbers. That is, the user whose identifier gives the
smallest number when hashed comes first, and so on. For this approach to work, we
do not want two users to hash to the same value, since then we have to decide again
how to order these users.

If b is sufficiently large, then with high probability the users will all obtain
distinct hash values. The analysis is similar to that used to analyze fingerprints in
Section 5.5.2. Consider the point of view of one user. The probability that some
other user obtains the same hash value is

I\"' n-1
()T et

© Copyright Mitzenmacher and Upfal, 2003-2004

5.6 Random Graphs

135

By the union bound, the probability that any user has the same hash value as another
is at most % Hence choosing b = 3log, n guarantees success with probability at

least 1 — 1/n.

This solution is extremely flexible, making it useful for many situations in dis-
tributed computing. For example, a new user can easily be added into the schedule
at any time, as long as they do not hash to the same number as another scheduled
user.

A related problem is leader election. Suppose that instead of trying to order all
of the users, we simply want to fairly choose a leader from them. Again, if we have a
suitably random hash function, we can simply take the user whose hash value is the
smallest. An analysis of this scheme is left as exercise 25.

5.6 Random Graphs

5.6.1 Random Graph Models

There are many NP-hard computational problems defined on graphs: Hamiltonian
Cycle, Independent Set, Vertex Cover, etc. One question worth asking is whether
these problems are hard for most inputs or just for a relatively small fraction of
all graphs. Random graph models provide a probabilistic setting for studying such
questions.

Most of the work on random graphs has focused on two closely related models,
Gnp and G, n. In G,, we consider all undirected graphs on n distinct vertices
vy, Vo, ...,U,. A graph with a given set of m edges has probability

(1 —p)B)
One way to generate a random graph in Gy, is to consider each of the (;) possible
edges in some order, and independently add each edge to the graph with probability

p. The expected number of edges in the graph is therefore (72’) p, and each vertex has
expected degree (n — 1)p.

In the G, y model, we consider all undirected graphs on n vertices with exactly

N edges. There are ((]%)) possible graphs, each selected with equal probability. One
way to generate a graph uniformly from the graphs in G, x is to start with a graph
with no edges. Choose one of the (g) possible edges uniformly at random and add it
to the edges in the graph. Now choose one of the remaining (g) — 1 possible edges
independently and uniformly at random and add it to the graph. Similarly, continue
choosing one of the remaining unchosen edges independently and uniformly at random
until there are N edges.

The G, and G, y models are related; when p = N/(%), the number of edges
in a random graph in G, , is concentrated around N, and conditioned on a graph

© Copyright Mitzenmacher and Upfal, 2003-2004

5.6 Random Graphs

136

from G, , having N edges, that graph is uniform over all the graphs from G,, 5. The
relationship is similar to the relationship between throwing m balls into n bins and
having each bin have a Poisson distributed number of balls with mean m/n.

Indeed, there are many similarities between random graphs and the balls and
bins models. Throwing edges into the graph as in the G, xy model is like throwing
balls into bins. Since each edge has two endpoints, however, each edge is like throwing
two balls at once, into two different bins. The pairing defined by the edges adds a rich
structure that does not exist in the balls and bins model. However, we can often utilize
the relation between the two models to simplify analysis in random graphs models.
For example, in the coupon collector’s problem, we found that for large n, when we
throw nlnn + cn balls, the probability that there are any empty bins converges to

e~® . Similarly, we have the following theorem for random graphs, which is left as
exercise 19.

Theorem 32. Let N = %(nln n+cn). Then the probability that there are any isolated

e~ ¢

vertices (vertices with degree 0) in G, n converges to e™® " as n grows to infinity.

5.6.2 Application: Hamiltonian Cycles in Random Graphs

A Hamiltonian path in a graph is a path that traverses each vertex exactly once.
A Hamiltonian cycle is a cycle that traverses each vertex exactly once. We show
an interesting connection between random graphs and balls and bins problems by
analyzing a simple and efficient algorithm for finding Hamiltonian cycles in random
graphs. The algorithm is randomized, and its probabilistic analysis is over both the
input distribution and the random choices of the algorithm. Finding a Hamiltonian
cycle in a graph is an NP-hard problem. However, our analysis of this algorithm
shows that finding a Hamiltonian cycle is not hard for suitably randomly selected
graphs, even though it is hard to solve in general.

Our algorithm will make use of a simple operation called a rotation. Let G be
an undirected graph. Suppose that

P=v,v,...,u
is a simple path in G and (vg,v;) is an edge of G. Then
!
P = U1,V2, ..., Uiy Vg, UVp—15 - - -, Uig2, Vi1

is also a simple path that we refer to as the rotation of P with the rotation edge
(U, v;)-

We first consider a simple, natural algorithm that proves challenging to analyze.
We assume that our input is presented as a list of adjacent edges for each vertex in
the graph, with the edges of each list being given in a random order, according to

© Copyright Mitzenmacher and Upfal, 2003-2004

5.6 Random Graphs

137

O—O—@
v, OV, Yy v, VoV RV A VR VAR VA

Figure 5.2: An example of a rotation. The rotation of the path vy, vs, v3, v4, V5, vg
with the edge (v, v3) yields a new path vy, vy, vs, vs, Us, V4.

independent and uniform random permutations. Initially, the algorithm chooses an
arbitrary vertex to start the path; this is the initial head of the path. The head is
always one of the endpoints of the path. From this point on, the algorithm either
grows the path deterministically from the head, or rotates the path, as long as there
is an adjacent edge left on the head’s list.

Hamiltonian Cycle Algorithm:
Input: A graph G = (V| E) with n vertices.

Output: A Hamiltonian cycle, or failure.

1. Start with a random vertex as the head of the path.

2. Repeat the following steps until the rotation edge closes a Hamiltonian cycle or
the unused-edges list of the head of the path is empty:

(a) Let the current path be P = vy, v, ..., vg, with vg being the head, and let
(vg, u) be the first edge in the head’s list.

(b) Remove (vg,u) from the head’s list and u’s list.

(c) Ifu#wv; for 1 <i <k, add u = vg;; to the end of the path and make it
the head.

(d) Otherwise, if u = v;, rotate the current path with (vg,v;), and set v;4q
to be the head. (This step closes the Hamiltonian path if & = n and the
chosen edge is (v, v1).)

3. Return a Hamiltonian cycle if one was found or failure if no cycle was found.

The difficulty in analyzing this algorithm is that once the algorithm views some
edges in the edge lists, the distribution of the remaining edges is conditioned on the
edges the algorithm has already seen. We circumvent this difficulty by considering a
modified algorithm that, while less efficient, is easier to analyze. Each vertex v keeps
two lists. The list used-edges(v) contains edges adjacent to v that have been used
in the course of the algorithm; initially this list is empty. The list unused-edges(v)
contains edges adjacent to v that have not been used; it initially contains all edges

© Copyright Mitzenmacher and Upfal, 2003-2004

5.6 Random Graphs

138

adjacent to v, in a random order. By choosing the rotation edge from either the
used-edges list or the unused-edges list with appropriate probabilities, and reversing
the path with some small probability in each step, we modify the rotation process so
that the next head of the list is chosen uniformly at random from among all vertices
of the graph. Once we establish this property, the progress of the algorithm can be
analyzed through a straightforward application of the balls and bins model.

Modified Hamiltonian Cycle Algorithm:
Input: A graph G = (V| E) with n vertices.

Output: A Hamiltonian cycle, or failure.

1. Start with a random vertex as the head of the path.

2. Repeat until the rotation edge closes a Hamiltonian cycle or the unused-edges
list of the head of the path is empty:

(a) Let the current path be P = vy, vs,..., v, with v, being the head.
(b) Execute i, ii or iii below with probabilities L, ed-edgesw)|
1_1_ lused-edges(v;)|

n n
i. Reverse the path, and make v; the head.

and

, respectively:

ii. Choose uniformly at random an edge from used-edges(vy); if the edge
is (v, v;), rotate the current path with (vy,v;) and set v; 11 to be the
head. (If the edge is (vg, vg_1), then no change is made.)

iii. Select the first edge from unused-edges(uvy), call it (vg, u). If u # v; for
1 <i<k,add u = vgy1 to the end of the path and make it the head.
Otherwise, if u = v;, rotate the current path with (v, v;), and set v;,
to be the head. (This step closes the Hamiltonian path if & = n and
the chosen edge is (v, v;).)

(c) Update the used-edges and unused-edges lists appropriately.

3. Return a Hamiltonian cycle if one was found or failure if no cycle was found.

The modified algorithm appears wasteful; reversing the path or rotating with
one of the used-edges cannot increase the path length. It has however, the following
property that makes it easier to analyze.

Lemma 23. Let V; be the head vertex after the t-th step. For all u,v,

1
Pr(Viss = ulVi = v) = -
as long as at the t-th step there is at least one unused-edge available at the head vertex.
That is, the head vertex can be thought of as being chosen uniformly at random from

all vertices at each step.

© Copyright Mitzenmacher and Upfal, 2003-2004

5.6 Random Graphs

139

Proof. Consider the possible cases when the path is P = vy, v, ..., vj.

The only way v; can become the head is if the path is reversed, so V,y; = vy
with probability 1/n.

If w = v;41 is a vertex that lies on the path and (v, v;) is in used-edges(vy),
then the probability that V.1 = u is

lused-edges(vy)| 1 1

n lused-edges(vy)| n’

If u is not covered by one of the first two cases, we use the fact that when
an edge is chosen from unused-edges(vy), the adjacent vertex is uniform over all the
n — |used-edges(vy)| — 1 remaining vertices.

If u = v;;; is a vertex on the path but (vg,v;) is not in used-edges(vy), the
probability that V3,1 = wu is the probability that the edge (v, v;) is chosen from
unused-edges(vg) as the next rotation edge, which is

<1 1 |used-edges(vk)|> < 1 > 1 (5.9)

n n n — |used-edges(vy)| — 1 n

Finally, if u is not on the path, the probability that V;,; = u is the proba-
bility that the edge (vjy1,u) is chosen from used-edges(vg). But this has the same
probability as in equation (5.9). O

For our modified algorithm, the problem of finding a Hamiltonian path looks
exactly like the coupon collector’s problem; the probability of finding a new vertex
to add to the path when there are k vertices left to be added is k/n. Once all the
vertices are on the path, the probability that a cycle is closed in each rotation is 1/n.
Hence, if no list of unused-edges is exhausted we can expect a Hamiltonian path to
be formed in about O(nlnn) rotations, with another O(nInn) rotations to close the
path to a Hamiltonian cycle. More concretely, we can prove the following theorem.

Theorem 33. Suppose the input to the modified Hamiltonian cycle algorithm is taken
from G, y with N > 12nlnn, or G, , withp = 241%. Then the algorithm successfully

finds a Hamiltonian cycle in O(nlnn) iterations of the Repeat loop with probability
1—0(n™").

Note that we did not assume that the input random graph has a Hamiltonian
cycle. A corollary of the theorem is that with high probability a random graph with
this edge density has a Hamiltonian cycle.

Proof. Consider the following two events:
&1 The algorithm failed to construct a Hamiltonian cycle in 3nlnn iterations

of the loop.

© Copyright Mitzenmacher and Upfal, 2003-2004

5.6 Random Graphs

140

&y At least one unused-edges list became empty during the first 3nlnn itera-
tions of the loop.

We first bound Pr(&; | =&;). In that case we consider 3nlnn iterations of the
loop, and by the condition =&, and Lemma 23, in each iteration the next head of the
path is chosen uniformly at random among the n vertices of the graph.

The probability that the algorithm takes more than 2n Inn iterations to find a
Hamiltonian path is exactly the probability that a coupon collector’s problem on n
types requires more than 2nInn coupons. The probability that any specific coupon
type has not been found among 2n Inn random coupons is

1 2nlnn 1
1__ <e—21nn:_.
(1-3) e

By the union bound, the probability that any coupon type is not found is at most
1/n.

To complete a Hamiltonian path to a cycle, the path must close, which it does at
each step with probability 1/n. Hence the probability that the path does not become
a cycle within the next nlnn iterations is

B l ninn Cm l
1 <e = —.
n n

Thus we showed that

Next we bound Pr(&;), the probability that an unused-edges list is empty in the
first 3nlnn iterations. We consider two sub-events:

Eoa: At least 12Inn edges were removed from the unused-edges list of at least
one vertex in the first 3nInn iterations of the loop.

Eap: At least one vertex has fewer than 121nn edges.

For &, to occur, either &, or £ must occur. Hence

PI'(gQ) S Pl"(gga) + Pl"(ggb).

Let us first bound Pr(&y,). Exactly one edge is used in each iteration of the
loop. If this edge is taken from an unused-edges list, then at the end of this iteration
it is removed from the unused-edges lists of the two vertices adjacent to that edge.
One of these two vertices is the head of the path at the beginning of this iteration.
By the proof of Lemma 23 we have that at each iteration the probability that a given
vertex is the head of the path is %, and if a vertex is not the head of the path than the
probability that it is adjacent to the edge chosen from the list of the head of the path

© Copyright Mitzenmacher and Upfal, 2003-2004

5.6 Random Graphs

141

for this iteration is bounded by % Thus, for any vertex in the graph, the probability
that an edge is removed from its adjacency list at a given iteration is bounded by %

Let X; be a Bernoulli random variable that is 1 if the i-th vertex is adjacent
to the edge used in the j-th iteration of the loop and 0 otherwise. Also let X' =
Zj’illn”X; By the above argument E[X?] = 2 and E[X’] < 6Inn. The probability
that X* exceeds 12Inn can be bounded using the Chernoff bound (4.2), with § = 1
and p=61Inn:

. _ 1
Pr(X' > 12Inn) < e~ 8nn/3 = —-
n
By the union bound the probability that any vertex is the head more than 121Inn
times is at most 1/n, giving a bound on Pr(&y,).

Now we bound Pr(&y). Let us suppose our graph is from G, y with N >
12n1Inn. Since each edge is adjacent to two vertices, the expected number of edges ad-
jacent to each vertex is at least 24 Inn. Using Chernoff bounds again (equation (4.6)),
the probability that any vertex has fewer than 121nn adjacent edges is at most
—241nn(1/2)%/2 1

<_

e
n3’

and by the union bound the probability that any vertex has too few adjacent edges
is at most 1/n%. Thus, in G, xy with N > 12nlnn,

1
Pl"(ggb) < ﬁ .

A similar argument works for G, , with p > 361%. Hence

11
— 4

Pr(&) <

In total, the probability that the algorithm fails to find a Hamiltonian cycle in
3nInn iterations is bounded by

3 1
PI'(gl | _'52) + PI'(gQ) S ﬁ + —

n?’

O

We did not make an effort to optimize the constants in the proof. There is,
however, a clear tradeoff; with more edges, one could achieve a lower probability of
failure.

In exercise 26, we consider how to modify this argument to show that the
more efficient original algorithm also works with high probability on sufficiently dense
random graphs.

© Copyright Mitzenmacher and Upfal, 2003-2004

5.7 Exercises 142

5.7 Exercises

1. For what values of n is (1 + 1/n)" within 1% of e¢? Within 0.0001% of e?
Similarly, For what values of n is (1—1/n)" within 1% of 1/e? Within 0.0001%7?

2. Suppose that social security numbers were issued uniformly at random, with
replacement. That is, your social security number would consist of just 9 ran-
domly generated digits, and no check would be made to ensure that the same
number was not issued twice. Sometimes, the last four digits of a social security
number are used as a password. How many people would you need to have in a
room before it was more likely than not that two had the same last four digits?
How many numbers could be issued before it would be more likely than not that
there is a duplicate number? What would the answers for the above questions
be if there were 13 digit social security numbers? Try to give exact numerical
answers.

3. Suppose that balls are thrown randomly into n bins. Show that for some con-
stant ¢y, when there are ¢;y/n balls, the probability that no two land in the same
bin is at most 1/e. Similarly, show that for some constant ¢, (and sufficiently
large n), when there are cyy/n balls, the probability that no two land in the
same bin is at least 1/2. Make these constants as close to optimal as possible.
Hint: you may want to use the fact that

e >1—x

and
e o <l-—z forz<

Do =

4. Sitting in a lecture with one hundred people, you consider whether or not there
are three people in the room that share the same birthday. Explain how to
calculate this probability exactly, using the same assumptions as in our previous
analysis.

6. Use the Taylor expansion

2?2 2t

In(1 e
n(l+z)==x 2+3 4+

to prove that for any x with |z| > 1,

e’ (1—2%) <1+ <e"

7. Suppose that n balls are thrown independently and uniformly at random into
n bins.

© Copyright Mitzenmacher and Upfal, 2003-2004

5.7 Exercises

143

8.

10.

11.

(a) Find the conditional probability that bin 1 has one ball given that exactly
one ball fell into bins 1, 2, and 3.

(b) Find the conditional expectation of the number of balls in bin 1 under the
condition that bin 2 received no balls.

(c) Write an expression for the probability that bin 1 receives more balls than
bin 2.

Our analysis of Bucket sort in section 5.2.2 assumed that n elements were chosen
independently and uniformly at random from the range [0, 2¥). Suppose instead
that n elements are chosen independently from the range [0,2*) according to
a distribution with the property that any number x € [0,2%) is chosen with
probability at most a/2* for some fixed constant a > 0. Show that under these
conditions Bucket sort still requires linear expected time.

Consider the probability that every bin receives exactly one ball when n balls
are thrown randomly into n bins.

(a) Give an upper bound on this probability using the Poisson approximation.
(b) Determine the ezact probability of this event.

(c) Show that these two probabilities differ by a multiplicative factor that
equals the probability that a Poisson random variable with parameter n
takes on the value n. Explain why this is implied by Theorem 28.

Consider throwing m balls into n bins, and for convenience let the bins be
numbered from 0 to n — 1. We say there is a k-gap starting at bin ¢ if bins
i,t+1,...,1+k — 1 are all empty.

(a) Determine the expected number of k-gaps.

(b) Prove a Chernoff-like bound for the number of k-gaps. (Hint: if you let
X, = 1 if there is a k-gap starting at bin ¢, then there are dependencies
between X; and X;,;. To avoid these dependencies, you might consider
Xi and Xz-i—lc)

The following problem models a simple distributed system where agents contend
for resources, and back off in the face of contention. Balls represent agents, and
bins represent resources.

The system evolves over rounds. Every round, balls are thrown independently
and uniformly at random into n bins. Any ball that lands in a bin by itself is
served and removed from consideration. The remaining balls are thrown again
in the next round. We begin with n balls in the first round, and we finish when
every ball is served.

(a) If there are b balls at the start of a round, what is the expected number of
balls at the start of the next round?

© Copyright Mitzenmacher and Upfal, 2003-2004

5.7 Exercises

144

12.

13.

14.

15.

(b) Suppose that every round the number of balls served was exactly the ex-
pected number of balls to be served. Show that all the balls would be
served in O(loglogn) rounds. (Hint: if z; is the expected number of balls
left after j rounds, show and use that z;; < 23/n.)

Suppose that we vary the balls and bins process as follows. For convenience let
the bins be numbered from 0 to n—1. There are log, n players. Each player ran-
domly chooses a starting location ¢ uniformly from [0, n — 1], and the places one
ball in each of the bins numbered ¢ mod n,/+1 mod n, ..., ¢+n/log,n—1 mod
n. Argue that the maximum load in this case is only O(loglogn/logloglogn)
with probability that goes to 1 as n goes to infinity.

We prove that if 7 is a Poisson random variable of mean p, where 4 > 1 is an
integer, then Pr(Z > pu) > 1/2 and Pr(Z < u) > 1/2.
(a) Show that Pr(Z =pu+h) >Pr(Z=p—h—-1)for 0 < h<p-—1.
(b) Using the above, argue that Pr(Z > pu) > 1/2.
(c) Show that Pr(Z =pu—h)>Pr(Z=p+h+1)for0<h<p.
(d) Determine a lower bound on Pr(Z =y — h) — Pr(Z = u+ h+1).
(e) Determine an upper bound on Pr(Z > 2u + 2).
(f) Using the above, argue that Pr(Z < pu) > 1/2.
(a) In Theorem 29, we showed that for any non-negative functions f,
(m) (m) (m) (m) (m) _
ElfMm™, ...y > Elf(xXy"™, .. XY)Pr(YY; m).
Prove that if E[f(X{™,..., X{™)] is monotonically increasing in m, then
B (™, Y™ = B, X (Y™ > m),
again under the condition that f is non-negative. Make a similar statement
when E[f(X™ ..., X'™)] is monotonically decreasing in m.
(b) Using the above and exercise 13, Prove Theorem 30.
We consider another way to obtain Chernoff-like bounds in the setting of balls
and bins without using Theorem 29. Consider n balls thrown randomly into n
bins. Let X; = 1 if the i-th bin is empty and 0 otherwise. Let X =Y " | X;.
Let Y;, 2 =1,...,n be independent Bernoulli random variables that are 1 with
probability p = (1 —1/n)". Let Y = >"" V.
(a) Show that E[X X5+ X;] <E[Y1Y5--- Y] for any £ > 1.

(b) Show that for all ¢ > 0, E[e’*] < E[e’Y]. (Hint: use the expansion for e®
and compare E[X*] to E[Y*].)

(c) Derive a Chernoff bound for Pr(X > (1 + 0)E[X]).

© Copyright Mitzenmacher and Upfal, 2003-2004

5.7 Exercises

145

16.

17.

18.

19.
20.

Let G be a random graph generated using the G, , model.

(a) For what value of p, as a function of n, is the expected number of cliques
of 5 vertices in GG equal to 17

(b) A Kj3 is a complete bipartite graph with three vertices on each side. For
what value of p, as function of n, is the expected number of K33’s in G
equal to one?

(c) For what value of p, as a function of n, is the expected number of Hamil-
tonian cycles in the graph equal to 17

Theorem 29 shows that any event that occurs with small probability in the balls
and bins setting where the number of balls in each bin is an independent Poisson
random variable also occurs with small probability in the standard balls and bins
model. Prove a similar statement for random graphs: every event that happens
with small probability in the G, , model also happens with small probability in
the G, vy model, when N = (g)p

An undirected graph on n vertices is disconnected if there exists a set of k£ <n
vertices such that there is no edge between this set and the rest of the graph.
Otherwise, the graph is said to be connected. Show that there exists a constant
c such that if N > enlogn, then with probability O(e), a graph in G, v is
connected.

Prove Theorem 32.

(a) Let f(n) be the expected number of random edges that must be added be-

fore an empty undirected graph with n vertices becomes connected. (Con-
nectedness is defined in exercise 18.) That is, suppose that we start with
a graph on n vertices with zero edges, and repeatedly add an edge chosen
uniformly at random from all edges not currently in the graph, until the
graph becomes connected. If X, represents the number of edges added,
then f(n) = E[X,].
Write a program to estimate f(n) for a given value of n. Your program
should track the connected components of the graph as you add edges until
the graph becomes connected. You will probably want to use a disjoint
set, data structure, which is covered in standard undergraduate algorithms
texts. You should try n = 100, 200, 300, 400, 500, 600, 700, 800, 900, and
1,000. Repeat each experiment 100 times, and for each value of n compute
the average number of edges needed. Based on your experiments, suggest
a function h(n) that you think is a good estimate for f(n).

(b) Modify your program for the problem above so that it also keeps track of
isolated vertices. Let g(n) be the expected number of edges added before
there are no more isolated vertices. What seems to be the relationship
between f(n) and g(n)?

© Copyright Mitzenmacher and Upfal, 2003-2004

5.7 Exercises

146

21.

22.

23.

In hashing with open addressing, the hash table is implemented as an array, and
there are no linked lists or chaining. Each entry in the array either contains
one hashed item or it is empty. The hash function defines for each key k
a probe sequence h(k,0),h(k,1),... of table locations. To insert the key k,
we examine the sequence of table locations in the order defined by the key’s
probe sequence until we find an empty location and then insert the item at
that position. When searching for an item in the hash table, we examine the
sequence of table locations in the order defined by the key’s probe sequence until
either the item is found, or we have found an empty location in the sequence. If
an empty location is found, it means that the item is not present in the table.

An open address hash table with 2n entries is used to store n items. Assume
that the table location h(k, j) is uniform over the 2n possible table locations
and that all h(k, j) are independent.

(a) Show that under these conditions the probability an insertion requires more
than k probes is at most 27*.

(b) Show that fori = 1,2,...,n the probability that the i-th insertion requires
more than 2logn probes is at most 1/n?.

Let the random variable X; denote the number of probes required by the
i-th insertion. You have shown in the previous question that Pr(X; >
2logn) < 1/n% Let the random variable X = max<;<, X; denote the
maximum number of probes required by any of the n insertions.

(c) Show that Pr(X > 2logn) < 1/n.

(d) Show that the expected length of the longest probe sequence is F[X] =
O(logn).

Bloom filters can be used to estimate set differences. Suppose that you have a
sett X and I have a set Y, both with n elements. For example, the sets might
represent our 100 favorite songs. We both create Bloom filters of our sets, using
the same number of bits m and the same k hash functions. Determine the
expected number of bits where our Bloom filters differ, as a function of m, n,
k, and |X NY|. Explain how this could be used as a tool to find people with
the same taste in music more easily than comparing lists of songs directly.

Suppose that we wanted to extend Bloom filters to allow deletions as well as
insertions of items into the underlying set. We could modify the Bloom filter
to be an array of counters instead of an array of bits. Each time an item is
inserted into a Bloom filter, the counters given by the hashes of the item are
increased by one. To delete an item, one can simply decrement the counters.
To keep space small, the counters should be a fixed length, such as four bits.

Explain how errors can arise when using fixed-length counters. Assuming a
setting where one has at most n elements in the set at any time, m counters, k
hash functions, and counters with b bits, explain how to bound the probability
that an error occurs over the course of ¢ insertions or deletions.

© Copyright Mitzenmacher and Upfal, 2003-2004

5.7 Exercises

147

24.

25.

26.

Suppose that you built a Bloom filter for a dictionary of words with m = 2°
bits. Someone else building an application wants to use your Bloom filter, but
only has 2°~! bits available. Explain how they can use your Bloom filter to
avoid rebuilding a new Bloom filter using the original dictionary of words.

For the leader election problem, we have n users, each with an identifier. The
hash function takes as input the identifier and outputs a b-bit hash value, and
we assume that these values are independent and uniformly distributed. Each
user hashes its identifier, and the leader is the user with the smallest hash value.
Give lower and upper bounds on the number of bits b necessary to ensure that
a unique leader is successfully chosen with probability p. Try to make your
bounds as tight as possible.

Consider the original algorithm proposed for finding Hamiltonian cycles: re-
peatedly take the first edge from the head’s list, remove it, and either add a
new vertex to the path or rotate it. This algorithm is harder to analyze because,
for example, once we have seen the edge (v, u), if v ever becomes the head, then
the next time v is the head we know that u will not be the head on the next
iteration. Modify the proof we have used for the modified Hamiltonian cycle
algorithm to work for the original algorithm. (Hint: Show that if we run the
algorithm for c¢nlnn steps, then the number of times that each element is the
head is only ¢ Inn with high probability, for suitable constants ¢ and ¢’. Con-
sider carefully how this change affects the coupon collector’s argument used in
the proof.)

© Copyright Mitzenmacher and Upfal, 2003-2004

5.8 An Exploratory Assignment

148

5.8 An Exploratory Assignment

Part of the research process in random processes is to first understand what is going on
at a high level, and then try to use this understanding to develop formal mathematical
proofs. In this assignment, you will be given several variations on a basic random
process. To gain insight, you should perform experiments based on writing code to
simulate the processes. (The code should be very short, at most a few pages.) After
the experiments, you should use the results of the simulations to guide you to make
conjectures and prove statements about the processes. You can apply what you have
learned up to this point, including probabilistic bounds and analysis of balls and bins
problems.

Consider a complete binary tree with N = 2" — 1 nodes. Here n is the depth
of the tree. Initially, all nodes are unmarked. Over time, through processes we shall
describe, nodes becomes marked.

All of the processes share the same basic form. We can think of the nodes as
having unique identifying numbers in the range of [1, N]. Each unit of time, I send
you the identifier of a node. When you receive a sent node, you mark it. Also, you
invoke the following marking rule, which takes effect before I send out the next node.

e If a node and its sibling are marked, its parent is marked.

e [f a node and its parent are marked, the other sibling is marked.

The marking rule is applied recursively as much as possible before the next node
is sent. For example, in the picture below, the marked nodes are filled in. The arrival
of the node labeled by an X will allow you to mark the remainder of the nodes, as you
apply the marking rule first up and then down the tree. Keep in mind you always
apply the marking rule as much as possible.

Figure 5.3: The arrival of X causes all other nodes to be marked.

Now let us consider different ways that I might be sending you the nodes:

Process 1: Each unit of time, I send the identifier of a node chosen independently
and uniformly at random from all of the N nodes. Note that I might send you a node
that is already marked, and in fact I may send a useless node that I have already
sent.

© Copyright Mitzenmacher and Upfal, 2003-2004

5.8 An Exploratory Assignment

149

Process 2: Each unit of time I send the identifier of a node chosen uniformly at
random from those nodes that I have not yet sent. Again, a node that has already
been marked might arrive, but each node will be sent at most once.

Process 3: Each unit of time I send the identifier of a node chosen uniformly at
random from those nodes that you have not yet marked.

We want to determine the number of time steps it takes until all the nodes
are marked for each of these processes. Begin by writing programs to simulate the
sending processes and the marking rule. Run each process 10 times for each value of n
in the range [10, 20]. Present the data from your experiments in a clear, easy-to-read
fashion and explain your data suitably. A tip: you may find it useful to have your
program print out the last node that was sent before the tree became completely
marked.

Answer the following questions:

1. For the first process, prove that the expected number of nodes sent is Q (N log N).

How well does this match your simulations?

2. For the second process, you should find that almost all N nodes have to be
sent before the tree is marked. Show that with constant probability, at least
N — 2v/N nodes must be sent.

3. The behavior of the third process might seem a bit unusual. Explain it with a
proof.

After answering the above questions, you may try to consider other facts you
could prove about these processes.

© Copyright Mitzenmacher and Upfal, 2003-2004

Chapter 6

The Probabilistic Method

The probabilistic method is a way of proving the existence of objects. The underlying
principle is simple: to prove the existence of an object with certain properties, we
demonstrate a sample space of objects in which the probability that a randomly
selected object has the required properties is positive. If the probability of selecting
an object with the required properties is positive, then the sample space must contain
such an object, and therefore such an object exists. For example, if there is a positive
probability of winning a one million dollar prize in a raffle, then there must be at
least one raffle ticket that wins that prize.

While the basic principle of the probabilistic method is simple, its application
to specific problems often involves sophisticated combinatorial arguments. In this
chapter we study a number of techniques for constructing proofs based on the prob-
abilistic method, starting with simple counting and averaging arguments, and then
introducing two more advanced tools, the Lovasz Local Lemma and the second mo-
ment method.

In the context of algorithms we are generally interested in explicit constructions
of objects, not merely in proofs of existence. In certain cases the proofs of existence
obtained by the probabilistic method can be converted into efficient, deterministic
construction algorithms. This process is called derandomization, since it converts a
probabilistic argument into a deterministic one. We also demonstrate some techniques
for derandomization.

6.1 The Basic Counting Argument

To prove the existence of an object with specific properties we construct an appro-
priate probability space of objects S and show that the probability that an object in
S with the required properties is selected is strictly greater than 0.

For our first example, we consider the problem of coloring the edges of a graph

© Copyright Mitzenmacher and Upfal, 2003-2004

6.1 The Basic Counting Argument

151

with two colors so that there are no large cliques with all edges having the same color.
Let K, be a complete graph (with all (%) edges) on n vertices.

Theorem 34. If (2)27(§)+1 < 1, then it is possible to color the edges of K, so that
it has no monochromatic Ky subgraph.

Proof. Define a sample space consisting of all possible colorings of the edges of K,
using two colors. There are 2(3) possible colorings, so if one is chosen uniformly at

random, the probability of choosing each coloring in our probability space is 2-(3).
A nice way to think about this probability space is if we color each edge of the graph
independently, with each edge taking each of the two colors with probability 1/2,
then we obtain a random coloring chosen uniformly from this sample space. That is,
we flip an independent fair coin to determine the color of each edge.

Fix an arbitrary ordering of all of the (Z) different k-vertex cliques of K, and
fori=1,..., (Z), let A; be the event that clique ¢ is monochromatic. Once the first

edge in clique 7 is colored, the remaining (]2“) — 1 edges all have to obtain the same
color. It follows that .
Pr(4;) =2)+

Using a union bound,

0\ o
Pr UAi < Z Pr(4;) = <k> o (2)+1 < 1,

=1 i=1

where the last inequality follows from the assumptions of the theorem. Hence

(1) (%)
Pr ﬂE —1—Pr UAi > 0.
i=1 =1

Since the probability of choosing a coloring with no monochromatic k-vertex
clique from our sample space is strictly greater than 0, there must exist a coloring
with no monochromatic k-vertex clique. O

For n < 2F/2 and k > 3,

<n>2—(’;‘)+1 < n_k27(k(k71)/2)+1

25+1

© Copyright Mitzenmacher and Upfal, 2003-2004

6.2 The Expectation Argument

152

Observing that n = 1000 < 2'® = 2%/2) we see that by Theorem 34 there exists a
two-coloring of the edges of Ky with no monochromatic Koy.

Can we use this proof to design an efficient algorithm to construct such a col-
oring?” Let us consider a general approach that gives a randomized construction
algorithm. First, we require that we can efficiently sample a coloring from the sample
space. In this case sampling is easy, because we can simply color each edge inde-
pendently with a randomly chosen color. In general, however, there might not be an
efficient sampling algorithm.

If we have an efficient sampling algorithm, the next question is how many sam-
ples we need to generate until we obtain a sample that satisfies our requirements. If
the probability of obtaining a sample with the desired properties is p, and we sample
independently at each trail, the number of samples needed before finding a sample
with the required properties is a geometric random variable, with expectation 1/p.
Hence we need that 1/p is polynomial in the problem size to have an algorithm that
finds a suitable sample in expected polynomial time.

If p=1—o0(1), then sampling once gives a Monte Carlo construction algorithm
that is incorrect with probability o(1). In our specific example of finding a coloring on
a graph of 1000 vertices with no monochromatic K5y, we know that the probability
a random coloring has a monochromatic K is at most

25+1
k!

< 85-10716,

Hence we have a Monte Carlo algorithm with a small probability of failure.

If we want a Las Vegas algorithm, that is, one that always gives a correct con-
struction, then we need a third ingredient. We require a polynomial time procedure
for verifying that a sample object satisfies the requirements. Then we can test samples
until we find one that satisfies the requirements. An upper bound on the expected
time for this construction can be found by multiplying together the expected number
of samples 1/p, an upper bound on the time to generate each sample, and an upper
bound on the time to check each sample.” For the coloring problem, there is a poly-
nomial time verification algorithm when k£ is a constant: simply check all (Z) cliques
and make sure they are not monochromatic. It does not seem that this approach can
be extended to yield polynomial time algorithms when & grows with n.

6.2 The Expectation Argument

As we have seen, to prove an object with certain properties exists, we can design
a probability space where choosing an element at random yields an object with the

*Sometimes the time to generate or check a sample may itself be a random variable. In this case,
Wald’s equation, discussed in Section 12, may apply.

© Copyright Mitzenmacher and Upfal, 2003-2004

6.2 The Expectation Argument

153

desired properties with positive probability. A similar and sometimes easier approach
for proving that such an object exists is to use an averaging argument. The intuition
behind this approach is that in a discrete probability space, a random variable must
assume at least one value that is no greater than its expectation with positive prob-
ability and at least one value that is not smaller than its expectation with positive
probability. For example, if the expected value of a raffle ticket is at least three dol-
lars, there must be at least one ticket that ends up being worth no more than three
dollars, and one ticket that ends up being worth no less than three dollars.

More formally, we have the following lemma.

Lemma 24. Suppose that we have a probability space S and a random variable X
defined on S such that E[X| = pi. Then Pr(X > p) > 0 and Pr(X < pu) > 0.

Proof. We have
p=E[X]= Zx -Pr(X =x).

where the summation ranges over all values in the range of X, If Pr(X > pu) = 0,
then

u:Zx-Pr(X:x):Zx-Pr(X:x)<Zu-Pr(X:x):u,

<[<[

giving a contradiction. Similarly, if Pr(X < u) = 0, then

,u:Zx-Pr(X:x):Zx-Pr(X:x)>Z,u-Pr(X:x):,u,

> T>N

again giving a contradiction. O

Thus, there must be at least one instance in the sample space of S on which
the value of X is at least y, and at least one instance for which the value of X is no
greater than p.

6.2.1 Application: Finding a Large Cut

We consider the problem of finding a large cut in an undirected graph. A cut is a
partition of the vertices into two disjoint sets, and the value of a cut is the weight of
all edges crossing from one side of the partition to the other. Here we consider the
case where all edges in the graph have the same weight 1. The problem of finding a
maximum cut is NP-hard. Using the probabilistic method we show that the maximum
cut must be at least 1/2 the number of edges in the graph.

Theorem 35. Given an undirected graph G with n vertices and m edges, there is a
partition of V' into two disjoint sets A and B such that at least m/2 edges connect a
vertex in A to a vertex in B. That is, there is a cut with value at least m/2.

© Copyright Mitzenmacher and Upfal, 2003-2004

6.2 The Expectation Argument

154

Proof. Construct sets A and B by randomly and independently assigning each vertex
to one of the two sets. Let ey, ..., e, be an arbitrary enumeration of the edges of G.
For i =1,...,m, define X; such that

o {1 if edge 7 connects A to B

0 otherwise.

The probability that edge e; connects a vertex in A to a vertex in B is 1/2, and thus

Let C(A, B) be a random variable denoting the value of the cut corresponding
to the sets A and B. Then

E[C(A, B)] = E

ZX] :;E[Xi]:mé:%.

Since the expectation of the random variable C'(A, B) is 7, there exists a par-
tition A and B with at least m/2 edges connecting the set A to the set B. O

We can transform this argument into an efficient algorithm for finding a cut
with value at least m/2. We first show how to obtain a Las Vegas algorithm. In
section 6.3, we show how to construct a deterministic polynomial time algorithm.

It is easy to randomly choose a partition as described in the proof. The ex-
pectation argument does not give a lower bound on the probability that a random
partition has a cut of value at least m/2. To derive such a bound let

p="Pr (C(A,B) > %) ,

and observe that C'(A4, B) < m. Then

5 = ElC(4,B)]
=) iPr(C(A,B)=i)+ Y iPr(C(A,B)=1)
i<m/2—1 i>m/2

m

e (1) o

IN

which implies that
1

m 7

2

The expected number of samples before finding a cut with value > m/2 is therefore
just T +1. Testing to see if the value of the cut determined by the sample is at least

m/2 can easily be done in polynomial time, simply by counting the edges crossing
the cut. We therefore have a Las Vegas algorithm for finding the cut.

P>

© Copyright Mitzenmacher and Upfal, 2003-2004

6.3 Derandomization using Conditional Expectations

155

6.2.2 Application: Maximum Satisfiability

We can apply similar argument to the maximum satisfiability problem. In a logical
formula, a [iteral is either a Boolean variable or the negation of a Boolean variable.
We use T to denote the negation of the variable x. The input to SAT is a logical
expression that is the conjunction (AND) of a set of clauses, where each clause is the
disjunction (OR) of literals. For example, the following expression is an instance of

SAT.
(k1 VT3 VI3)AN(TT VT3 A(r1 Vas V) Axg V T3) A (24 V T7).

A solution to an instance of a SAT formula is an assignment of the variables to the
values True and False so that all the clauses are satisfied. That is, there is at least
one true literal in each clause. For example, assigning x; to True, x5 to False, x3 to
False, and z4 to True satisfies the SAT formula above. In general, determining if a
SAT formula has a solution is NP-hard.

A related goal, given a SAT formula, is to try to satisfy as many of the clauses
as possible. In what follows, let us assume that no clause contains both a variable
and its complement, since in this case the clause is always satisfied.

Theorem 36. Given a set of m clauses, let k; be the number of literals in the i-th
clause, for i = 1,...,m. Let k = min}" k;. Then there is a truth assignment that

satisfies at least
m

d (1—27R) > m(1-27F)
i=1
clauses.

Proof. Assign values independently and uniformly at random to the variables. The
probability that the ith clause with k; literals is satisfied is at least (1 — 27%). The
expected number of satisfied clauses is therefore at least

m
> (@ —27F) > m(1-27h),
i=1
and there must be an assignment that satisfies at least that many clauses. O

The above argument can also be easily transformed into an efficient randomized
algorithm; the case where all k; = k is left as exercise 1.

6.3 Derandomization using Conditional Expecta-
tions

The probabilistic method can yield insight into how to construct deterministic algo-
rithms. As an example, we apply the method of conditional expectations to deran-

© Copyright Mitzenmacher and Upfal, 2003-2004

6.3 Derandomization using Conditional Expectations

156

domize the algorithm of section 6.2.1 for finding a large cut.

Recall that we find a partition of the n vertices V' of a graph into sets A and
B by placing each vertex independently and uniformly in one of the two sets. This
gives a cut with expected value E[C(A, B)] > m/2. Now imagine placing the vertices
deterministically one at a time, in an arbitrary order vy, vo,...,v,. Let z; be the set
where v; is placed (so z; is either A or B). Suppose that we have placed the first k&
vertices, and consider the expected value of the cut if the remaining vertices are then
placed independently and uniformly into one of the two sets. We write this quantity
as E[C(A, B) | x1, s, ..., xg]; it is the conditional expectation of the value of the cut
given the locations x1, T, ...,z of the first k vertices. We show inductively how to
place the next vertex so that

E[C(A, B) | 1, 22,..., 2] <E[C(A, B) | 1, 22,..., T y1].

It follows that
E[C(Aa B)] S E[O(Aa B) | L1, T2y - - - 73771]'

The right hand side is the value of the cut determined by our placement algorithm,
since when x1,x9,..., 1, are all determined, we have a cut of the graph. Hence our
algorithm returns a cut whose value is at least E[C'(A4, B)] > m/2.

The base case in the induction is
E[C(A, B) | =] = E[C(4, B)],
which holds by symmetry since it does not matter where we place the first vertex.

We now prove the inductive step, that
E[C(A,B) | x1,22,..., 2] < E[C(A,B) | 21,22, ..., Tk41]. (6.1)
Consider placing vi,; randomly, so that is placed in A and B each with probability
1/2, and let Yy be a random variable representing the set where it is placed. Then
1
E[C(A, B) | 21,2s,...,2x] = ZE[C(A B) | x1,2,..., 2% Yer1 = 4]

2
1

+ §E[C(A7 B) | L1, X2y ..., T, Yk-l—l = B]

It follows that

max (E[C(A, B) | x1,x2, ..., 2, Yiy1 = Al,E[C(A, B) | x1,29,..., %k, Yeo1 = B]) >

E[O(A7 B) | L1, X2y -+, ZUk]

So all we have to do is compute the two quantities E[C(A, B) | x1, 29, ..., %k, Yii1 =

Al and E[C(A, B) | 21, s, ..., 2k, Yrr1 = B], and place the vy, in the set that yields

the larger expectation. Once we do this, we will have a placement satisfying

E[C(A, B) | 1, 22,..., 2] <E[C(A, B) | 1,22, T 1]

© Copyright Mitzenmacher and Upfal, 2003-2004

6.4 Sample and Modify

157

To compute E[C(A, B) | z1,x9,...,%k, Yrr1 = A], note that the conditioning
gives the placement of the first £ + 1 vertices. We can therefore compute the number
of edges among these vertices that contribute to the value of the cut. For all other
edges, the probability that it will later contribute to the cut is 1/2, since this is the
probability its two endpoints end up on different sides of the cut. By linearity of
expectations E[C(A, B) | x1, 22, ..., %k, Y1 = A] is the number of edges crossing
the cut whose endpoints are both among the first & + 1 vertices, plus 1/2 of the
remaining edges. This is easy to compute in linear time. The same is true for
E[C(A,B) | z1,%9,..., Tk, Ypi1 = B].

In fact, from this argument, we see that the larger of the two quantities is
determined just by whether v, has more neighbors in A or in B. All edges that do
not have v, as an endpoint contribute the same amount to the two expectations.
Our derandomized algorithm therefore has the following simple form: take the vertices
in some order. Place the first vertex arbitrarily in A. Place each successive vertex
to maximize the number of edges crossing the cut. Equivalently, place each vertex
on the side with fewer neighbors, breaking ties arbitrarily. This is a simple greedy
algorithm, and our analysis shows that it always guarantees a cut with at least m/2
edges.

6.4 Sample and Modify

Thus far we have used the probabilistic method to construct random structures with
the desired properties directly. In some cases it is easier to work indirectly, breaking
the argument into two stages. In the first stage we construct a random structure
that does not have the required properties. In the second stage we then modify the
random structure so that it does have the required property. We give two examples
of this sample-and-modify technique.

6.4.1 Application: Independent Sets

An independent set in a graph G is a set of vertices with no edges between them.
Finding the largest independent set in a graph is an NP-hard problem. The following
theorem shows that the probabilistic method can yield bounds on the size of the
largest independent set of a graph.

Theorem 37. Let G = (V, E) be a graph on n vertices with dn/2 edges. Then G has
an independent set with at least n/2d vertices.

Proof. Consider the following randomized algorithm:

1. Delete each vertex of G (together with its incident edges) independently with
probability 1 — 1/d.

© Copyright Mitzenmacher and Upfal, 2003-2004

6.4 Sample and Modify

158

2. For each remaining edge, remove it and one of its adjacent vertices.

The remaining vertices form an independent set, since all edges have been re-
moved. This an example of the sample-and-modify technique. We first sample the
vertices, and then we modify the remaining graph.

Let X be the number of vertices that survive the first step of the algorithm.
Since the graph has n vertices, and each vertex survives with probability é,

Let Y be the the number of edges that survive the first step. There are 4 5 edges
in the graph, and an edge survives if and only if its two adjacent vertices survwe.

Thus)
nd (1 n
EY]=5 (3) =%

The second step of the algorithm removes all the remaining edges, and at most
Y vertices. When the algorithm terminates it outputs an independent set of size at
least X — Y, and

n n n
EX-Y]|=-—-—=—.
[] d 2d 2d

Since the expected size of the independent set generated by the algorithm is 77,

the graph has an independent set with at least ;5 vertices. O

6.4.2 Application: Graphs with Large Girth

As another example we consider the girth of a graph, which is the length of its smallest
cycle. Intuitively we expect dense graphs to have small girth. We can show, however,
that there are dense graphs with relatively large girth.

Theorem 38. For any integer k > 3 there is a graph with n nodes, at least in“r%
edges, and girth at least k.

Proof. We first sample a random graph G € G, ,, with p = ni~'. Let X be the
number of edges in the graph. Then

E[X] = p<g> = % (1 = %) kL,

Let Y be the number of cycles of in the graph of length at most k& — 1. Any
specific possible cycle of length 4, where 3 < i < k—1, occurs with probability p’. Also,
there are (7:) (GE possible cycles of length i; to see this, first consider choosing the

© Copyright Mitzenmacher and Upfal, 2003-2004

6.5 The Second Moment Method

159

¢ vertices, then consider the possible orders, and finally keep in mind that reversing
the order yields the same cycle. Hence,

k—1 n (Z . 1)' . k—1 o k—1]
)= 3 (1) C5 2« o= Sk < 0
=3 =3 =3

We modify the original randomly chosen graph G by eliminating one edge from
each cycle of length up to £ — 1. The modified graph therefore has girth at least k.
When n is sufficiently large, the expected number of edges in the resulting graph is

EX -Y]> L T T N (1), S Se Y
Z 5 - >
Hence there exists a graph with at least in“’% edges and girth at least k. m

6.5 The Second Moment Method

The second moment method is another useful way to apply the probabilistic method.
The standard approach typically makes use of the following inequality, easily derived
from Chebyshev’s inequality.

Theorem 39. If X is a non-negative integer-valued random variable, then

Var[X

Pr(X =0) < EBX])?

(6.2)

Proof.

6.5.1 Application: Threshold Behavior in Random Graphs

The second moment method can be used to prove the threshold behavior of certain
random graph properties. That is, in the G,,, model, it is often the case that there
is a threshold function f such that when p is just less than f(n), almost no graph has
the desired property, whereas when p is just larger than f(n), almost every graph has
the desired property. We present here a relatively simple example.

Theorem 40. In G, suppose that p = f(n), where f(n) = o(n=2/3). Then for any
e > 0, for sufficiently large n the probability that a random graph chosen from G,
has a clique of 4 or more vertices is less than €. Similarly, if f(n) = w(n=%/3), then
for sufficiently large n the probability that a random graph chosen from G, , does not
have a clique with 4 or more vertices is less than €.

© Copyright Mitzenmacher and Upfal, 2003-2004

6.5 The Second Moment Method 160

Proof. We first consider the case where p = f(n) and f(n) = o(n=2/3). Let Cy, ..., C’(n)

4
be an enumeration of all the subsets of 4 vertices in GG. Let

Y. — 1 C} is a 4-clique,
1 0 otherwise.

Let

so that

In this case, E[X] = o(1), which means E[X] < ¢ for sufficiently large n. Since X is a
non-negative integer-valued random variable, it follows that Pr(X > 1) < E[X] < ¢,
and hence the probability that a random graph chosen from G, , has a clique of 4 or
more vertices is less than e.

We now consider the case when p = f(n) and f(n) = w(n=?/3). In this case,
E[X] — oo as n grows large. This in itself is not sufficient to conclude that with
high probability a graph chosen random from G, , has a clique of at least 4 vertices.
We can, however, use Theorem 39 to prove that in that case Pr(X = 0) = o(1). To
do so we need to show that Var[X] = o((E[X])?). Below, we compute the variance
directly. An alternative approach is given as exercise 11.

We begin with the following useful formula.

Lemma 25. Let Y;, i = 1,...,m be 0-1 random variables, and let Y =Y "" | 'Y;, then

Varly] < E[Y]+ > Cov(¥;Y)).

1<i,j<mji#]
Proof. For any sequence of random variables Y7,...,Y,,,
Var[} V] =) Vary]+ Y = Cov(V;,Yj).
i=1 i=1 1<i,j<myits

This is the generalization of Theorem 11 to m variables.
When Y; is a 0-1 random variable, E[Y?] = E[Y}], and
Var[Y]] = E[Y}’] - (E[Y}])” < E[Y]],

giving the lemma. 0

We wish to compute

(3)
Var[X] = Var ZXZ'

=1

© Copyright Mitzenmacher and Upfal, 2003-2004

6.6 The Conditional Expectation Inequality

161

Applying Lemma 25, we see that we need to consider the covariance of the X;’s. If
|C; N C;| =0, then the corresponding cliques are disjoint, and it follows that X; and
X; are independent. Hence, in this case, E[X;X;] — E[X;|E[X,] = 0. The same is
true if |Cz N CJ| =1.

If |C;NC}| = 2, then the corresponding cliques share one edge. For both cliques
to be in the graph, the 11 corresponding edges must appear in the graph. Hence
in this case E[X;X;] — E[X;]E[X;] < E[X;X;] < p'". There are () ways to choose
the six vertices, and (2;3;2) ways to split them into C; and C; (because we choose 2
vertices for C; N Cy, 2 for C; alone, and 2 for C; alone).

If |C; N C;| = 3, then the corresponding cliques share three edges. For both
cliques to be in the graph, the 9 corresponding edges must appear in the graph.
Hence in this case E[X;X;] — E[X;]E[X;] < E[X;X;] < p°. There are (7) ways to

5

3,1_1) ways to split them into C; and C}.

choose the five vertices, and (

Finally, recall again that E[X] = (})p® and p = f(n) = w(n=?/3). Thus,

Var[X] < <Z>p6 + <7g> (2; S; 2) p'+ (Z) <3; ‘;’; 1) p’ = o(n®p'?) = o(E[X]?),

since (E[X))? = (<Z>p6)2 = O(n°p"?).

Theorem 39 now applies, showing that Pr(X = 0) = o(1) and hence the second part
of the theorem. O

6.6 The Conditional Expectation Inequality

For a sum of Bernoulli random variables, we can derive an alternative to the second
moment method which is often easier to apply. problems.

Theorem 41. Let X = 2?21 X;, where each X; is a 0-1 random variable. Then

n

Pr(X >0)> Y E&(T(;i)”. (6.3)

=1

Notice that the X; need not be independent for equation 6.3 to hold.

Proof. Let Y =1/X if X > 0, and 0 otherwise. Then

Pr(X > 0) = E[XY].

© Copyright Mitzenmacher and Upfal, 2003-2004

6.6 The Conditional Expectation Inequality

162

But

EXY] = E

zn:XiY
=1

= zn:E[XiY]
= zn:(E[XiY | X; = 1]Pr(X; = 1) + E[X,;Y | X; = 0] Pr(X; = 0))

=1

BV | X = 1Pr(X = 1)

=1

— XR:ED/X | X; =1]Pr(X; =1)

=1

" Pr(X;=1)
> .
B ; E[X | X; =1]

The key step is from the third to fourth line, where we use conditional expectation in
a fruitful way, taking advantage of the fact that E[X;Y | X; = 0] = 0. The last line
makes use of Jensen’s inequality, with the convex function f(z) = 1/x. O

We can use Theorem 41 to give an alternate proof of Theorem 40. Specifically,
if p= f(n) = w(n=?/?), we use Theorem 41 to show that for any constant e > 0, for
sufficiently large n the probability that a random graph chosen from G, , does not
have a clique with 4 or more vertices is less than e.

As in the proof of Theorem 40, let X = 22(:42 X;, where X; is 1 if the subset
of four vertices C; is a 4-clique and 0 otherwise. For a specific X, we have Pr(X; =
1) = p°. Using the linearity of expectations, we compute

(5) (5)
EX|X;=1=E|> X;|X;=1| =) E[X; | X;=1].

Conditioning on X; = 1, we now compute E[X; | X, = 1], using the fact that
for a 0-1 random variable

There are ("24) sets of vertices C; that do not intersect C;. Each corresponding
X; is 1 with probability p®. Similarly, X; = 1 with probability p® for the 4(";") sets

C; that have one vertex in common with Cj.

© Copyright Mitzenmacher and Upfal, 2003-2004

6.7 The Lovasz Local Lemma

163

Using now the condition that X; = 1, Pr(X; =1 | X; = 1) = p® for the 6("}")
sets C; that have two vertices in common with C;, and Pr(X; =1 | X; = 1) = p? for
the 4(”;4) sets C; that have three vertices in common with C;. Summing, we have

(3)
EX|[X;=1] = S EX | X,=1]

=

n—4 n—4 n—4 n—4
= 1 6 4 6 5 4 3‘
(e ey (")

Applying Theorem 41 gives

(1)p°
Pr(X > 0) >)
r(>) 14 (n24)p6 i 4(n;4)p6 i 6(”;4)]95 +4(nz4)p3

which approaches 1 as n grows large when p = f(n) = w(n=%/3).

6.7 The Lovasz Local Lemma

One of the most elegant and useful tools in applying the probabilistic method is the
Lovasz Local Lemma. Let E1, ..., E, be a set of bad events in some probability space.
We want to show that there is an element in the sample space that is not included in
any of the bad events.

This would be easy to do if the events were mutually independent. Recall that
events E, Es, ... F, are mutually independent if and only if for any subset I C [1,n],

Pr (ﬂ E) = []Pr(E).

Also, if Ey, ..., E, are mutually independent, then so are E|, ..., E,. (This was left
as exercise 20 in Chapter 1.) If for all i, Pr(E;) < 1, then

Pr(ny, E;) = [[Pr(E:) > 0,
=1

and there is an element of the sample space that is not included in any bad event.

Mutual independence is too much to ask for in many arguments. The Lovasz
Local Lemma generalizes the above argument to the case where the n events are not
mutually independent, but the dependency is limited. Specifically, following from the
definition of mutual independence, we say that an event E is mutually independent
of the events E1, Es, ... E, if for any subset I C [1,n],

Pr(E | Myer By) = Pr(E).

The dependency between events can be represented in terms of a dependency graph:

© Copyright Mitzenmacher and Upfal, 2003-2004

6.7 The Lovasz Local Lemma 164

Definition 22. A dependency graph for a set of events Fy, ..., E, is a graph G =
(V,E) such that V = {1,...,n}, and fori=1,... ,n, event E; is mutually indepen-
dent of the events {E; | (i,5) € E}.

We discuss first a special case, the symmetric version of the Local Lemma, which
is more intuitive, and is sufficient for most algorithmic applications.

Theorem 42 (Local Lemma). Let E,,..., E, be a set of events, and assume that
the following hold:

1. for all i, Pr(E;) < p;
2. the degree of the dependency graph is bounded by d;

3. 4dp < 1.

Then

Proof. Let S C {1,...,n}. We prove by induction on s = 0,...,n— 1 that if |S| < s,
then for all k£ ¢ S B
PI'(F]]c | mjeg E]) S 2p

For this expression to be well-defined when S is not empty, we need Pr(N;csE;) > 0.

The base case s = 0 follows from the assumption that Pr(E}) < p. To perform
the inductive step, we first show that Pr(NjesE;) > 0. This is true when s = 1,
because Pr(E;) > 1—p > 0. For s > 1, without loss of generality let S = {1,2,..., s}.
Then

Pr(N_,B;) = HPrE | NIz} EY)

S

= [Ia=PeE | iz Ey)
=1

> [Ja-2p) >0

i=1
In obtaining the last line we used the induction hypothesis.

For the rest of the induction, let S} = {j € S | (k,j) € E} and S, =5 — 5. If
S, = S then Ej, is mutually independent of the events E;, i € S, and

PI'(Ek | mjeg E]) = PI'(Ek) S P

We continue with the case |Sy] < s.

© Copyright Mitzenmacher and Upfal, 2003-2004

6.7 The Lovasz Local Lemma

165

It will be helpful to introduce the following notation. Let Fs be defined by
Fs = NjesE;,
and similarly define Fg, and Fg,. Notice that Fg = Fs, N Fg,.

Applying the definition of conditional probability,

PI‘(Ek N FS)

PI'(Ek | Fs) = PI‘(FS)

(6.4)

Applying the definition of conditional probability to the numerator of (6.4) we obtain

Pr(E;NFs) = Pr(E;NFs, NFs,)
= Pr(EkﬂFsl |FS2)PY(F52)'

The denominator can be written as

PI'(Fs) = PI'(Plg'1 ﬂFSZ)
= Pr(FSI | FS2)PY(FS2)'
Canceling the common factor, which we have already shown is non-zero, we have

PI‘(EkﬂFgl | FSQ)
Pr(Fsl | FSz)

Pr(E, | Fs) = (6.5)

Since the probability of an intersection of events is bounded by the probability
of any one of the events, and since Ej is independent of the events in Sy, we can
bound the numerator of (6.5) by

PI"(Ek ﬂFSl) | F52) S PI‘(Ek | FSQ) = Pr(Ek) S p.

Since |Sy| < |S| = s, we can apply the induction hypothesis to
Pr(E; | Fs,) = Pr(E; | Njes, Ej).
Using also the fact that |S;| < d we lower bound the denominator of (6.5) as follows:

Pr(Fs, | Fs,) = Pr(Njes,Ej | Njes, Ej)

2]_—ZPI'(EZ| ﬂj652 .E_'])
€S
> 1-) 2%
1EST
> 1—2pd
1
> —.
- 2

© Copyright Mitzenmacher and Upfal, 2003-2004

6.7 The Lovasz Local Lemma

166

Using the upper bound for the numerator and the lower bound for the denom-
inator we prove the induction.
PI'(Ek N FSI | FSQ)
Pr(FSI | FSz)

< =2
< s

PI"(Ek | Fs)

The theorem follows from

Pr(nf,B;) = []Pr(& | niZ) Ey)
=1

n

= [=PrE | i Ey)
=1

[]-2p) >0

=1

v

6.7.1 Application: Edge-Disjoint Paths

Assume that n pairs of users need to communicate using edge-disjoint paths on a
given network. Each pair i = 1,...,n can choose a path from a collection F; of m
paths. We show using the Lovasz Local Lemma that if the possible paths do not
share too many edges, then there is a way to choose n edge-disjoint paths connecting
the n pairs.

Theorem 43. If for each © # j, any path in F; shares edges with no more than k paths
in Fy, where % <1, then there is a way to choose n edge-disjoint paths connecting
the n pairs.

Proof. Consider the probability space defined by each pair choosing a path indepen-
dently uniformly at random from its set of m paths. Define E; ; to represent the event
that the paths chosen by pairs ¢ and j share at least one edge. Since a path in F;
shares edges with no more than % paths in Fj},

P = PI‘(EZ,J) S

k
m

Let d be the degree of the dependency graph. Since event Fj; is independent
of all events Ey j when ¢ ¢ {i,j} and j' & {i,j}, we have d < 2n. Since

k
sdp < S <4
m

© Copyright Mitzenmacher and Upfal, 2003-2004

6.8 Explicit Constructions using the Local Lemma *

167

all of the conditions of the Lovasz Local Lemma are satisfied, proving
Pr(ﬂi#Eiyj) > 0.

Thus, there is a choice of paths such that the n paths are edge disjoint. O

6.7.2 Application: Satisfiability

As a second example, we return to the Satisfiability question. For the k-Satisfiability
(k-SAT) problem, the formula is restricted so that each clause has exactly k literals.
Again, we assume that no clause contains both a literal and its negation, as these
clauses are trivial. We prove that any k-SAT formula in which no variable appears
in too many clauses has a satisfying assignment.

ok

Theorem 44. If no variable in a k-SAT formula appears in more than T = 7

clauses, then the formula has a satisfying assignment.

Proof. Consider the probability space defined by giving a random assignment to the
variables. Fori = 1,...,m, let E; denote the event that the i-th clause is not satisfied
by the random assignment. Since each clause has k literals,

Pr(E;) = 27",

The event F; is mutually independently of all of the events related to clauses

that do not share variables with clause i. Since each of the k variables in clause i

. ok .

can appear in no more than 7" = 7 clauses, the degree of the dependency graph is
bounded by d < kT < 2k—2,

In this case
4dp < 428207k < 1,
so we can apply the Lovasz Local Lemma to conclude that
Pr(Ni, E;) > 0,

and hence there is a satisfying assignment for the formula. O

6.8 Explicit Constructions using the Local Lemma

The Lovasz Local Lemma proves that a random element in an appropriately defined
sample space has a non-zero probability of satisfying our requirement. However, this

© Copyright Mitzenmacher and Upfal, 2003-2004

6.8 Explicit Constructions using the Local Lemma *

168

probability might be too small for an algorithm that is based on simple sampling. The
number of objects that we need to sample before we find an element that satisfies our
requirements might be exponential in the problem size.

In a number of interesting applications, the existential result of the Lovasz Local
Lemma can be used to derive efficient construction algorithms. While the details differ
in the specific applications, all the known algorithms are based on a common two-
phase scheme. In the first phase, a subset of the variables of the problem are assigned
random values. The remaining variables are deferred to the second stage. The subset
of variables that are assigned values in the first stage is chosen so that

1. Using the Local Lemma one can show that the random partial solution fixed
in the first phase can be extended to a full solution of the problem, without
modifying any of the variables fixed in the first phase.

2. The dependency graph H between events defined by the variables deferred to
the second phase has only small connected components, with high probability.

When the dependency graph consists of connected components, a solution for
the variables of one component can be found independently of the other components.
Thus, the first phase of the two-phase algorithm breaks the original problem into
smaller subproblems. Each the smaller subproblems can then be solved independently
in the second phase by an exhaustive search.

6.8.1 Application: A Satisfiability Algorithm

We demonstrate this technique in an algorithm for finding a satisfying assignment
for a k-SAT formula. The explicit construction result will be significantly weaker
than the existence result proven in the previous section. In particular, we obtain a
polynomial time algorithm only for the case when k is an even constant. This result
is still interesting since for £ > 3 the problem of k-Satisfiability is N P-complete.

Consider a k-SAT formula F, with £ an even constant, such that each variable
appears in no more than 7 = 2% clauses, for some constant o > 0 determined in the
proof. Let x1,...,z, be the £ variables and C1,...,C,, be the m clauses of F.

Following the outline suggested in section 6.8, our algorithm for finding a sat-
isfying assignment for F has two phases. Some of the variables are fixed at the first
phase, the remaining variables are deferred to the second phase. While executing the
first phase, we call a clause C; dangerous if both the following conditions hold:

1. k/2 literals of the clause C; have been fixed,;

2. C}; is not satisfied yet.

© Copyright Mitzenmacher and Upfal, 2003-2004

6.8 Explicit Constructions using the Local Lemma *

169

Phase I can be described as follows. Consider the variables x1, ..., x; sequen-
tially. If z; is not in a dangerous clause, assign it independently and uniformly at
random a value in {0, 1}.

A clause is a surviving clause if it is not satisfied by the variables fixed in Phase
I. Note that a surviving clause has no more than k/2 of its variables fixed in the first
phase. A deferred variable is a variable that was not assigned value in the first phase.
In Phase II, we use exhaustive search to assign values to the deferred variables to
complete a satisfying assignment for the formula.

In the next two lemmas we show that

1. the partial solution computed in Phase I can be extended to a full satisfying
assignment of F, and

2. with high probability the exhaustive search in Phase II is completed in time
polynomial in m.

Lemma 26. There is an assignment of values to the deferred variables such that all
the surviving clauses are satisfied.

Proof. Let H = (V| E) be a graph on m nodes, where V' = {1,...,m}, and (i,j) € E
if and only if C; N C; # 0. That is, H is the dependency graph for the original
problem. Let H' = (V', E’) be a graph with V' C V and E' C E, such that i € V'
if and only if C; is a surviving clause, and (i,7) € E' if and only if C; and C; share
a deferred variable. In the following discussion we do not distinguish between node i
and clause 1.

Consider the probability space defined by assigning a random value in {0,1}
independently to each deferred variable. The assignment of values to the non-deferred
variables in Phase I together with the random assignment of values to the deferred
variables defines an assignment to all the ¢ variables. For i = 1,...,m, let E; be
the event that surviving clause C; is not satisfied by this assignment. Associate the
event F; with node ¢ in V'. The graph H' is then the dependency graph for this set
of events.

A surviving clause has at least k/2 deferred variables, so
p="Pr(E;) <27%2
A variable appears in no more than 7' clauses, therefore the degree of the de-
pendency graph is bounded by
d= kT < k2°%.
For a sufficiently small constant o > 0,

Adp = 4k2°F2k/2 < 1

© Copyright Mitzenmacher and Upfal, 2003-2004

6.8 Explicit Constructions using the Local Lemma *

170

and therefore, by the Lovasz Local Lemma, there is an assignment for the deferred
variables that together with the assignment of values to variables in Phase I that
satisfies the formula. O

The assignment of values to a subset of the variables in Phase I partitions the
problem into up to m independent subformulas, so that each deferred variable appears
in only one subformula. The subformulas are given by the connected components of
H'. If we can show that each connected component in H' has size O(logm), then
each subformula will have no more than O(klogm) deferred variables. An exhaustive
search of all the possible assignments for all variables in each subformula can then be
done in polynomial time. Hence we focus on the following lemma:

Lemma 27. All connected components in H' are of size O(logm) with probability
1 —o(1).

Proof. Consider a connected component R of r vertices in H. If R is a connected
component in H' then all its r nodes are surviving clauses. A surviving clause is
either a dangerous clause or it shares at least one deferred variable with a dangerous
clause, that is, it has a neighbor in H' that is a dangerous clause. The probability
that a given clause is dangerous is at most 27%/2 since exactly k/2 of its variables
were given random values in Phase I, but none of these values satisfied the clause.
The probability that a given clause survives is the probability that this clause or at
least one of its direct neighbors is dangerous, which is bounded by

(d+1)27%/2

where again d = kT > 1.

If the survival of individual clauses were independent events, we would be in
excellent shape. However, from the description above, it is clear that such events
are not independent. Instead, we identify a subset of the vertices in R such that
the survival of the clauses represented by the vertices of this subset are independent
events. A 4-tree S of a connected component R in H is defined as follows:

1. S is a rooted tree.
2. Any two nodes in S are at distance at least 4 in H.

3. There can be an edge in S only between two nodes with distance exactly 4
between them in H.

4. Any node of R is either in S or is at distance three or less from a node in S.

Considering the nodes in a 4-tree proves useful because the event that a node u
in a 4-tree survives and the event that another node v in a 4-tree survives are actually
independent. Any clause that could cause u to survive has distance at least two from

© Copyright Mitzenmacher and Upfal, 2003-2004

6.8 Explicit Constructions using the Local Lemma *

171

any clause that could cause v to survive. Clauses at distance two share no variables,
and hence the events that they are dangerous are independent. We can conclude that
for any 4-tree S, the probability that the nodes in the 4-tree survive is at most

((d+1)27%),
taking advantage of the independence.

A maximal 4-tree S of a connected component R is the 4-tree with the largest
possible number of vertices. Since the degree of the dependency graph is bounded by
d, there are no more than

d+d(d—1)+d(d—-1)(d—-1) <d’ -1

nodes at distance three or less from any given vertex. We therefore claim that a
maximal 4-tree of R must have at least r/d® vertices. Otherwise, when we consider
the vertices of the maximal 4-tree S and all neighbors within distance three or less
of these vertices, we obtain fewer than r vertices. There must therefore be a vertex
of distance at least 4 from all vertices in S. If this vertex has distance exactly 4 from
some vertex in S, then it can be added to S, and therefore S is not maximal, yielding
a contradiction. If its distance is larger than 4 from all vertices in S, consider any
path that brings it closer to S; such a path must eventually pass through a vertex
whose distance at least 4 from all vertices in S and distance 4 from some vertex in
S, again contradicting the maximality of S.

To show that with probability 1 — o(1) there is no connected component R of
size r > clog, m for some constant ¢ in H', we show that there is no 4-tree of H of size
r/d? that survives with probability 1 — o(1). Since a surviving connected component
R would have a maximal 4-tree of size r/d®, the absence of such a 4-tree implies the
absence of such a component.

We need to count the number of 4-trees of size s = r/d® in H. We can choose
the root of the 4-tree in m ways. A tree with root v is uniquely defined by an Eulerian
tour that starts and ends at v and traverses each edge of the tree twice, once in each
direction. Since an edge of S represents a path of length 4 in H, at each vertex in
the 4-tree the Eulerian path can continue in up to d* different ways, and therefore
the number of 4-trees of size s = r/d® in H is bounded by

m(d4)2s — mdSr/d?’.
The probability that the nodes of each such 4-tree survives in H' is at most
((d+1)27%2)" = ((d +1)27%/?)

Hence the probability that H' has a connected component of size r is bounded by

r/d3

mdSr/d3 ((d—|— 1)2—k/2)1"/d3 S m2%(8a+2a7%) _ 0(1)

for r > clog, m, for a suitably large constant ¢ and a sufficiently small constant
a > 0. U

© Copyright Mitzenmacher and Upfal, 2003-2004

6.9 Lovasz Local Lemma: The General Case

172

We can conclude the following theorem:

Theorem 45. Consider a k-SAT formula with m clauses, where k is an even constant
and each variable appear in up to 2% clauses for a sufficiently small constant o > 0.
There s an algorithm that finds a satisfying assignment for the formula in expected
time polynomaial in m.

Proof. As we have described, if the first phase partitions the problem into subformulas
involving only O(klogm), then a solution can be found by solving each subformula
exhaustively in time polynomial in k. The probability the first phase partitions the
problem appropriately is 1 — o(1), so we only need to run phase 1 a constant number
of times on average before obtaining a good partition. The theorem follows. O

6.9 Lovasz Local Lemma: The General Case

For completeness we include the statement and proof of the general case of the Lovasz
Local Lemma.

Theorem 46. Let E, ..., E, be a set of events in an arbitrary probability space, and
let G = (V,E) be the dependency graph for these events. Assume that there ezist
T1,y ..., Ty € 10,1] such that for all 1 < i < n,

Pr(E;) < zillg jer(l — 2;),
then B
Pr(nis By = I (1 — ;).

Proof. Let S C {1,...,n}. We prove by induction on s = 0,...,n that if |[S| < s,
then for all k&)
PI‘(Ek | ijS' EJ) S Ty .

As in the case of the symmetric version of the Local Lemma, we must be careful that
the conditional probability is well-defined. This follows using the same approach as
in the symmetric case, so we focus on the rest of the induction.

The base case s = 0 follows from the assumption that

PI'(Ek) S xkﬂ(kyj)eE(l — x]) S T .

For the inductive step, let Sy = {j € S| (k,j) € E} and Sy = S 5. If Sy = 5
then Ej is mutually independent of the events E;, ¢ € S, and

PI'(Ek | ﬂjes E]) == PI'(Ek) S Tl

We continue with the case |Sy| < s.

© Copyright Mitzenmacher and Upfal, 2003-2004

6.9 Lovasz Local Lemma: The General Case

173

We again use the notation
Fs = NjesE;,
and similarly define Fs, and Fg,, so that Fg = Fg, N F,.
Applying the definition of conditional probability,

PI'(Ek N Fs)

PI'(F]]c | Fs) = PI‘(FS)

(6.9)

Applying again the definition of conditional probability, the numerator of (6.9) can
be written as:

PI'(Ek N Fs) = PI'(F]]c N FSI | FSQ) PI'(FSQ),
and the denominator can be written as:

PI'(Fs) = PI'(I'?S1 |F52)PI'(F52)

Canceling the common factor we get:

PI'(Ek N FSI | FSQ)

Prife | Fs) = Pr(Fs, | Fs,)

(6.10)

Since the probability of an intersection of events is bounded by the probability
of each of the events, and since F}, is independent of the events in Sy, we can bound
the numerator of (6.10) by:

PI'(Ek N FSI | F52) S PI"(Ek |F52) = Pr(Ek) S ka(k,j)eE(l — l‘j)

To bound the denominator of (6.10) let

Sv={ji,---Jr}-
Applying the induction hypothesis, we have

Pr(Fs, | Fs,) = Pr(Njes,Ej | Njes, Ej)

r

=[] - Pr(E;, | (NZ1E,) N (Njes, By))

=1
r

> H(l - xji)
=1

>] -
(k.j)EE

© Copyright Mitzenmacher and Upfal, 2003-2004

6.10 Exercises 174

Using the upper bound for the numerator and the lower bound for the denom-
inator we prove the induction hypothesis:

PI'(Ek | ijS' Ej) = PI‘(Ek | Fs)
PI'(F]]c N FSI | FSQ)
PI"(FSI | FSz)
Tl jyep(l — ;)

Mk jyer(l — ;)
= Tk-

The theorem now follows from:

Pr(Ey,...,E,) = [[Pr(Ei| By, ..., Eiy)
i=1

n

et H(]_ —PI'(Ez | El;---aEi—l))
=1

[[a-=)>o.

=1

v

6.10 Exercises

1. Consider an instance of SAT with m clauses, where every clause has exactly k
literals.

(a) Give a Las Vegas algorithm that finds an assignment that satisfies at least
m(1 — 27F) clauses, and analyze its expected running time.
(b) Give a derandomization of the randomized algorithm using the method of

conditional expectations.

2. (a) Prove that for for every integer n, there exists a coloring of the edges of the
complete graph K, by two colors so that the total number of monochro-
matic copies of K, is at most (2)2_5.

(b) Give a randomized algorithm for finding a coloring with at most (%)27
monochromatic copies of K, that runs in expected time O(n?).

(c¢) Show how to construct such a coloring deterministically in polynomial time
using the method of conditional expectations.

© Copyright Mitzenmacher and Upfal, 2003-2004

6.10 Exercises 175

3. Given an n-vertex undirected graph G = (V| F), consider the following method
of generating an independent set. Given a permutation o of the vertices, define
a subset S(o) of the vertices as follows: for each vertex i, i € S(o) if and only
if no neighbor j of 7 precedes ¢ in the permutation o.

(a) Show that each S(o) is an independent set in G.

(b) Suggest a natural randomized algorithm to produce o for which you can
show that the expected cardinality of S(o) is

n

1
= dl—|—1

where d; denotes the degree of vertex .

(c) Prove that G has an independent set of size at least Y

1= 1d+1

4. Consider the following 2-player game. The game begins with %k tokens, placed
at the number 0 on the integer number line spanning [0,n]. Each round, one
player, called the chooser, selects two disjoint and non-empty sets of tokens A
and B. (The sets A and B need not cover all the remaining tokens, they only
need to be disjoint.) The second player, called the remover, takes all the tokens
from one of the sets off the board. The tokens from the other set all move up
one space on the number line from their current position. The chooser wins if
any token ever reaches n. The remover wins if the chooser finishes with one
token that has not reached n.

(a) Give a winning strategy for the chooser when k > 2.

(b) Show using the probabilistic method that there must exist a winning strat-
egy for the remover when £ < 2".

(c) Explain how to use the method of conditional expectations to derandomize
the winning strategy for the remover when k£ < 2".

5. We have shown using the probabilistic method that if a graph G has n nodes
and m edges, there exists a partition of the n nodes into sets A and B so that
at least m/2 edges cross the partition. Improve this result slightly: show that
there exists a partition so that at least 5 edges cross the partition.

6. We can generalize the problem of finding a large cut to finding a large k-cut.
A k-cut is a partition of the vertices into k disjoint sets, and the value of a
cut is the weight of all edges crossing from one of the k sets to another. In
section 6.2.1, we considered 2-cuts when all edges had the same weight 1, and
showed using the probabilistic method that any graph G with m edges has a
cut with value at least m/2. Generalize this argument to show that any graph
G with m edges has a k-cut with value at least (kK — 1)m/k. Show how to use
derandomization, following the argument of section 6.3, to give a deterministic
algorithm for finding such a cut.

© Copyright Mitzenmacher and Upfal, 2003-2004

6.10 Exercises 176

7. A hypergraph H is a pair of sets (V, F'), where V' is the set of vertices and F is
the set of hyperedges. Every hyperedge in E is a subset of V. In particular, an
r-uniform hypergraph is one where the size of each edge is r. For example, a 2-
uniform hypergraph is just a standard graph. A dominating set in a hypergraph
H is a set of vertices S C V such that e() S # 0 for every edge e € E. That is,
S hits every edge of the hypergraph.

Let H = (V, E) be an r-uniform hypergraph with n vertices and m edges. Show
that there is a dominating set of size np + (1 — p)"m for every real number
0 < p < 1. Also, show that there is a dominating set of size (m + nlogr)/r.

8. Show that for every integer n there exists a way to two-color the edges of K,
so that there is no monochromatic clique of size k£ when

r=n-— <Z> 21-(5).

Hint: Start by two-coloring the edges of K,,, then fix things up.

9. A tournament is a graph on n vertices with exactly one directed edge between
each pair of vertices. If vertices represent players, each edge can be thought
of as the result of a match between the two players; the edge points to the
winner. A ranking is an ordering on the n players from best to worst (ties are
not allowed). Given the outcome of a tournament, one might wish to determine
a ranking of the players. A ranking is said to disagree with a directed edge from
y to z if y is ahead of in the ranking (since x beat y in the tournament).

(a) Prove that for every tournament there exists a ranking that disagrees with
at most 50% of the edges.

(b) Prove that for sufficiently large n there exists a tournament such that every
ranking disagrees with at least 49% of the edges in the tournament.

10. A family of subsets F of {1,2,...,n} is called an antichain if there is no pair
of sets A and B in F satisfying A C B.

(a) Give an example of F where |F| = (Ln;LZJ)'

(b) Let fr be the number of sets in F with size k. Show that
POELES!
k=0 (k)

Hint: choose a random permutation of the numbers from 1 to n, and let
X = 1 if the first £ numbers in your permutation yield a set in F. If
X =37, X}, what can you say about X7

(c) Argue that |F| < (LnT/L2J) for any antichain F.

© Copyright Mitzenmacher and Upfal, 2003-2004

6.10 Exercises

177

11.

12.

13.

14.

15.

In section 6.5.1, we bounded the variance of the number of 4-cliques in a random
graph in order to use the second moment method. Show how to calculate the
variance directly, using the equality from exercise 9: if X =Y 7_, X, is the sum
of Bernoulli random variables, then

E[X?] = ipr(xi = DE[X | X; = 1]

Consider the problem of whether graphs in G,,, have cliques of constant size
k. Suggest an appropriate threshold function for this property. Generalize the
argument used for cliques of size 4, using either the second moment method or
the conditional expectation inequality, to prove that your threshold function is
correct for cliques of size 5.

Consider a graph in Gy, ,, with p = cun - Use the second moment method
or the conditional expectation inequality to prove that if ¢ < 1, then for any
constant € > 0, when n is sufficiently large the graph has isolated vertices with
probability at least 1 — e.

Consider a graph in G, p, with p = % Let X be the number of triangles in the
graph, where a triangle is a clique with three edges. Show that

Pr(X > 1) < 1/6,

and that
lim Pr(X >1) > 1/7.

n—o0

Hint: use the conditional expectation inequality.

Consider the set balancing problem of Section 4.4. We claim that there is an n
by n matrix A for which ||Abl||s is Q(y/n) for any choice of b. For convenience
here we assume that n is even.

(a) We have shown in (5.5) that

n! <eyn (ﬁ)
e
Using similar ideas, show that
n
n! > ayvn (ﬁ>
e

for some positive constant a.

(b) Let by, bo, ..., by all equal 1, and let by, /041, bmjat2; - - -, by all equal —1.
Let Y7,Y5,...,Y,, each be chosen independently and uniformly at random

Copyright Mitzenmacher and Upfal, 2003-2004

6.10 Exercises 178

from {0,1}. Show that there exists a positive constant ¢ such that for
sufficiently large m,
Pr (

S b,
=1

(Hint: condition on the number of Y; that are equal to 1.)

(c) Let by, by, ..., b, each be equal to either 1 or —1. Let Y1,Y5,...,Y], each
be chosen independently and uniformly at random from {0, 1}. Show that
there exists a positive constant ¢ such that for sufficiently large m,

.

(d) Prove that there exists a matrix A with the property stated above.

)0

then it is possible to color the edges of K, so that it has no monochromatic K}
subgraph.

> cﬁ) > 1/2.

m

> b

=1

> q/ﬁ) > 1/2.

16. Show that if

17. Use the general form of the Lovasz Local Lemma to prove that the symmetric
version of the Lovasz Local Lemma can be improved by replacing the condition
4dp < 1 by the weaker condition ep(d + 1) < 1.

18. Let G = (V, E) be an undirected graph and suppose each v € V' is associated
with a set S(v) of 8 colors, where r > 1. Suppose, in addition, that for
each v € V and ¢ € S(v) there are at most r neighbors u of v such that
¢ lies in S(u). Prove that there is a proper coloring of G assigning to each
vertex v a color from its class S(v). You may wish to consider the events
{Aupc = v and v are both colored with color c}.

© Copyright Mitzenmacher and Upfal, 2003-2004

Chapter 7

Markov Chains and Random Walks

Markov chains provide a simple but powerful framework for modeling random pro-
cesses. We start this chapter with the basic definitions related to Markov chains, and
then show how Markov chains can be used to analyze simple randomized algorithms
for the 2-SAT and 3-SAT problems. Next we study the long-term behavior Markov
chains, explaining the classifications of states and conditions for convergence to a sta-
tionary distribution. We apply these technique to analyze simple gambling schemes
and a discrete version of a Markovian queue. Of special interest is the limiting behav-
ior of random walks on graphs. We prove bounds on the covering time of a graph and
use this bound to develop a simple randomized algorithm for the s — ¢ connectivity
problem. Finally, we apply Markov chains technique to resolve a subtle probability
problem known as Parrondo’s Paradox.

7.1 Markov Chains: Definitions and Representa-
tions

A stochastic process X = {X(t) : t € T} is a collection of random variables. The
index ¢ often represents time, and in that case the process X models the value of a
random variable X that changes over time.

We call X(t) the state of the process at time ¢. In what follows, we use X;
interchangeably with X (¢). If for all ¢, X, assumes values from a countably infinite
set, then we say that X is a discrete space process. If X; assumes values from a finite
set, then the process is finite. If T is a countably infinite set we say that X is a
discrete time process.

In this chapter we focus on a special type of discrete time, discrete space,
stochastic process Xy, X1, X5, ... in which the value of X; depends on the value of
X;_1, but not on the sequence of states that lead the system to that value.

© Copyright Mitzenmacher and Upfal, 2003-2004

7.1 Markov Chains: Definitions and Representations

180

Definition 23. A discrete time stochastic process Xg, X1, Xa,... is a Markov chain
ift
PY(Xt = Clt|th1 =1, X2 = Q4_2,..., X9 = Clo) = Pr(Xt = at|Xt71 = atq)
= P 0

The above definition expresses that the state X; depends on the previous state
X;_1, but it is independent of the particular history of how the process arrived at
state X;_y. This is called the Markov property or memoryless property, and it is
what we mean when we say that a chain is Markovian. It is important to note that
the Markov property does not imply that X; is independent of the random variables
Xo, Xy, ..., X 9; it just implies that any dependency of X; on the past is captured
in the value of X;_;.

Without loss of generality we assume that the discrete state space of the Markov
chain is {0,1,2,...,k} (or {0,1,2,...} if it is countably infinite). The transition
probability

Pi,j = PY(Xt =J | Xy = Z)
is the probability that the process moves from 7 to j in one step. The Markov property
implies that the Markov chain is uniquely defined by the one step transition matriz:

)

PO,O PO,I PO,]'
PI,O Pl,l Pl,j
P= : E U
Py Py - P

’j

That is, the entry in the 7th row and jth column is the transition probability F; ;. It
follows that for all i, >, P ; = 1.

This transition matrix representation of a Markov chain is convenient for com-
puting the distribution of future states of the process. Let p;(t) denote the probability
that the process is at state 7 at time t. Let p(t) = (po(t), p1(t), p2(t),...) be the vector
giving the distribution of the state of the chain at time . Summing over all possible
states at time ¢t — 1 we have

pi(t) = pit—1)P;;,

>0

orf
p(t) = p(t —1)P.
*Strictly speaking, this is a time-homogeneous Markov chain; this will be the only type we study

in this book.
tOperations on vectors are generalized to a countable number of elements in the natural way.

© Copyright Mitzenmacher and Upfal, 2003-2004

7.1 Markov Chains: Definitions and Representations 181

1 1
4 3 1

0 1/4 0 3/4
1/2 0 1/3 1/6

P=10 0o 1 o
4 0 1/2 1/4 1/4
(a) A Markov chain (b) The transition matrix

Figure 7.1: A Markov chain and the corresponding transition matrix.

We represent the probability distribution as a row vector and multiply pP in-
stead of Pp to conform with the interpretation that starting with a distribution
p(t — 1), and applying the operand P, we arrive at the distribution p(t).

For any n > 0 we define the n-step transition probability

P PI'(XH_n:] |Xt:7')

ij
as the probability that the chain moves from state i to state j in exactly n steps.
Conditioning on the first transition from ¢ we have

Pl =) Pl (7.1)

k>0

Let P™ be the matrix whose entries are the n-step transition probabilities, so that
the entry in the ith row and jth column is P}, Then applying (7.1) we have

P® =p.pr-1

and by induction on n
P® = P~

Thus, for any t > 0 and n > 1,

Bt +n) = p(t)P".

Another useful representation of a Markov chain is by a directed, weighted graph
D = (V, E,w). The set of vertices of the graph is the set of states of the chain. There
is a directed edge (i,7) € E if and only if P, ; > 0, in which case the weight w(7, j) of
the edge (4, j) is given by w(i, j) = P, j. Self-loops, where an edge starts and ends at
the same vertex, are allowed. Again, for each i we require that Z(i,j)eE w(i,j) = 1.
A sequence of states visited by the process is represented by a directed path on the

© Copyright Mitzenmacher and Upfal, 2003-2004

7.1 Markov Chains: Definitions and Representations

182

graph. The probability that the process follows this path is the product of the weights
of the path’s edges.

Figure 7.1 gives an example of a Markov chain and the correspondence between
the two representations. Let us consider how we might calculate with each represen-
tation the probability of going from state 0 to state 3 in exactly 3 steps. With the
graph, we consider all the paths that go from state 0 to state 3 in exactly 3 steps.
There are only four such paths: 0 —1-0—-3,0—-1—-3—-3,0—-3—-1—3, and
0 — 3 — 3 — 3. The probabilities that the process follows each of these paths are 3/32,
1/96, 1/16, and 3/64, respectively. Summing these probabilities, we find that the
total probability is 41/192. Alternatively, we can simply compute

3/16 7/48 29/64 41/192
5/48 5/24 79/144 5/36
0 0 1 0

1/16 13/96 107/192 47/192

P’ =

The entry P(i3 = 41/192, giving the correct answer. The matrix is further helpful if
we want to know the probability of ending in state 3 after 3 steps when we begin in
a state chosen uniformly at random from the four states. This can be computed by
calculating

(1/4,1/4,1/4,1/4)P? = (17/192,47/384,737/1152, 43/288),

and the last entry, 43/288, is the correct answer.

7.1.1 Application: A randomized algorithm for 2-Satisfiability

Recall from section 6.2.2 that an input to the general Satisfiability (SAT) problem
is a Boolean formula given as the conjunction (AND) of a set of clauses, where each
clause is the disjunction (OR) of literals, and a literal is Boolean variables or the
negation of a Boolean variable. A solution to an instance of a SAT formula is an
assignment of the variables to the values True (T) and False (F) such that all the
clauses are satisfied. The general SAT problem is NP-Hard. We analyze here a simple
randomized algorithm for 2-SAT, a restricted case of the problem that is solvable in
polynomial time.

For the k-Satisfiability (k-SAT) problem, the satisfiability formula is restricted
so that each clause has exactly k literals. Hence an input for 2-SAT has no more than
two literals per clause. The following expression is an instance of 2-SAT.

(k1 VT) A (@7 VT3)A (21 V 22) A (24 V T3) A (24 V T7). (7.2)

One natural approach to finding a solution for a 2-SAT formula is to start with
an assignment, look for a clause that is not satisfied, and change the assignment so

© Copyright Mitzenmacher and Upfal, 2003-2004

7.1 Markov Chains: Definitions and Representations

183

that clause becomes satisfied. If there are two literals in the clause, then there are
two possible changes to the assignment that will satisfy the clause. Our algorithm
decides which of these changes to try randomly. The algorithm is presented below;
in the algorithm, m is an integer parameter that determines the probability that the
algorithm terminates correctly:

2-SAT Algorithm
1. Start with an arbitrary truth assignment.
2. Repeat up to 2kn? times, terminating if all clauses are satisfied:

(a) Choose an arbitrary clause that is not satisfied.

(b) Choose uniformly at random one of the literals in the clause and switch
the value of its variable.

3. If a valid truth assignment has been found, return it.

4. Otherwise, return that the formula is unsatisfiable.

In the instance given in 7.2, if we begin with all variables set to 0, the clause
(1 V x3) is not satisfied. The algorithm might therefore choose this clause, and then
select 1 to be set to 1. In this case the clause (x4 V T7) would be unsatisfied and
the algorithm might switch the value of a variable in that clause, and so on.

If the algorithm terminates with a truth assignment, it clearly returns a correct
answer. The case where the algorithm does not find a truth assignment requires
some care, and we will return to this point later. Assume for now that the formula
is satisfiable, and that the algorithm will actually run as long as necessary to find a
satisfying truth assignment.

Let n be the number of variables in the formula. In the instance 7.2, n = 4.
We are mainly interested in the number of iterations of the while loop executed by
the algorithm. We refer to each time the algorithm changes a truth assignment as a
step. Since a 2-SAT formula has O(n?) clauses, each step can be executed in O(n?)
time. Faster implementations are possible but we do not consider them here. Let
S represent a satisfying assignment for the n variables and A; represent the variable
assignment after the i-th step of the algorithm. Let X; denote the number of variables
in the current assignment A; that have the same value as in the satisfying assignment
S. When X; = n the algorithm terminates with a satisfying assignment. Starting
with X; < n, we consider how X; evolves over time, and in particular how long it
takes before X; reaches n.

First, if X; = 0, then for any change in variable value on the next step we have
Xi+1 = 1. Hence

Suppose that 1 < X; < n—1. At each step, we choose a clause that is unsatisfied.

© Copyright Mitzenmacher and Upfal, 2003-2004

7.1 Markov Chains: Definitions and Representations

184

Since S satisfies the clause, that means that A; and S disagree on the value of at least
one of the variables in this clause. Since the clause has no more than two variables,
the probability that we increase the number of matches is at least 1/2; the probability
that we increase the number of matches could be 1, if we are in the case where A; and
S disagree on the value of both variables in this clause. It follows that the probability
that we decrease the number of matches is at most 1/2. Hence, for 1 < j <n —1,

PriXipn=j+1|X;=j) = 1/

The stochastic process Xy, X1, Xo,... is not necessarily a Markov chain, since
the probability that X; increases could depend on whether A; and S disagree on one
or two variables in the unsatisfied clause the algorithm chooses at that step. This in
turn might depend on the clauses that have been considered in the past. However,
consider the following Markov chain Yj, Y7, Ys, ..

Yo = Xo;

Pr(Yiy, =1|Y,=0) = 1;
Pr(Yin=j+1|Y;=j) = 1/%
Pr(Vijn=7-1Y, =35 = 1/2

The Markov chain Yp, Y), Y5, ... is a pessimistic version of the stochastic process
Xo, X1, Xs, ..., in that where X; increases at the next step with probability at least
1/2,Y; increases with probability exactly 1/2. It is therefore clear that the expected
time to reach n starting from any point is larger for the Markov chain Y than for the
process X, and we use this fact hereon. (A stronger formal framework for such ideas
is developed later in Chapter 11.)

This Markov chain models a random walk on an undirected graph G. We
elaborate further on random walks in section 7.4. The vertices of G are the integers
0...n,and for 1 <7 <mn —1, node 7 is connected to node i — 1 and node z + 1. Let
h; be the expected number of steps to reach n when starting from j. For the 2-SAT
process, h; is an upper bound on the expected number of steps to fully match S when
starting from a truth assignment that matches S in j locations.

Clearly h,, = 0, and hg = h; + 1, since from hy we always move to h; in one
step. We use linearity of expectations to find an expression for other values of h;.
Let Z; be a random variable representing the number of steps to reach n from state
j. Now consider starting from state j, where 1 < j < n — 1. With probability 1/2,
the next state is j — 1, and in this case Z; = 1+ Z;_;. With probability 1/2, the next
step is j + 1, and in this case Z; = 1 + Z;,. Hence

1 1
E[ZJ] - E 5(1 + Zj—l) + 5(1 + Zj+1)

But E[Z;] = hj, so by applying the linearity of expectations,
hj—l +1 4 hj+1 +1 _ hj—l I h]’+1

1.
2 2 2 2+

hi =

© Copyright Mitzenmacher and Upfal, 2003-2004

7.1 Markov Chains: Definitions and Representations 185

We therefore have the following system of equations:

h, = 0;

h;_ h;
h; =]TI+JTH+1,1§j§n—1;
h() - h1—|—1

We can show inductively that for 0 < j <n —1,
hj=hj+25+1.
It is true when j = 0, as hy = hg — 1. For other values of j, we use the equation

hj—v hj
—— +1
2 + 2 +

h]’ —
to obtain

h]’+1 - 2hj—hj_1—2
= 2h;— (hj+2(j —1)+1) -2
= h;j—2j—1,

using the induction hypothesis in the second line. We can conclude that

n—1
h0:h1+1:h2+1+3:...:22i+1:n2.
1=0

An alternative approach for solving the system of equations for the h; is to
guess and verify the solution h; = n? — j2. The system has n+ 1 linearly independent
equations and n 4 1 unknowns, and hence there is a unique solution for each value of
n. Hence if this solution satisfies the above equations, it must be correct. We have
h, =0. For 1 <j <n —1, we check

- (-1 n’-(+1)°

hy = > + ; +1

and

ho = (n2—1)+1

= 7"62.

Thus we have proven the following fact:

© Copyright Mitzenmacher and Upfal, 2003-2004

7.1 Markov Chains: Definitions and Representations

186

Lemma 28. Assume that a 2-SAT formula with n variables has a satisfying as-
signment, and that the 2-SAT algorithm is allowed to run until it finds a satisfying
assignment. Then the algorithm finds a satisfying assignment in n? expected steps.

We now return to the issue of dealing with unsatisfiable formulae, by forcing
the algorithm to stop after a fixed number of steps.

Theorem 47. The 2-SAT algorithm always returns a correct answer if the formula
15 unsatisfiable. If the formula is satisfiable, with probability at least 1 — 27™ the
algorithm returns a satisfying assignment. Otherwise it incorrectly returns that the
formula 1s unsatisfiable.

Proof. 1t is clear that if there is no satisfying assignment then the algorithm correctly
returns that the formula is unsatisfiable. Suppose the formula is satisfiable. Divide
the execution of the algorithm into segments of 2n? steps each. What is the condi-
tional probability that the algorithm did not find a satisfying assignment in the i-th
segment, given that no satisfying assignment was found in the first 1 —1 segments? By
Lemma 28 the expected time to find a satisfying assignment, regardless of its starting
position, is bounded by n?. Let Z be the number of steps, from the start of segment
i, until the algorithm finds a satisfying assignment. Applying Markov’s Inequality,
9 n? 1
Pr(Z > 2n°) < 5 = 3
Failures in disjoint segments are independent, and thus the probability that the al-
gorithm fails to find a satisfying assignment is bounded by (5)™. O

7.1.2 Application: A randomized algorithm for 3-Satisfiability

We now generalize the technique used to develop an algorithm for 2-SAT to obtain
a randomized algorithm for 3-SAT. This problem is NP-complete, so it would be
rather surprising if a randomized algorithm could solve the problem in expected time
polynomial in n.¥ We present a randomized 3-SAT algorithm that solves 3-SAT in
expected time that is exponential in n, but is the best known proven bounds for any
3-SAT algorithm.

Let us first consider the performance of a variant of the randomized 2-SAT
algorithm when a applied to a 3-SAT problem. The basic approach is the same as in
the previous section:

!Technically, this would not settle the P = NP question, since we would be using a randomized
algorithm and not a deterministic algorithm to solve an NP-hard problem. It would, however, have
similar far-reaching implications about the ability to solve all NP-complete problems.

© Copyright Mitzenmacher and Upfal, 2003-2004

7.1 Markov Chains: Definitions and Representations

187

3-SAT Algorithm
1. Start with an arbitrary truth assignment.
2. Repeat until all clauses are satisfied:

(a) Choose an arbitrary clause that is not satisfied.

(b) Choose one of the literals uniformly at random, and change the value of
the variable in the current truth assignment.

As in the analysis of the 2-SAT algorithm, assume that the formula is satisfiable,
and let S be a satisfying assignment. Let the assignment after ¢ steps of the process
be A;, and let X; be the number of variables in the current assignment A; that
match S. Following the same reasoning as for the 2-SAT algorithm, we have that for

Pr(Xjp =j+1|X;=)
Pr(Xipn=j—-1|Xi=))

1/3;

>
< 2/3.

These equations follow because at each step we choose an unsatisfied clause, so A;
and S must disagree on at least one variable in this clause. With probability at least
1/3, we increase the number of matches between the current truth assignment and
S. Again we can obtain an upper bound on the the expected number of steps until
X,; = n by analyzing a Markov chain Yj, Y7, ..., such that Y; = X, and

Pr(Y;;. =1]Y;=0) = 1;
Pr(Yin=j+11Yi=j) = 1/3
Pr(Yi=j—1|Y,=j) = 2/3.

In this case, the chain is more likely to go down than up. If we let h; be
the expected number of steps to reach n when starting from j, then the following
equations hold for h;:

hn = 0;

2h,_1 h;
hj = %+%+1,1§j§n—1;
hg - h1+].

Again, these equations have a unique solution, given by
hy = 2"t _9it2_3(p_ j),
or the solution can be found by using induction to prove the relationship
hj = hj1+2717=3.

© Copyright Mitzenmacher and Upfal, 2003-2004

7.1 Markov Chains: Definitions and Representations

188

We leave it as an exercise to verify that that this solution indeed satisfies the above
equations.

The above process takes ©(2") steps on average to find a satisfying assignment.
This result is not very compelling, as there are only 2" truth assignments to try!

With some insight, however, we can significantly improve the process. There
are two key observations:

e If we choose an initial truth assignment uniformly at random, the number of
variables that match S has a binomial distribution with expectation n/2. With
an exponentially small but non-negligible probability, the process starts with
an initial assignment that matches S in significantly more than n/2 variables.

e Once the algorithm starts, it is more likely to move toward 0 than toward n. The
longer we run the process, the more likely it has moved toward 0. Therefore
we are better off re-starting the process with many randomly chosen initial
assignments and running the process each time for a small number of steps,
rather than running the process for many steps on the same initial assignment.

Based on these ideas, we consider the following modified algorithm:

Modified 3-SAT Algorithm
1. Repeat until all clauses are satisfied:

(a) Start with a truth assignment chosen uniformly at random.

(b) Repeat the following up to 3n times terminating if a satisfying assignment
is found.
i. Choose an arbitrary clause that is not satisfied.

ii. Choose one of the literals uniformly at random, and change the value
of the variable in the current truth assignment.

The modified process has up to 3n steps to reach a satisfying assignment starting
at a random assignment. If it fails to find a satisfying assignment in 3n steps, it re-
starts the search with a new randomly chosen assignment. We now determine how
many times the process needs to restart before it reaches a satisfying assignment.

Let ¢ represent the probability that the modified process reaches S (or some
other satisfying assignment) in 3n steps starting with a truth assignment chosen
uniformly at random. Let g; represent the probability that our modified algorithm
reaches S (or some other satisfying assignment) when it starts with a truth assignment
that includes exactly j variables that do not agree with S. Consider a particle moving
on the integer line, with probability 1/3 of moving up by one and probability 2/3 of
moving down by one. Notice that

e @)

© Copyright Mitzenmacher and Upfal, 2003-2004

7.1 Markov Chains: Definitions and Representations

189

is the probability of exactly k¥ moves down and k4 j moves up in a sequence of j + 2k
moves. It is therefore a lower bound on the probability that the algorithm reaches a
satisfying assignment within j + 2k < 3n steps, starting with an assignment that has
exactly j variables that did not agree with S. That is,

. 2K\ 2\ 1\t
; max = = .
U= mS Uk 3) \3
In particular, consider the case where k£ = j. In that case we have
37\ 72\’ /1\¥
g = . 5 5] -
J 3 3

We use Stirling’s formula to approximate (?’j) Stirling’s formula is similar to the
bounds (5.2) and (5.5) we have previously proven for factorials. Stirling’s formula is
tighter, which proves useful for this application. We use the following loose form:

Lemma 29. Stirling’s formula:

Varm (2)" <t < 2\/%(%)’”.

(&

<3;'> _ 3))!
j 71(27)! | .)
4\%3'7\/—3;@ (3?]> <%> <3>
VB f2ny
N <4>
5

for a constant ¢ = Y. Thus,

Hence

8/
37\ 2\ [1\¥
g > . - -

J 3 3

c 27\ /2\’ [1\¥
> [= Z Z
= /7 \4 3 3
. ¢1

Having a lower bound for ¢; we can now derive a lower bound for ¢, the probability
that the process reaches a satisfying assignment in 3n steps, starting with a random
assignment.

© Copyright Mitzenmacher and Upfal, 2003-2004

7.2 Classification of States

190

n
qg = Z Pr(a random assignment has j mismatches with S) - ¢;
=0

NOIOEE

J=0

Y

AV4

o
3
N
DN | —
N——

S
R
(=]

3
~_
/N
N =
N~

o
=

3

<
=
Ko

where in (7.3) we used Y7, (%) (%)‘7 (1) =1+ 5)™

Assuming that a satisfying assignment exists, the number of random assign-
ments the process tries before finding a satisfying assignment is a geometric random
variable with parameter ¢. The expected number of assignments tried is 1/¢, and for
each assignment the algorithm uses at most 3n steps. Thus, the expected number of
steps until a solution is found is bounded by O (n3/2 (%)n) As in the case of 2-SAT,
we can use the modified 3-SAT process above to give an algorithm that either finds
a satisfying assignment or terminates after a number of steps that is successful with
high probability.

7.2 Classification of States

A first step in analyzing the long-term behavior of a Markov chain is to classify
its states. In the case of a finite Markov chain, this is equivalent to analyzing the
connectivity structure of the directed graph representing the Markov chain.

Definition 24. State i is accessible from state j if for some integer n > 0, P"; > 0.
If two states © and j are accessible from each other we say that they communicate,
and we write 1 <> j.

In the graph representation of a chain, 7 <+ j if and only if there are directed
paths connecting 7 to j and j to .

The communicating relation defines an equivalence relation. That is, the rela-
tion is

1. Reflexive: for any state i, i <> ;

© Copyright Mitzenmacher and Upfal, 2003-2004

7.2 Classification of States

191

2. Symmetric: if ¢ <> j then j < 7; and

3. Transitive: if i <+ j and j < k, then 7 + k.

Proving this is left as exercise 4. Thus, the communication relation partitions the
states into disjoint equivalence classes, which we refer to as communicating classes. It
might be possible to move from one class to the other, but in that case it is impossible
to return to the first class.

Definition 25. A Markov chain is irreducible if all states belong to one communi-
cating class.

In other words, a Markov chain is irreducible if for every pair of states, there is
a non-zero probability that the first state can reach the second. We therefore have
the following lemma:

Lemma 30. A finite Markov chain is irreducible if and only if its graph representation
1 a strongly connected graph.

Next we distinguish between transient and recurrent states. Let r;; denote the
probability that starting at state ¢ the first transition to state j occurred at time ¢,
that is,

ri;=Pr(Xy=jandfor 1 <s<t—1 X,#j|Xo=1).

Definition 26. A state is recurrent if Y, i, =1, and it is transient if Y, rf; <
1. A Markov chain is recurrent if every state in the chain is recurrent. -

If state ¢ is recurrent, then once the chain visits that state, it will, with proba-
bility 1, eventually return to that state. Therefore the chain will visit state 7 over and
over again, infinitely often. On the other hand if state ¢ is transient, then starting at
i the chain will return to ¢ with some fixed probability p = 3., 7f;. In this case, the
number of times the chain visits 4 when starting at 7 is given by a geometric random
variable. If one state in a communicating class is transient (respectively recurrent),
then all states in that class are transient (respectively recurrent); proving this is left
as exercise H.

We denote the expected time to return to state ¢ when starting at state ¢ by
hii =Y 4y tori ;. Similarly, for any pair of states i and j we denote by h; j = >, t-7;
the expected time to first reach j from state ¢. It may seem that if a chain is recurrent,
so that we visit a state ¢ infinitely often, then h;; should be finite. This is not the
case, which leads us to the following definition:

Definition 27. A recurrent state ¢ is positive recurrent if h;; < co. Otherwise, it is
null recurrent.

© Copyright Mitzenmacher and Upfal, 2003-2004

7.2 Classification of States

192

To give an example of a Markov chain that has null recurrent states, consider
a chain whose states are the positive integers. From state , the probability of going
to state 7 + 1 is i/(i + 1). With probability 1/(i + 1), the chain returns to state 1.
Starting at state 1, the probability of not having returned to state 1 within the first
t steps is

-2+ -
i+l i+l

Hence the probability of never returning to state 1 from state 1 is 0, and state 1 is
recurrent. It follows that 1
t

T)

The expected number of steps until the first return to state 1 from state 1, however,

is o ©
hyy = tert = —

t=1

which is unbounded.

In the above example, we had an infinite number of states. This is necessary
for null recurrent states to exist. The proof of the following important lemma is left
as exercise 9:

Lemma 31. In a finite Markov chain,

1. At least one state is recurrent;

2. All recurrent states are positive recurrent.

Finally, for our later study of limiting distributions of Markov chains we will
need to define what it means for a state to be aperiodic. As an example of periodicity,
consider a random walk whose states are the positive integers. When at state i, with
probability 1/2 the chain moves to i + 1, and with probability 1/2 the chain moves
to ¢ — 1. If the chain starts at state 0, then it can be at an even-numbered state only
after an even number of moves, and it can be at an odd-numbered state only after an
odd number of moves. This is an example of periodic behavior.

Definition 28. A state j in a discrete time Markov chain is periodic if there exists
an integer A > 1 such that Pr(X; s = j | Xy = j) = 0 unless s is divisible by A. A
discrete time Markov chain is periodic if any state in the chain is periodic. A state
or chain that is not periodic is aperiodic.

In our example, every state in the Markov chain is periodic because for every
state j, Pr(Xy s =7 | Xi = j) = 0 unless s is divisible by 2.

We end this section with an important corollary about the behavior of finite
Markov chains.

© Copyright Mitzenmacher and Upfal, 2003-2004

7.2 Classification of States

193

Definition 29. An aperiodic, positive recurrent state is an ergodic state. A Markov
chain is ergodic if all its states are ergodic.

Corollary 9. Any finite, irreducible, and aperiodic Markov chain is an ergodic chain.

Proof. A finite chain has at least one recurrent state by Lemma 31, and if the chain
is irreducible, all of its states are recurrent. In a finite chain, all recurrent states
are positive recurrent by Lemma 31, and thus all the states of the chain are positive
recurrent and aperiodic. The chain is therefore ergodic. O

7.2.1 Example: The Gambler’s Ruin

When a Markov chain has more than one class of recurrent states we are often inter-
ested in the probability that the process will enter and thus be absorbed in a given
communicating class.

For example consider a sequence of independent, fair gambling games between
two players. In each round a player wins a dollar with probability 1/2 or loses a dollar
with probability 1/2. The state of the system at time ¢ is the number of dollars won
by player 1. If player 1 has lost money, this number is negative. The initial state is
0.

It is reasonable to assume that there are numbers ¢; and /5 such that player ¢
cannot lose more than ¢; dollars, and thus the game ends when it reaches one of the
two states —/; or f5. At this point, one of the gambler’s is ruined; that is, he has lost
all his money. To conform with the formalization of a Markov chain we assume that
for each of these two end states there is only one transition out, and it goes back to
the same state. This gives us a Markov chain with two absorbing, recurrent states.

What is the probability that player 1 wins ¢y dollars before losing ¢; dollars?
If /3 = ¢, then by symmetry this probability must be 1/2. We provide a simple
argument for the general case using the classification of the states.

Clearly —¢; and /5 are recurrent states. All other states are transient, since
there is a non-zero probability of moving from each of these states to either state —¢;
or state /5.

Let P! be the probability that after ¢ steps the chain is at state i. For —¢; <
i < {y, state i is transient, thus limy ., P/ = 0.

Let ¢ be the probability that the game ends with player 1 wining /5 dollars, so
that the chain was absorbed into state /5. Then 1 — ¢ is the probability the chain was
absorbed into state —¢;. By definition

lim P! =q.
Jim Ff, = g

Since each round of the gambling game is fair, the expected gain of player 1 in each
step is 0. Let W' be the gain of player 1 after ¢ steps. Then E[W'] = 0 for any ¢ by

© Copyright Mitzenmacher and Upfal, 2003-2004

7.3 Stationary Distributions 194

induction. Thus,

12
EW' =Y iPl =0,
i=—A
and
tllglo E[W' = flyq— (1 —q)
= 0.
Thus,
T nyn

That is, the probability of winning (or losing) is proportional to the amount of money
a player is willing to lose (or win).

Another approach that yields the same answer is to let g; represent the proba-
bility that player 1 wins ¢5 dollars before losing ¢; dollars when having won 5 dollars
for —¢; < j < {ly. Clearly, ¢y, = 0 and ¢, = 1. For —¢; < j < {3, we compute by
considering the outcome of the first game that

41 45

%="5 2

We have /5,4 /¢; —2 linearly independent equations and /5 +/¢; —2 unknowns, so there is
a unique solution to this set of equations. It is easy to verify that ¢; = (¢,+7)/(¢1+£2)
satisfies the given equations.

In exercise 20, we consider the question of what happens if, as is generally the
case in real life, one player is at a disadvantage, so he is slightly more likely to lose
than to win any single game.

7.3 Stationary Distributions

Recall that if P is the one step transition probability matrix of a Markov chain, and
p(t) is the probability distribution of the state of the chain at time ¢, then

p(t+1) =p(t)P.

Of particular interest are state probability distributions that do not change after a
transition.

Definition 30. A stationary distribution (also called an equilibrium distribution) of
a Markov chain is a probability distribution @ such that

T =7P.

© Copyright Mitzenmacher and Upfal, 2003-2004

7.3 Stationary Distributions

195

If a chain ever reaches a stationary distribution, it maintains that distribution
for all future time, and thus a stationary distribution represents a steady state or
an equilibrium in the chain’s behavior. Stationary distributions play a key role in
analyzing Markov chains. The Fundamental Theorem of Markov Chains characterizes
chains that converge to stationary distributions.

We discuss first the case of finite chains and then extend the results to any
discrete-space chain. Without lost of generality assume that the finite set of states of
the Markov chain is {0, 1,...,n}.

Theorem 48. Any finite, irreducible, and ergodic Markov chain has the following
properties:

1. The chain has a unique stationary distribution ™ = (7o, T, ..., Tp);

2. For all j and i, the limit limy_, P]tz exists and it is independent of j;

3. mp = limy_ o0 P]tl = hl

Under the conditions of the theorem, the stationary distribution 7 has two
interpretations. First, 7; is the limiting probability that the Markov chain will be in
state ¢ infinitely far out in the future, and this probability is independent of the initial
state. In other words, if we run the chain long enough, the initial state of the chain
is almost forgotten and the probability of being in state ¢ converges to m;. Second, m;
is the inverse of h;; = 72, - r{;, the expected number of steps for a chain starting
in state ¢ to return to ¢. This stands to reason; if the average time to return to state

¢ from ¢ is h;;, then we expect to be in state ¢ for h}, of the time, and thus in the
" K

hi i

limit we must have m; =

Proof. We prove the theorem above using the following result, which we state without
proof:

Lemma 32. For any irreducible, ergodic Markov chain, and for any state i, the limit
limy_,o P; exists, and

lim Plt =

This lemma is a corollary of a basic result in renewal theory. We have given
an informal justification for the above statement the expected time between visits
to ¢ is h;;, and therefore state ¢ is visited f of the time. Thus, lim;_, P”, which

represents the probability a state chosen far in the future is at state ¢ when the chain
starts at state ¢, must be

hi,i

Using the fact that lim; P exists, we now show that for any ;7 and i

lim Plt = hm Plt =

’

© Copyright Mitzenmacher and Upfal, 2003-2004

7.3 Stationary Distributions 196

that is, these limits exist and are independent of the starting state j.

Recall that 7";2 is the probability that starting at j, the chain first visits ¢ at
time ¢. Since the chain is irreducible we have that » 2 7, = 1, and for any € > 0
there exists (a finite) ¢, = #,(¢) such that Y201, ri;>1—¢

For j # i we have

t

t k t—k
b= § :'Tj,z'Pz',z' :

k=1
For ¢ 2 tl
t1 t
k t—k k t—k __ t
i PR <Y kP = P
k=1 k=1

Using the facts that lim,_, P/; exists and ¢, is finite, we have

t1
. ¢ . k pt—k
i > S
t1
_ k t
= E Tj’lthm Pl’Z
k=1
t1
_ t k
= }i}mPZZE :sz
k=1
. t
> (1—e)thrgPZ-,Z-.

Similarly,

t _ k t—k
Pl = Y rhPl

k=1
t1
< D Pt e
k=1
from which we can deduce that
t1
Pl < JmQ Pt +e
=1
t1
= 2 fm Pt e
=1

IN

lim Piti + €.
t—o00 ’

© Copyright Mitzenmacher and Upfal, 2003-2004

7.3 Stationary Distributions

197

Considering € vanishing to 0, we have proven that for any pair ¢ and j

YK 2,0
t—o00 t—o0 hi,i

Now let,

We show that @ = (my, 7y, ...) forms a stationary distribution.
For every ¢t > 0, P/, > 0, and thus 7; > 0. For any ¢ > 0, >_" / Pj; = 1, and
thus

n

lim E P!, =
t—r00 £ D

n
=0 =0

n
lim P!, = E ™= 1,
t—oo P

i=0

and 7 is a proper distribution. Now,
n
t+1 t)
P_],l — ZPj,kPkyl'
k=0

Letting ¢ — oo we have
n
mi= Y TP,
k=0

proving that 7 is a stationary distribution.

Suppose that there was another stationary distribution ¢. Then by the same
argument we have

¢i = Z ¢kP]f;,i7
k=0

and taking the limit as ¢ —+ oo we have

¢; = Z(lﬁkm = 7Tz'2¢k-
k=0 k=0

Since >°,_, ¢r = 1, we have ¢; = m; for all i, or ¢ = 7. O

It is worth making a few remarks about Theorem 48. First, the requirement
that the Markov chain is aperiodic is not necessary for the existence of a stationary
distribution. In fact any finite Markov chain has a stationary distribution, but in the
case of a periodic state 7, the stationary probability 7; is not the limiting probability
of being in 7, but just the long-term frequency of visiting state ¢. Second, any finite
chain has at least one component that is recurrent. Once the chain reaches a recurrent

© Copyright Mitzenmacher and Upfal, 2003-2004

7.3 Stationary Distributions

198

component it cannot leave that component. Thus, the sub-matrix that corresponds
to that component is irreducible and recurrent, and the limit theorem applies to any
aperiodic recurrent component of the chain.

One way to compute the stationary distribution of a finite Markov chain is to
solve the system of linear equations

P =T.

This is particularly useful if one is given a specific chain. For example, given the
transition matrix

0 1/4 0 3/4

/2 0 1/3 1/6

/4 1/4 1/2 0

0 1/2 1/4 1/4

there are 5 equations for the 4 unknowns g, 7, 72, and 73, given by 7P = 7 and
3 . : X
Y i_om™ = 1. The equations have a unique solution.

P=

Another useful technique is to study the cut-sets of the Markov chain. For any

state 7 of the chain . .
Y omPu=m=m) Py

Y mPu= mPy.
J# J#L
That is, in the stationary distribution the probability that a chain leaves a state

equals the probability that it enters the state. This observation can be generalized
to sets of states:

or

Theorem 49. Let S be a set of states of a finite, irreducible, aperiodic Markov chain.
In the stationary distribution, the probability that the chain leaves the set S equals the
probability that it enters S.

In other words, if C' is a cut-set in the graph representation of the chain, then
in the stationary distribution the probability of crossing the cut-set in one direction
is equal to the probability of crossing the cut-set in the other direction.

A basic but useful Markov chain is that serves as an example of cut-sets is given
in Figure 7.2. The chain has only two states. From state 0, you move to state 1 with
probability p and stay at state 0 with probability 1 — p. Similarly, from state 1 you
move to state 0 with probability ¢ and stay at state 1 with probability 1 — ¢. This
Markov chain is often used to represent bursty behavior. For example, when bits are
corrupted in transmissions, they are often corrupted in large blocks, since the errors
are often caused by some lasting external phenomenon. In this setting, being in state
0 after ¢ steps represents that the ¢-th bit was sent successfully, and being in state 1
represents that the bit was corrupted. Blocks of successfully sent bits and corrupted

© Copyright Mitzenmacher and Upfal, 2003-2004

7.3 Stationary Distributions

199

1-p P

SOoNER oY

1-q
q
Figure 7.2: A simple Markov chain used to represent bursty behavior.

bits both have lengths follow a geometric distribution. When p and ¢ are small, state
changes are rare, and the bursty behavior is modeled.

The transition matrix is

[)
qg 1—g¢q

Solving 7P = 7 corresponds to solving the following system of three equations:
7T0(1 —p) +7r1q = T

mp+m(l—q) = m
To+m = 1.

The second equation is redundant, and the solution is 7y = ¢/(p + ¢) and m =
p/(p + q). For example, with the natural parameters p = 0.005 and ¢ = 0.1, in the
stationary distribution, over 95% of the bits are received uncorrupted.

Using the cut-set formulation, we have that in the stationary distribution the
probability of leaving state 0 must equal the probability of entering state 0, or

Top = T14.
Again, using in addition 7y 4+ m; = 1 yields mo = ¢/(p + ¢) and m, = p/(p + q).

Finally, for some Markov chains the stationary distribution can be easy to com-
pute, using the following theorem:

Theorem 50. Consider a finite, irreducible, and ergodic Markov chain on n states
with transition matriz P. If there are non-negative numbers ™ = (mg, ..., Tp_1) such
that Z;:ol m; = 1, and for any pair of states 1,7,

miPij = 7Py,

then 7 s the stationary distribution corresponding to P.

Proof. Consider the j-th entry of 7P. Using the assumption of the theorem, we find
that it equals

n—1 n
Y mbPiy = mPu=m;
=0 =1

© Copyright Mitzenmacher and Upfal, 2003-2004

7.3 Stationary Distributions

200

Thus 7 satisfies 7 = TP. Since Z?:_Ol m; = 1, by Theorem 48, 7 must be the unique
stationary distribution of the Markov chain. O

Chains that satisfy the condition
7TiPi,j = 7Tij,z',
are called time-reversible; exercise 13 helps explain why. You may check that the
chain of Figure 7.2 is time-reversible.

We turn now to the convergence of Markov chains with countably infinite state
spaces. Using essentially the same technique as we used in the proof of Theorem 48
one can prove:

Theorem 51. Any irreducible aperiodic Markov chain belongs to one of the following
two categories:

1. The chain is ergodic. For any pairs of states © and j, the limit lim;_, . P]tl

exists and is independent of j. The chain has a unique stationary distribution

or

2. No state is positive recurrent. For all © and j, lim;_, P]tz = 0, and the chain
has no stationary distribution.

Cut-sets and the property of time-reversibility can also be used to find the
stationary distribution for Markov chains with countably infinite state spaces.

7.3.1 Example: A Simple Queue

A queue is a line where customers wait for service. We examine a model for a bounded
queue where time is divided into steps of equal length. At each time step, exactly
one of the following occurs:

e [f the queue has fewer than n customers, then with probability A a new customer
joins the queue.

e If the queue is not empty, then with probability i the head of the line is served
and leaves the queue.

e With the remaining probability the queue is unchanged.

© Copyright Mitzenmacher and Upfal, 2003-2004

7.3 Stationary Distributions 201

If X, is the number of customers in the queue at time ¢, then under the above
rules the X; yield a finite state Markov chain. Its transition matrix has the following
non-zero entries:

P = Mifi<n
P, = pifi>0
1—A ifi=0
P, = 1= A—p ifl1<i<n—1
1—p if 1 = n.

The Markov chain is irreducible, finite, and aperiodic, so it has a unique sta-
tionary distribution 7. We use 7 = 7P to write

o = (1= A)m+ pm,
o= A+ (1 —=A—pm+um, 1<i<n-—1,
Tn = Mp_1+ (1 — p)m,.

It is easy to verify that

()
T, = To | —
M

is a solution to the above system of equations. Adding the requirement Y " jm; = 1,
we have

zn:m = anﬂo <é>Z =1,
i=0

1=0

or

For all 0 <1 <n,

T = ———. (7.4)
=t (2)

Another way to compute the stationary probability in this case is to use cut-
sets. For any i, the transitions ¢ — 7+ 1 and ¢ + 1 — ¢ are a cut-set of the graph
representing the Markov chain. Thus, in the stationary distribution, the probability

© Copyright Mitzenmacher and Upfal, 2003-2004

7.4 Random Walks on Undirected Graph 202

of moving from state ¢ to state i + 1 must be equal to the probability of moving from
state 1+ 1 to 4, or
ATT; = pTTiy1-

()
T, = To | — .
M

In the case where there is no upper limit n on the number of customers in a
queue, the Markov chain is no longer finite. The Markov chain has a countably infinite
state space. Applying Theorem 51, the Markov chain has a stationary distribution if
and only if the following set of linear equations has a solution with all m; > 0:

A simple induction now yields

o = (1—)\)7T0+M7Tl
™ o=)\7rz-,1+(1—)\—u)7rz-—i—u7rz-+1,,iZL

It is easy to verify that

”:iz A (2
l S (A) (u)(u)

1=0 \ u

is a solution of the above system of equations. This naturally generalizes the solution
to the case where there is an upper bound n on the number of the customers in the
system given in (7.4). All of the m; are greater than 0 if and only if A < p, which
corresponds to the situation when the rate at which customers arrive is less than
the rate at which they are served. If A > p, the rate at which customers arrive is
larger than the rate at which they depart. Hence there is no stationary distribution,
and the queue length will get arbitrarily long. In fact, each state in the Markov
chain is transient. The case of A = pu is more subtle. Again, there is no stationary
distribution, and the queue length will become arbitrarily long, but now the states
are null recurrent. (See the related exercise 17.)

7.4 Random Walks on Undirected Graph

A random walk on an undirected graph is a special type of Markov chain that is often
used in analyzing algorithms. Let G = (V, E') be a finite, undirected, and connected
graph.

Definition 31. A random walk on G is a Markov chain defined by the movement of
a particle between vertices of G. In this process, the place of the particle at a given
time step is the state of the system. If the particle is at vertex i, and i has d(i)
outgoing edges, then the probability that the particle follows the edge (i,j) and moves
to a neighbor j is 1/d(i).

© Copyright Mitzenmacher and Upfal, 2003-2004

7.4 Random Walks on Undirected Graph

203

We have already seen an example of such a walk when we analyzed the ran-
domized 2-SAT algorithm.

For a random walk on an undirected graph we have a simple criterion for ape-
riodicity.

Lemma 33. A random walk on an undirected graph G is aperiodic if and only if G
1 not bipartite.

Proof. A graph is bipartite if and only if it does not have cycles with an odd number
of edges. In an undirected graph there is always a path of length two from a vertex to
itself. If the graph is bipartite then the random walk is periodic, with a period d = 2.
If the graph is not bipartite, then it has an odd cycle, and by traversing that cycle we
have an odd length path from any vertex to itself. It follows that the Markov chain
is aperiodic. O

For the remainder of this section we assume that G is not bipartite. A ran-
dom walk on a finite, undirected, connected and non-bipartite graph G satisfies the
conditions of Theorem 48, and therefore the random walk converges to a stationary
distribution. We show that this distribution depends only on the degree sequence of
the graph.

Theorem 52. A random walk on G converges to a stationary distribution m, where

_ d)
2|E|

Ty

Proof. Since Y . d(v) = 2|E]|,

_N)
Zﬂ—v—vez;m_la

veV

veV

and 7, is a proper distribution over v € V.

Let P be the transition probability matrix of the Markov chain. Let N(v)
represent the neighbors of v. The relation 7 = 7P is equivalent to

B du) 1 d(v)
= Z) oE[d(u) — 2|E|

u€EN (v

and the theorem follows. O
Recall that h,, denotes the expected number of steps to reach u from v. We
have the following corollary:

Corollary 10. For any verter u in G,

2|E|
huu = 5 N
©d(w)

© Copyright Mitzenmacher and Upfal, 2003-2004

7.4 Random Walks on Undirected Graph 204

For any pair of vertices u and v we prove the following simple bound:

Lemma 34. If (u,v) € E, then h,, < 2|E|.

Proof. Let N(u) be the set of neighbors of vertex u in G. We compute h,,, in two
different ways.

2|F 1
ﬁ = iy =) w;N:(u)(l +)
Hence
20E|=) (1+hy),
weEN (u)
and we conclude that h,, < 2|E]|. O

Definition 32. The cover time of a graph G is the maximum over all vertices of the
expected time to visit all nodes of the graph starting the random walk from that vertex.

Lemma 35. The cover time of G = (V, E) is bounded above by 4|V - |E|.

Proof. Choose a spanning tree on (G, and an Eulerian cycle on the spanning tree in
which every edge is traversed once on each direction. Let vy, vy,..., vy |—2 = vp be
the sequence of vertices in the cycle from any starting point. Clearly the expected
time to go through the vertices in the cycle is an upper bound on the cover. Hence
the cover time is bounded above by

2|V|-3
Z hvi,vi+1 + hvzm_z,m < (2|V| o 2)2|E| < 4|V| ’ |E|7
i=0
where the first inequality comes from Lemma 34. U

7.4.1 Application: An s —t Connectivity Algorithm

Suppose we are given an undirected graph G = (V| F), and two vertices s and ¢ in
G. Let n = |V| and m = |E|. We want to determine if there is a path connecting
s and t. This is easily done in linear time using a standard breadth-first search or
depth-first search. Such algorithms, however, require (n) space.

Here we develop a randomized algorithm that works with only O(logn) bits of
memory. This could be even less than the number of bits required to write the path
between s and ¢t. The algorithm is simple: perform a random walk on G for enough
steps so that a path from s to ¢ is likely to be found. We use the cover time result
(Lemma 35) to bound the number of steps that the random walk has to run. For

© Copyright Mitzenmacher and Upfal, 2003-2004

7.5 Parrondo’s Paradox

205

convenience, assume that the graph G has no bipartite connected components, so
that the results of Theorem 52 apply to any connected component of G. (The results
can be made to apply to bipartite graphs with some additional technical work.)

Consider the following algorithm:

s — t Connectivity Algorithm
e Start a random walk from s.

e If the walk reaches ¢ within 4n?® steps, return that there is a path. Otherwise,
return that there is no path.

Theorem 53. The s —t connectivity algorithm returns the correct answer with prob-
ability 1/2, and it only errs by saying that there is no path from s to t when there is
such a path.

Proof. If there is no path, the algorithm returns the correct answer. If there is a
path, the algorithm errs if it does not find the path within 4n? steps of the walk. The
expected time to reach ¢ from s, if there is path, is upper bounded by the cover time
of their shared component, which by Lemma 35 is at most 4nm < 2n®. By Markov’s
inequality, the probability that a walk takes more than 4n3 steps to reach s from t is
at most 1/2. O

The algorithm must keep track of its current position, which takes O(logn) bits,
and the number of steps taken in the random walk, which also takes only O(logn)
bits (since we count up to only 4n3). As long as there is some mechanism for choosing
a random neighbor from each vertex, this is all the memory required.

7.5 Parrondo’s Paradox

Parrondo’s paradox provides an interesting example of the analysis of Markov chains
while also demonstrating a subtlety in dealing with probabilities. The paradox ap-
pears to contradict the old saying that two wrongs don’t make a right, by showing
that two losing games can be combined to make a winning game. Because Parrondo’s
paradox can be analyzed in many different ways, we will go over several approaches
to the problem.

First, consider game A, in which we repeatedly flip a biased coin, call it coin a,
that comes up heads with probability p, < 1/2 and tails with probability 1 — p,. You
win a dollar if the coin comes up heads, and lose a dollar if it comes up tails. Clearly,
this is a losing game for you. For example, if p, = 0.49, then your expected loss is
two cents per game.

In game B, we also repeatedly flip coins, but the coin that is flipped depends
on how you have been doing so far in the game. Let w be the number of your wins

© Copyright Mitzenmacher and Upfal, 2003-2004

7.5 Parrondo’s Paradox

206

so far and ¢ be the number of your losses so far. Each round we bet one dollar, so
w — £ represents your winnings; if it is negative, you have lost money. Game B uses
two biased coins, coin b and coin c. If your winnings in dollars is a multiple of 3, then
you flip coin b, which comes up heads with probability p, and tails with probability
1 —p,. Otherwise, you flip coin ¢, which comes up heads with probability p. and tails
with probability 1 — p.. Again, you win a dollar if the coin comes up heads, and lose
a dollar if it comes up tails.

This game is more complicated, so let us consider a specific example. Suppose
coin b comes up heads with probability p, = 0.09 and tails with probability 0.91, and
coin ¢ comes up heads with probability p. = 0.74 and tails with probability 0.26. At
first glance, it might seem that game B is in your favor. If we use coin b for the 1/3
of the time that your winnings are a multiple of 3, and we use coin ¢ the other 2/3 of
the time, then your probability w of winning is

19 2 74 157 1
“= 3700 "3700 300 2

The problem with this line of reasoning is that coin b is not necessarily used 1/3
of the time! To see this intuitively, consider what happens when you first start the
game, so your winnings are 0. You use coin b and most likely lose, after which you
use coin ¢ and most likely win. You may spend a great deal of time going back and
forth between having lost 1 dollar and breaking even before either winning 1 dollar
or losing 2 dollars, so you may use coin b more than 1/3 of the time.

In fact, the specific example for game B above is a losing game for you. One
way to show this is to suppose that we start playing game B when your winnings
are 0, and we play until you either lose 3 dollars or win 3 dollars. If you are more
likely to lose than win in this case, by symmetry you are more likely to lose 3 dollars
than win 3 dollars whenever your winning are a multiple of 3. On average, then, you
would obviously will lose money on the game.

One way to determine if you are more likely to lose than win is to analyze the
absorbing states. Consider the Markov chain on the state space consisting of the
integers {—3,...,3}, where the states represent your winnings. We want to know,
when you start at 0, if you are more like to reach —3 before reaching 3 or not. We can
determine this by setting up a system of equations. Let z; represent the probability
you will end up having lost 3 dollars before having won 3 dollars when your current
winnings are ¢ dollars. We calculate all the probabilities z_ 3,2 o, 2 1, 20, 21, 22, and
23, although what we are really interested in is 2. If 2y > 1/2, then we are more
likely to lose 3 dollars than win 3 dollars starting from 0. Here z 3 = 1 and 23 = 0;

© Copyright Mitzenmacher and Upfal, 2003-2004

7.5 Parrondo’s Paradox

207

these are boundary conditions. We also have the following equations:

22 = ()
221 = ()

20 = (I—pp)z—1 + o2
a =)
()

29 =

This is a system of 5 equations with 5 unknowns, and hence can easily be solved. The
general solution for zj is

(1 —pp)(1 = pe)?
(1= po) (L = pe)? + pop?’

For the specific example above, the solution yields zy = 15379/27700 ~ 0.555, showing
that one is much more likely to lose than win playing this game over the long run.

20 =

Instead of solving these equations directly, there is a simpler way of determining
the relative probability of reaching —3 or 3 first. Consider any sequence of moves that
starts at 0 and ends at 3 before reaching —3. For example, a possible sequence is

s=0,1,2,1,2,1,0,—1,-2,-1,0,1,2,1,2, 3.

We create a one-to-one and onto mapping of sequences that start at 0 and end at 3
before reaching —3 with the sequences that start and 0 and end at —3 before reaching
3 by negating every number starting from the last 0 in the sequence. In this example,
s maps to f(s), where

f(S) = 07 17 27 17 27 1707 _17 _27 _1, 0, —1, —2, —1, —2, —3.

It is simple to check that this is a one-to-one mapping of the relevant sequences.

The following lemma provides a useful relationship between s and f(s).

Lemma 36. For any sequence s of moves that starts at 0 and ends at 3 before reaching

—3, we have
Pr(s occurs) D2

Pr(f(s) occurs) (1 —pp)(1 — pe)?

Proof. For any given sequence s satisfying the properties of the lemma, let ¢; be the
number of transitions from 0 to 1; £, be the number of transitions from 0 to —1; ¢3
be the sum of the number of transitions from —2 to —1, —1 to 0, 1 to 2, and 2 to 3;
and t4 be the sum of the number of transitions from 2 to 1, 1 to 0, —1 to —2, and —2
to —3. Then the probability that the sequence s occurs is pi' (1 — p,)2p2 (1 — p.)%.

Now consider what happens when we transform s to f(s). We change one
transition from 0 to 1 into a transition from 0 to —1. After this point, in s the total

© Copyright Mitzenmacher and Upfal, 2003-2004

7.5 Parrondo’s Paradox

208

number of transitions that move up 1 is two more than the number of transitions
that move down 1, since the sequence ends at 3. In f(s), then, the total number
of transitions that move down 1 is two more than the number of transitions that
move up 1. It follows that the probability that the sequence f(s) occurs is pi*~"'(1 —
)2 pla72(1 — p,)+, The lemma follows. O

By letting S be the set of all sequences of moves that start at 0 and end at 3
before reaching —3, it immediately follows that

Pr(3 is reached before — 3) > ses Pr(s occurs) Peps

Pr(—3 is reached before 3) — > _<Pr(f(s) occurs) (1 —py)(1 — pc)?’

If this ratio is less than 1, than you are more likely to lose than win. In our specific
example, this ratio is 12321/15379 < 1.

Finally, yet another way to analyze the problem is to use the stationary dis-
tribution. Consider the Markov chain on the states {0, 1,2}, where here the states
represent the remainder when our winnings are divided by 3. (That is, the state
keeps track of w — ¢ mod 3.) Let m; be the stationary probability of this chain. The
probability that we win a dollar in the stationary distribution, which is the limiting
probability that we win a dollar if we play long enough, is then

oo + Py +Pe2 = pyTo + pe(l — mo)
= pec— (pe — Po)To.
Again, we want to know if this is greater than or less than 1/2.
The equations for the stationary distribution are easy to write:
U + T + o = 1
pomo + (1L —po)me = m

pemi+ (1 —pp)my = 7
pema+ (1 —pe)m = .

Indeed, as there are four equations and only three unknowns, one of the equations
above is actually redundant. The system is easily solved to find

S L —pe+p2
3 = 2p. — py + 2pppe + P2
S PoPe — Pe + 1
3 = 2pe — b + 2pype + P2
_ PoPe — o+ 1
o —

3 —2p. — py + 2ppe + P2

Recall that you lose if the probability of winning in the stationary distribution is
less than 1/2, or equivalently if p. — (p. — pp)m0 < 1/2. In our specific example,

© Copyright Mitzenmacher and Upfal, 2003-2004

7.5 Parrondo’s Paradox

209

7o = 673/1759 ~ 0.3826..., and

86421 - 1
175900 ~ 2°

Pe — (pe — pp)mo =

Again, we find game B is a losing game in the long run.

We have now completely analyzed game A and game B. Now let us consider
what happens when we try to combine these two games. In game C, we repeatedly
perform the following bet. We start by flipping a fair coin, call it coin d. If coin d is
heads, we proceed as in game A: we flip coin a, and if the coin is heads, you win. If
coin d is tails, we then proceed to game B: if your current winnings are a multiple
of 3, we flip coin b, and otherwise, we flip coin ¢, and if the coin is a heads, you win.
It would seem that this must be a losing game for you; after all, game A and game
B are both losing games, and this game just flips a coin to decide which of the two
games to play.

In fact, game C is exactly like game B, except the probabilities are slightly
different. If your winnings are a multiple of 3, then the probability that you win is
Py = %p1 + %pb. Otherwise, the probability that you win is p; = %pl + %pc. Using
p; and p! in place of p, and p., we can repeat any of the above analyses we used for
game B.

For example, if the ratio
p; (p:)°
(1 =pp)(1 —p2)?

then the game is a losing game for you, and if the ratio is larger than 1, it is a winning
game. In our specific example, the ratio is 438741/420959 > 1, so game C' appears
to be a winning game.

<1,

This seems somewhat odd, so let us recheck by using our other approach of
considering the stationary distribution. The game is a losing game if p! — (p} —p;) 7o <
1/2, and a winning game if pX — (pf — pj)mo > 1/2, where now m, is the stationary
distribution for the chain corresponding to game C'. In our specific example, my =

30529/88597, and
4456523

=———>
8859700
so game C' again appears to be a winning game.

*

pe — (pr — py)mo 1/2,

How can randomly combining two losing games yield a winning game? The key
is that game B was a losing game because it had a very specific structure. You are
likely to lose the next round in game B if your winnings were divisible by three, but if
you managed to get over that initial barrier you were likely to win the next few games
as well. The strength of that barrier made game B a losing game. By combining the
games, that barrier was weakened, because now sometimes when your winnings are
divisible by three you get to play game A, which is close to a fair game. Although

© Copyright Mitzenmacher and Upfal, 2003-2004

7.6 Exercises

210

game A is biased against you, the bias is small, so it becomes easier to overcome
that initial barrier. The structure of the combined game no longer has the specific
structure required to make it a losing game.

You may be concerned that this seems to violate the law of linearity of expec-
tations. If the winnings from a round of game A, B, and C' are X4, Xg, and X¢
respectively, then it seems that

1 1 1 1

so if F[X 4] and E[Xp]| are negative, E[X¢| should also be negative. The problem is
that the above equation does not make sense, as we cannot talk about the expected
winnings of a round of games B and C without reference to the current winnings.
We have described a Markov chain on the states {0, 1,2} for games B and C. Let s
represent the current state. We have the following equation:

1
ElXc|s] = B|5(Xa+Xp) |s
1 1
= SEIXa|s]+5EXs | 8]

Linearity of expectations holds for any given step, but we must condition on the
current state. By combining the games, we have changed how often the chain spends
in each state, allowing the two losing games to become a winning game.

7.6 Exercises

1. Consider a Markov chain with state space {0, 1,2,3} and a transition matrix

0 3/10 1/10 3/5
1/10 1/10 7/10 1/10
1/10 7/10 1/10 1/10]°
9/10 1/10 0 0

P =

so Py 3 = 3/5 is the probability of moving from state 0 to state 3.

(a) Find the stationary distribution of the Markov chain.

(b) Find the probability of being in state 3 after 32 steps if the chain begins
at state 0.

(c) Find the probability of being in state 3 after 128 steps if the chain begins
at a state chosen uniformly at random from the four states.

(d) Suppose that the chain begins in state 0. What is the smallest value of ¢
for which max, |P§, — 7, < 0.01, where 7 is the stationary distribution?
What is the smallest value of ¢ for which max, |P§, — m,| < 0.0017

© Copyright Mitzenmacher and Upfal, 2003-2004

7.6 Exercises

211

2.

10.

Consider the two-state Markov chain with the following transition matrix.

r-fr,
I—p p

. . . t
Find a simple expression for I .

Consider a process Xy, X1, Xo,... with two states, 0 and 1. The process is gov-
erned by two matrices, P and Q. If £ is even, the values P; ; give the probability
of going from state 7 to state j on the step from Xj to Xy,,. Similarly, if % is
odd, the values @); ; give the probability of going from state ¢ to state j on the
step from X to X;,;. Explain why this process does not satisfy Definition 23
of a (time-homogeneous) Markov chain. Then give a process with a larger state
space that is equivalent to this process and satisfies Definition 23.

. Prove that the communicating relation defines an equivalence relation.

Prove that if one state in a communicating class is transient (respectively
recurrent), then all states in that class are transient (respectively recurrent).

In studying the 2-SAT algorithm, we considered a 1-dimensional random walk
with a completely reflecting boundary at 0. That is, whenever position 0 is
reached, with probability 1 the walk moves to position 1 at the next step. Con-
sider now a random walk with a partially reflecting boundary at 0. Whenever
position 0 is reached, with probability 1/2 the walk moves to position 1 and with
probability 1/2 the walk stays at 0. Everywhere else the random walk either
moves up or down 1, each with probability 1/2. Find the expected number of
moves to reach n starting from position 7 using a random walk with a partially
reflecting boundary.

For the 2-SAT algorithm, suppose that the algorithm starts with an assignment
chosen uniformly at random. How does this affect the expected time until a
satisfying assignment is found?

Generalize the randomized algorithm for 3-SAT to k-SAT. What is the expected
time of the algorithm as a function of £?

Prove Lemma 31.

A coloring of a graph is an assignment of a color to each of its vertices. A graph
is k-colorable if there is a coloring of the graph with £ colors such that no two
adjacent vertices have the same color. Let G be a 3-colorable graph.

(a) Show that there exists a coloring of the graph with 2 colors such that no
triangle is monochromatic. (A triangle of a graph G is a subgraph of G
with 3 vertices, which are all adjacent to each other.)

© Copyright Mitzenmacher and Upfal, 2003-2004

7.6 Exercises

212

11.

12.

13.

14.

15.

16.

(b) Consider the following algorithm for coloring the vertices of G with 2 col-
ors so that no triangle is monochromatic. The algorithm begins with an
arbitrary 2-coloring of G. While there are any monochromatic triangles
in GG, the algorithm chooses one such triangle, and changes the color of
a randomly chosen vertex of that triangle. Derive an upper bound on
the expected number of such recoloring steps before the algorithm finds a
2-coloring with the desired property.

An n x n matrix P with entries P;; is called stochastic if all entries are non-
negative and the sum of the entries in each row is 1. It is called doubly stochastic
if, additionally, the sum of the entries in each column is 1. Show that the uniform
distribution is a stationary distribution for any Markov chain represented by a
doubly stochastic matrix.

Let X,, be the sum of n independent rolls of a fair die. Show that for any k£ > 2,

1
lim Pr(X,, is divisible by k) = A

n—o0

Consider a finite Markov chain on n states with stationary distribution 7 and
transition probabilities F; ;. Imagine starting the chain in stationary distribu-
tion at time 0 and running it for m steps, obtaining the sequence of states
Xo, X1,...,X,,. Consider the states in reverse order, X,,, X;n_1,..., Xo.

(a) Argue that given Xy, 1, the state X} is independent of Xy o, Xy y3,..., Xp.
Thus the reverse sequence is Markovian.

(b) Argue that for the reverse sequence, the transition probabilities @); ; are
given by
;i P;;
Q= o2,
r
(c) Prove that if the original Markov chain is time-reversible, so that m;P; ; =
7jP;;, then Q;; = P;;. That is, the states follow the same transition
probabilities whether viewed in forward order or reverse order.

Prove that the Markov chain corresponding to a random walk on an undirected
graph that consists of one component and is not bipartite is time-reversible.

Let PL be the probability that a Markov chain returns to state i when started
in state ¢ after t steps. Prove that

00

t
> P
t=1

is unbounded if and only if state ¢ is recurrent.

Prove Lemma 31.

© Copyright Mitzenmacher and Upfal, 2003-2004

7.6 Exercises

213

17.

18.

19.

20.

21.

22.

Consider the following Markov chain, similar to the 1-dimensional random walk
with a completely reflecting boundary at 0. Whenever position 0 is reached,
with probability 1 the walk moves to position 1 at the next step. Otherwise, the
walk moves from ¢ to i+ 1 with probability p and from ¢ to + —1 with probability
1 — p. Prove that

(a) if p < 1/2, each state is positive recurrent.
(b) if p = 1/2, each state is null recurrent.
)
)

c) if p > 1/2, each state is transient.

(
(a) Consider a random walk on the 2-dimensional integer lattice, where each
point has four numbers (up, down, left, and right). Is each state transient,
null recurrent, or positive recurrent? Give an argument.

a

(b) Answer the above problem for the 3-dimensional integer lattice.

Consider the gambler’s ruin problem where a player plays until they lose ¢;
dollars or win ¢y dollars. Prove that the expected number of games played is
U1 ls.

We have considered the gambler’s ruin problem in the case where the game is
fair. Consider the case where the game is not fair; instead, the probability of
losing a dollar each game is 2/3, and the probability of winning a dollar each
game is 1/3. Suppose that you start with i dollars and finish either when you
reach n or lose it all. Let W; be the amount you have gain after ¢ rounds of

play.
(a) Show that E[2"t+] = E[2"].

(b) Use the above to determine the probability of finishing with 0 dollars and
the probability of finishing with n dollars when starting at position 7.

(c) Generalize the argument above to the case where the probability of losing
is p > 1/2. Hint: try considering E[c""*] for some constant c.

Consider a Markov chain on the states {0,1,...,n}, where for i < n, P,;;, =
1/2 and P,y = 1/2. Also, P,,, = 1/2 and P,, = 1/2. This process can be
viewed as a random walk on a directed graph with vertices {0, 1,...,n}, where
each vertex has two directed edges, one of which returns to 0 and one of which
moves to the vertex with the next higher number (with a self-loop at vertex
n). Find the stationary distribution of this chain. (This example shows that
random walks on directed graphs are very different than random graphs on
undirected graphs.)

A cat and a mouse each independently take a random walk on a connected,
undirected, non-bipartite graph . They start at the same time on different
nodes and each make one transition at each time step. The cat eats the mouse
if they are ever at the same node at some time step. Let n and m denote

© Copyright Mitzenmacher and Upfal, 2003-2004

7.6 Exercises

214

23.

24.

the number of vertices and edges of G respectively. Show an upper bound of
O(m?n) on the expected time before the cat eats the mouse. Hint: consider a
Markov chain whose states are the ordered pairs (¢, m) where ¢ is the position
of the cat and m is the position of the mouse.

One way of spreading information on a network uses a rumor-spreading paradigm.

Suppose that there are n hosts currently on the network. Initially, one host be-
gins with a message. FEach round, every host that has the message contacts
another host chosen independently and uniformly at random from the other
n — 1 hosts, and sends that host the message. We would like to know how many
rounds are necessary before all hosts have received the message with probability
0.99.

(a) Explain how this problem can be viewed in terms of Markov chains.

(b) Determine a method for computing the probability that j hosts have re-
ceived the message after round %k given that ¢ hosts have received the
message after round k£ — 1. (Hint: there are various ways of doing this.
One approach is to let P(i, j, ¢) be the probability j hosts have the message
after the first ¢ of the ¢ hosts have made their choices in a round. Then
find a recurrence for P.)

(c) As a computational exercise, write a program to determine the number
of rounds for a message starting at one host to reach all other hosts with
probability 0.9999 when n = 128.

The lollipop graph on n vertices is a clique on n/2 vertices connected to a path
on n/2 vertices as shown in Figure 24. The node u is a part of both the clique
and the path. Let v denote the other end of the path.

e Show that the expected covering time of a random walk starting at v is

O(n?).

e Show that the expected covering time for a random walk starting at w is

O(n?).

u

® o—o—0'
path on n/2 vertices

Figure 7.3: The lollipop graph.

Copyright Mitzenmacher and Upfal, 2003-2004

7.6 Exercises

215

25.

26.

27.

28.

The following is a variation of a simple children’s board game. A player starts
at position 0. On a player’s turn, she rolls a standard six-sided die. If her old
position was the positive integer x, and her roll was y, her new position is =+ v,
except in two cases:

e if x + y is divisible by 6 and less than 36, her new position is = + y — 6;

e and if x + y is greater than 36, the player remains at z.
The game ends when a player reaches the goal position, 36.

(a) Let X; be a random variable representing the number of rolls needed to
get to 36 from position 7, for 0 < ¢ < 35. Give a set of equations that
characterize E[X,].

(b) Using a program that can solve systems of linear equations, find E[X;] for
0 <1< 35.

Let n equidistant points be marked on a circle. Without loss of generality, we
think of the points as being labeled clockwise from 0 to n — 1. Initially, a wolf
begins at 0, and there is one sheep at each of the remaining n — 1 points. The
wolf takes a random walk on the circle. For each step, it moves with probability
1/2 to one neighboring point and with probability 1/2 to the other neighboring
point. At the first visit to a point, the wolf eats a sheep if there is still one
there. Which sheep is most likely to be the last eaten?

Suppose that we are given n records, Ry, Ry, ..., R,. The records are kept in
some order. The cost of accessing the jth record in the order is j. So if we
had 4 records, and they were ordered as Ry, R4, R3, Ry, the cost of accessing R,
would be 2, and the cost of accessing R; would be 4.

Suppose further that at each step, record R; is accessed with probability p;,
with each step being independent of other steps. If we knew the values of the p;
in advance, we would keep the R; in decreasing order with respect to p;. But if
we don’t know the p; in advance, we might use the move-to-front heuristic: at
each step, put the record that was accessed at the front of the list. We assume
that moving the record can be done with no cost, and that all other records
remain in the same order. For example, if the order was Ry, Ry, R3, R1 and B3
was accessed, at the next step the order would be Rj3, Ry, R4, R;.

In this setting, the order of the records can be thought of as the state of a
Markov chain. Give the stationary distribution of this chain. Also, let X} be
the cost for accessing the kth requested record. Determine an expression for
limy,_, o E[X}]. Your expression should be easily computable in time polynomial
in n given the p;’s.

Consider the following variation of the discrete-time queue. Time is divided
into fixed-length steps. At the beginning of each time step, a customer arrives
with probability A. At the end of each time step, if the queue is non-empty, the
customer at the front of the line completes service with probability .

© Copyright Mitzenmacher and Upfal, 2003-2004

7.6 Exercises

216

()

(b)
(c)

Explain how the number of customers in the queue at the beginning of
each time step forms a Markov chain, and determine the corresponding
transition probabilities.

Explain under what conditions you would expect a stationary distribution
T to exist.

If a stationary distribution exists, what should 7, the probability 0 cus-
tomers are in the queue at the beginning of the time step, be? (Hint:
consider the fact that in the long run, the rate at which customers enter
the queue and the rate at which customers leave the queue must be equal.)

Determine the stationary distribution and explain how it corresponds to
your conditions above.

Now consider the variation where we change the order of incoming arrivals
and service. That is, at the beginning of each time step, if the queue is
non-empty, a customer is served with probability p, and then at the end
of a time step a customer may arrive with probability \. How does this
change your answers above?

© Copyright Mitzenmacher and Upfal, 2003-2004

Chapter 8

Continuous Distributions and the
Poisson Process

This chapter introduces the general concept of continuous random variables, focusing
on two examples of continuous distributions: the uniform distribution and the expo-
nential distribution. We then proceed to study the Poisson process, a continuous time
counting process that is related to both the uniform and exponential distributions.
We conclude this chapter with basic applications of the Poisson process in queueing
theory.

8.1 Continuous Random Variables

8.1.1 Probability Distributions in R

The continuous roulette wheel in Figure 8.1 has circumference 1. We spin the wheel,
and when it stops, the outcome is the clockwise distance X (computed with infinite
precision) from the “0” mark to the arrow.

The sample space €2 of this experiment consists of all real numbers in the range
[0,1). Assume that any point on the circumference of the disk is equally likely to face
the arrow when the disk stops. What is the probability p of a given outcome z7

To answer this question, we recall that in Chapter 1 we defined a probability
function to be any function that satisfies the following three requirements:

1. Pr(Q) =1,

2. For any event FE,
0<Pr(E) <1,

© Copyright Mitzenmacher and Upfal, 2003-2004

8.1 Continuous Random Variables

218

<

Figure 8.1: A continuous roulette wheel

3. For any (finite or enumerable) collection B of disjoint events

Pr(NpesE) = Y Pr(E).

EeB

Let S(k) be a set of k distinct points in the range [0,1), and let p be the
probability that any given point in [0,1) is the outcome of the roulette experiment.
Since the probability of any event is bounded by 1,

Pr(z € S(k)) = kp < 1.

Since we can choose any number k of distinct points in the range [0, 1), we must have
kp < 1 for any integer k, which implies that p = 0. Thus, we observe that in an
infinite sample space there may be possible events that have probability 0. Taking
the complement of such an event we observe that in an infinite sample space there
can be events with probability 1 that do not correspond to all possible experimental
outcomes, and thus there can be events with probability 1 that are not certain!

If the probability of each possible outcome of our experiment is 0, how do we
define the probability of larger events with non-zero probability? For probability
distributions over R, probabilities are assigned to intervals rather then to individual
values.”

The probability distribution of a random variable X is given by its distribution
function F(x), where for any = € R,

F(z) =Pr(X <uz).

*A formal treatment of nondenumerably infinite probability spaces relies on measure theory and
is beyond the scope of this book. We just note here that the probability function needs to be
measurable on the set of events. This cannot hold in general for the family of all subsets of the
sample space, but it does always hold for the Borel set of intervals.

© Copyright Mitzenmacher and Upfal, 2003-2004

8.1 Continuous Random Variables 219

We say that a random variable X is continuous if its distribution function F'(x) is
a continuous function of x. We will assume that our random variables are continuous
throughout this chapter. In this case, we must have that Pr(X = z) = 0 for any
specific value z. This further implies that Pr(X < z) = Pr(X < z), a fact we make
use of freely throughout this chapter.

If there is a function f(z) such that for all —oco < a < o0

me:/ oy
then f(z) is called the density function of F(x) and

f(@) = F'(z)
where the derivative is well-defined.
Since
Pr(x < X <z +dr) = F(x+dz) — F(z) = f(z)dz,

we can informally think of f(x)dx as the “probability” of the infinitesimal interval
[x,x + dz). Carrying this analogy forward, in discrete spaces the probability of an
event E' is the sum of the probabilities of the simple events included in E. The parallel
concept in the case of events in R is the integral of the probability density function
over the basic events in E.

For example, the probability of the interval [a, b) is given by the integral

Prla < X <) = /bf(a:)da:,

and the expectation and higher moments of a random variable X with density function
f(z) are defined by the integrals

qu:/ixv@mx

More generally, for any function g,

B0 = [glo)f ()
when this integral exists. The variance of X is given by
VarlX] = B[(X - B[X]?) = [(s~ BIX)f(a)ds = B[Y?] - (ELX))"

The following lemma gives the continuous analog to Lemma 10.

© Copyright Mitzenmacher and Upfal, 2003-2004

8.1 Continuous Random Variables

220

Lemma 37. Let X be a continuous random variable with distribution function F(z)
that takes on only non-negative values. Then

E[X]| = /000 Pr(X > z)dx.

Proof.

/;OO Pr(X >z)dz = /;00 /y:f(y)dyd:v

o ry
— [[sy
y=0 J =0

= /yoo yf(y)dy

=0

— E[X].

The interchange of the order of the integrals is justified as the expression being inte-
grated is non-negative. O

8.1.2 Joint Distribution and Conditional Probability

The notion of a distribution function for a real-valued random variable easily gener-
alizes to multiple random variables.

Definition 33. The joint distribution function of X and Y is
F(z,y) =Pr(X <z,Y <y).

The variables X and Y have joint density function f if for all x,vy,

F(z,y) = /1 /00 F(u,v) du dv.

32

when the derivative exists. These definitions are generalized to joint distribution
functions over more than two variables in the obvious way.

Again, we denote

F(z,y)

Given a joint distribution function F'(z,y) over X and Y, one may consider the
marginal distribution functions

Fx(z) =Pr(X <), Fy(y) =Pr(Y <vy)

and the corresponding marginal density functions fx(z) and fy(y).

© Copyright Mitzenmacher and Upfal, 2003-2004

8.1 Continuous Random Variables 221

Definition 34. The random variables X and Y are independent if for all z, y,

Pr((X <z)n(Y <y))=Pr(X <z)Pr(Y <y).

From the definition, two random variables are independent if and only if their
joint distribution function is the product of their marginal distribution functions:

F(z,y) = Fx(z)Fy(y).

It follows from taking the derivatives with respect to x and y that if X and Y are
independent, then

[l y) = fx(@) fv (),

and this condition is sufficient as well.

As an example, let a and b be positive constants, and consider the joint distri-
bution function for two random variables X and Y given by

Flz,y)=1— e % — ¢ 4 o (az+by)
over the range x,y > 0. We can compute that
Fx(x)=F(z,00) =1—e
and similarly Fy(y) = 1 — e~%. Alternatively, we could compute

Fa,y) = abe =),

Fx(z) = / / abe” @) dydy = / —ae " =1—e "%,
=0 J y=0 =0

We find that

from which

Flz,y) =1—e9 —e W pe @) — (1 _ e ®)(1 —e W) = Fy(2)Fy(y),

so X and Y are independent. Alternatively, working with the density functions we
can find independence as

fx(x) = ae™, fy(y) = be™™, f(z,y) = fx(z)fr(y).
Conditional probability for continuous random variables introduces a non-trivial
subtlety. The natural definition

Pr(ENF)

Pr(E | F) =

© Copyright Mitzenmacher and Upfal, 2003-2004

8.1 Continuous Random Variables

222

is suitable when Pr(F') # 0. For example,

Pr(X <3|Y <6) = = =

when Pr(} < 6) is not zero.

In the discrete case, when Pr(F) = 0, then Pr(E | F)) was simply not well-
defined. In the continuous case, there are well-defined expressions that condition on
events that occur with probability 0. For example, considering the joint distribution
function F(z,y) =1 —e % —e™% + e~(a+by) considered above, it seems reasonable
to consider

Pr(X <3|Y =4),
but since Pr(Y = 4) is an event with probability 0, the definition is not applicable.
If we did apply the definition, it would yield

Pr(X <3)n (Y =4))
Pr(Y =4) '

Pr(X <3|Y=4)=

Both the numerator and denominator are 0, suggesting that we should be taking a
limit as they both approach 0. The natural choice is

Pr(X§3|Y:4):(lsir%Pr(X§3|4§Y§4+5).
—

This choice leads us to the following definition:

flu,y)
—00 fY (y)

To see informally why this is a reasonable choice, consider

du.

PriX<z|Y=y) = /

| C Pr((X<2)n(y <Y <y+9))
< <Y < =
limPr(X <a|y <Y <y+d) = lim Priy <Y <y+0)

F(x,y+90) = F(z,y)
-0 Fy(y+90) — Fy(y)
= i T gblny+0) = G F(uy)
= 1m
050 Jyue oo Fy(y+90) — Fy(y)

du

_ / " i (OF (uy +8)/00 — OF (u,y) /02)/5

=00 90 (Fy(y +6) — Fy(y))/d
/ fluy)
U=—00 fY(y)
Here we have assumed that we can interchange the limit with the integration, and
that fy(y) # 0.

© Copyright Mitzenmacher and Upfal, 2003-2004

8.2 The Uniform Distribution

223

The value Fey)
T,y
fxiv(z,y) =
Y|Y() fr(y)
is also called a conditional density function. We may similarly use
fz,y)
xr,y) =
fY|X(y) fX (IL‘)

Our definition yields the natural interpretation that to compute Pr(X < z | Y = y) we
integrate the corresponding conditional density function over the appropriate range.
You may check that this definition yields the standard definition for Pr(X < z|Y < y)
through appropriate integration. Similarly, we may compute the conditional expec-
tation

BIX |V =)= [ocnfuylo)da

using the conditional density function.
For our example, when F(z,y) =1 —e % — e~ 4 e~ (@) then

3 —azx+4b

abe

_ 1 _ A—3a
" du=1—e"",

Pr(X§3|Y:4):/

u=

a result we could also have achieved directly using independence.

8.2 The Uniform Distribution

When a random variable X assumes values in the interval [a, b], such that all subinter-
vals of equal length have equal probability, we say that X has the uniform distribution
over the interval [a, b], or alternatively that it is uniform over the interval [a,b]. We
denote such a random variable by Ula,b]. We may also talk about uniform distribu-
tions over the interval [a,b), (a,b], or (a,b). Indeed, since the probability of taking
on any specific value is 0 when b > a, the distributions are essentially the same.

The probability distribution function of such an X is

0 ifx<a
Flz)=¢ =2 ifa<az<b
1 if © > b,
and its density function is
0 ifr<a
fl@)={ ;= ifa<z<b
0 if x > b.

These are shown in Figure 8.2.

© Copyright Mitzenmacher and Upfal, 2003-2004

8.2 The Uniform Distribution 224

(a) f(2) =52, a<z<bh
Figure 8.2: The uniform distribution

The expectation of X is

and the second moment is

b2 3 3 2 2

x b° —a b* +ab+a

E[X?] = dor = =)
X7] /Qb—ax 3(b—a) 3

The variance is computed by

In our continuous roulette example, the outcome X of the experiment has a
uniform distribution over [0,1). Thus, the expectation of X is 1/2 and the variance
of X is 1/12.

8.2.1 Additional Properties of the Uniform Distribution

Suppose you have a random variable X chosen from a uniform distribution, say over
[0,1], and it is revealed that X is less than or equal to 1/2. With this information,
the conditional distribution of X remains uniform, over the smaller interval [0, 1/2].

Lemma 38. Let X be a uniform random variable on [a,b]. Then for ¢ <d

c—a

d—a

Pr(X <c¢|X <d)=

That is, conditioned on the fact that X < d, X is uniform on [a,d].

© Copyright Mitzenmacher and Upfal, 2003-2004

8.2 The Uniform Distribution

225

Proof.

PH((X <)N (X <)
Pr(X <d)

Pr(X <¢)

Pr(X <d)

d—a

Pr(X <c¢|X <d) =

It follows that X, conditioned on being less than or equal to d, has a distribution
function that is exactly that of a uniform random variable on [a, d]. O

Of course a similar statement holds if we consider Pr(X < ¢| X > d); condi-
tioned on X > d, the resulting distribution is uniform over [d, b].

Another fact about the uniform distribution stems from the intuition that if
n points are uniformly distributed over an interval, we expect them to be roughly
equally spaced. We can codify this idea as follows:

Lemma 39. Let X1, Xy, ..., X, be independent uniform random variables over [0, 1].
Let Y1,Y5,.. Y be the same values as X1, Xo, ..., X, in increasing sorted order.
Then E[Yk] = n+1

Proof. Let us first prove the result for Y; with an explicit calculation. By definition
Y1 = min(X;, Xy, ..., X,,). Now

Pr(Yy >y) = Pr(min(Xy, X, ..., X,) >y)
= Pr(X;>y)N(Xa>y)---N(X,>y))

= ﬁPrX > y)

=

S—

It follows from Lemma 37 that

1
(1—y)"dy =)
/y y v= n+1

Alternatively, one could use F(y) = 1 — (1 — y)™, so the density function of Y] is
f(y) =n(1l —y)"', and hence using integration by parts

1 1
1

ElY; :/ nyl—yn_ldy:/ 1—y)"dy = .

vil= [y = o gra=

This analysis can be extended to find E[Y}] with some computation, which we
leave as exercise 5. A simpler approach, however, makes use of symmetry. Let us

© Copyright Mitzenmacher and Upfal, 2003-2004

8.3 The Exponential Distribution

226

consider the circle of circumference 1, and place n + 1 points Py, Py, ..., P, indepen-
dently and uniformly at random on the circle. This is equivalent to choosing each
point by a spin of the continuous roulette wheel of Section 8.1.1. Label the point P,
as 0, and let X; be the distance traveling clockwise from Py to P;. The X, are then
independent, uniform random variables from [0, 1]. The value Y} is just the distance
to the k-th point reached traveling clockwise from Fy. (See Figure 8.3.)

P, P,
P
P5 P 2
P,
P,
0 1
| | | | | [
| | | | | 1
P, P, P, P, P, Py P,

Figure 8.3: A correspondence between random points on a circle and random points
on a line

The distance between Y; and Yy, is the length of the arc between the two
corresponding adjacent points. By symmetry, however, all of the arcs between adja-
cent points must have the same expected length. The expected length of each arc is
therefore 1/(n + 1), since there are n + 1 arcs created by the n points and their total
length is 1. Using linearity of expectations, E[Y] is the sum of the expected lengths
of the first k arcs, and hence E[Y;] = k/(n + 1). 0O

The proof has made use of an interesting one-to-one correspondence between
choosing n points independently and uniformly at random from [0,1] and choos-
ing n + 1 points independently and uniformly at random from the boundary of the
circle with circumference 1. Such relationships, when they are available, can often
greatly simplify an otherwise lengthy analysis. We develop other similar relationships
throughout this chapter.

8.3 The Exponential Distribution

Another important continuous distribution is the exponential distribution.

© Copyright Mitzenmacher and Upfal, 2003-2004

8.3 The Exponential Distribution

227

(a) f() = 6%, >0 (b) F(a) =1—e ", ¢>0
Figure 8.4: The exponential distribution

Definition 35. An exponential distribution with parameter 6 is given by the following
probability distribution function:

1—e % forz>0,
() = { 0 otherwise.

The density function of the exponential distribution is

f(x) =0e % for x> 0.

Its first and second moments are

> 1
E[X] = /0 tee"%dt:a

> 2
E[X?) = / t29e_0tdt:@.
0

Hence,

Var[X] = B[X?] — (B[X])? = %

8.3.1 Additional Properties of the Exponential Distribution

Perhaps the most important property of the exponential distribution is that, like the
discrete geometric distribution, it is memoryless.

Lemma 40. For an exponential random variable with parameter 6,

Pr(X >s+t| X >t) = Pr(X >s)

© Copyright Mitzenmacher and Upfal, 2003-2004

8.3 The Exponential Distribution

228

Proof.

Pr(X > s+1)
Pr(X > 1)

1 —Pr(X <s+t)
1-Pr(X <t)

o 0(s+1)

Pr X >s+t| X >t

e—0t
e—Gs

= Pr(X > s).

O

The exponential distribution is the only continuous memoryless distribution. It
can be viewed as the continuous version of the discrete geometric distribution, which
is the only discrete memoryless distribution. The geometric distribution models the
time until first success in a sequence of independent identical Bernoulli trials, while
the exponential distribution models the time until the first event in a memoryless
stochastic process.

The minimum of several exponential random variables also exhibits interesting
properties.

Lemma 41. If X1, X, ..., X, are independent exponentially distributed random vari-
ables with parameters 01,0,, . .., 0, respectively, then min(Xy, X, ..., X,,) is exponen-
tially distributed with parameter Y ;| 6;, and

0;
Z?:l 0;
Proof. 1t suffices to prove the statement for two exponential random variables, and

the general case then follows by induction. Let X; and X, be independent exponential
random variables with parameters #; and 6. Then

Pr(min(X;, X, ..., X)) = X;) =

Pr(min(X;, Xs) > 2) = Pr((X; >z)nN (Xy > 7))
= Pr(X; > z)Pr(Xy > x)

— e—Glxe—ng

67(91 +92):L“

Hence the minimum has an exponential distribution with parameter 6; + 0s.

Moreover, let f(z1,x2) be the joint distribution of (X, X). Since the variables

© Copyright Mitzenmacher and Upfal, 2003-2004

8.3 The Exponential Distribution

229

are independent, we have f(z1,x2) = 01e” hiz19,e=0222 Hence

PI'(X1 < XQ) = / / f 1'1,1'2 dl‘ldl'z
r2=0

= / fre 272 (/ 0re "1$1de> d,
x2=0 x1=0

= / fye 0272(1 — e 0172y,
T

2=0
= / (926702$2 — 9267(01+92)m2) dZUZ
x2=0

0>

0,40,
01

0, + 0y

O

For example, suppose that an airline ticket counter has n service agents, where
the time that agent i takes per customer having an exponential distribution with
parameter #;. You stand at the head of the line at time 7}, and all of the n agents
are busy. What is the average time you wait for an agent?

Since service times are exponentially distributed, it does not matter for how long
each agent has been helping another customer before time 7j; the remaining time for
each customer is still exponentially distributed. This is a feature of the memoryless
property of the exponential distribution. Lemma 41 therefore applies. The time until
the first agent becomes free is exponentially distributed with parameter Y. 6;, so the
expected waiting time is 1/)" 6;. Indeed, you can even determine the probability
that each agent is the first to become free; the j-th agent is first with probability

0]/ Z?:l 91

8.3.2 Application: Balls and Bins with Feedback *

As an application of the exponential distribution, we consider an interesting variation
of our standard balls and bins model. In this problem, we only have two bins, and
balls arrive one by one. Initially both bins have at least 1 ball. Suppose that if bin 1
has z balls and bin 2 has y balls, then the probability that bin 1 obtains the next ball
is z/(x + y) and the probability that bin 2 obtains the next ball is y/(x + y). This
system has feedback: the more balls a bin has, the more balls it is likely to obtain in
the future. An equivalent problem is given in exercise 6 in Chapter 1. You may wish
to check (by induction) that if both bins start initially with 1 ball, then when there
are n total balls, the number of balls in bin 1 is uniformly distributed on the range
[1,n —1].

© Copyright Mitzenmacher and Upfal, 2003-2004

8.3 The Exponential Distribution

230

Suppose instead that we strengthen the feedback in the following way. If bin 1
has x balls and bin 2 has y balls, then the probability that bin 1 obtains the next ball
is 27 /(x? + yP) and the probability that bin 2 obtains the next ball is y?/(x? + y?) for
some p > 1. For example, if p = 2, then if bin 1 has 3 balls and bins 2 has 4 balls,
the probability that the next ball goes into bin 1 is only 9/25 < 3/7. Setting p > 1
strengthens the advantage of the bin with more balls.

This model has been suggested to describe economic situations that result in
monopoly. For example, suppose that there are two operating systems, Lindows and
Winux. Users will tend to purchase machines with the same operating system that
other users have to maintain compatibility. This effect might be non-linear in the
number of users of each system; this is modeled by the parameter p.

We now show a remarkable result: as long as p > 1, there is some point at
which one bin obtains all the rest of the balls thrown. In the economic setting, this
is a very strong form of monopoly; the other competitor simply stops obtaining new
customers.

Theorem 54. Under any starting conditions, if p > 1 then with probability 1 there
exists a number ¢ such that one of the two bins gets no more than ¢ balls.

Note the careful wording of the theorem. We are not saying that there is some
fixed ¢ (perhaps dependent on the initial conditions) such that one bin gets no more
than ¢ balls. (If we meant this, we would say that there exists a number ¢ such that
with probability 1, one bin gets no more than ¢ balls.) Rather, we are saying that
with probability 1, at some point that we do not know ahead of time, one bin stops
receiving balls.

Proof. For convenience, assume that both bins start with one ball; this does not affect
the result.

We start by considering a very closely related process. Consider two bins that
start with 1 ball at time 0. Balls arrive at each of the bins. If bin 1 obtains its z-th
ball at time ¢, it obtains its next ball at a time ¢ + 7T}, where T, is a random variable
exponentially distributed with parameter 2. Similarly, if bin 2 obtains its z-th ball
at time ¢, it obtains its next ball at a time ¢t + U,, where U, is also a random variable
exponentially distributed with parameter z?. All T, and U, values are independent.
Each bin can be considered independently in this setup; what happens at one bin
does not effect the other.

Although this process may not seem related to the original problem, we now
claim that it mimics it exactly. Consider the point at which a ball arrives, leaving
x balls in bin 1 and y balls in bin 2. By the memorylessness of the exponential
distribution, it does not matter in which bin the ball that has just arrived landed
in; the time for the next ball to land in bin 1 is exponentially distributed with mean
x7P and the time for the next ball to land in bin 2 is exponentially distributed with
mean yP. Moreover, by Lemma 41, the next ball lands in bin 1 with probability

© Copyright Mitzenmacher and Upfal, 2003-2004

8.3 The Exponential Distribution

231

aP/(xP + yP) and in bin 2 with probability y?/(z? + y?). Therefore this setup mimics
exactly what happens in the original problem. (See Figure 8.5.)

Bin 1 | |1 1 []]

B2 1 1 1 11 1717

Bins1 and 2 | | | | | | |

Figure 8.5: In the setup where the time between ball arrivals is exponentially dis-
tributed, each bin can be considered separately. An outcome of the original process
can be seen by simply combining the timelines of the two bins.

Let us define the saturation time Fi for bin 1 by F| = ZJ T}, and similarly

=32 ;=1 Uj. The saturation time represents the first time in which the total number
of balls recelved by a bin is unbounded. It is not clear that the saturation times are
well-defined random variables; what if the sum does not converge, and therefore its
value is infinity? It is here that we make use of the fact that p > 1. We have

ZT ZE

Here we have used linearity of expectations for a countably infinite summation of
random variables, which holds if) *°* | E[|T}|] converges. (Chapter 2, and in particular

exercise 29, discusses the applicability of the linearity of expectations to countably

1

infinite summations.) It suffices to show that °°, -5 converges to a finite number

whenever p > 1. This follows from bounding the summation by the appropriate
integral

o0

1

E[F] = 5

Indeed, all of the integral moments converge to a finite number. It follows that both
F} and Fy are, with probability 1, finite and hence well-defined.

Furthermore, F} and F5, are distinct with probability 1. To see this, suppose
that the values for all of the random variables T, and U, are given except for 7T}.
Then for Fi to equal F5, it must be the case that

© Copyright Mitzenmacher and Upfal, 2003-2004

8.4 The Poisson Process

232

But the probability that T takes on any specific value is 0, just as the probability that
our roulette wheel takes on any specific value is 0. Hence, F; # F; with probability
1.

Suppose that F| < F,. Then we must have for some n that

n+1

En: U <Fi <) U
=1 =

This implies that for any number m, bin 1 has obtained m balls before bin 2 has
obtained its (n+ 1)-st ball. Since our new process corresponds exactly to the original
balls and bins process, this is also what happens in the original process. But this
means that once bin 2 has n balls, it does not receive any others; they all go to bin 1.
The argument is the same if F5, < F. Hence, with probability 1, there exists some n
such that one bin obtains no more than n balls. O

When p is close to 1, or when the bins start with a large and nearly equal
number of balls, it can take a long time before one bin dominates enough to obtain
such a monopoly. On the other hand, monopoly happens quickly when p is much
bigger than 1 (such as p = 2) and the bins start with just 1 ball each. You are asked
to simulate this model in exercise 24.

8.4 The Poisson Process

The Poisson Process is an important counting process that is related to both the
uniform and the exponential distribution. Consider a sequence of random events, such
as arrivals of customers to a queue, or emissions of alpha particles from a radioactive
material. Let N(t) denote the number of events in the interval [0,¢]. The process
{N(t), t > 0} is a stochastic counting process.

Definition 36. A Poisson process with parameter (or rate) X is a stochastic counting
process {N(t), t > 0} such that:

1. N(0) = 0.

2. The process has independent and stationary increments. That is, for any t,s >
0, the distribution of N(t+s)—N(s), is identical to the distribution of N(t), and
for any two disjoint intervals [t1,ty] and [ts, t4], the distribution of N(ty)— N(t1)
is independent of the distribution of N(t4) — N(t3).

3. limy_,q % = X. That s, the probability of an event in a short interval t

18 proportional to At.
4. limy_y w = 0. That s, the probability of more than one event is a short
interval t tends to 0.

© Copyright Mitzenmacher and Upfal, 2003-2004

8.4 The Poisson Process

233

The surprising fact is that the above set of broad, relatively natural conditions
defines a unique process. In particular, the number of events in a given time interval
follows the Poisson distribution, defined in Section 5.3.

Theorem 55. Let {N(t) | t > 0} be a Poisson process with parameter \. For any
t,s > 0 and any integer n > 0,

At)"

Pot) = Pr(N(t + 5) — N(s) = n) = oMY ') _

n!
Proof. We first observe that P,(t) is well defined since by the second property of
Definition 36 the distribution of N(t+s) — N (s) depends only on ¢ and is independent
of s.

To compute Py(t) we note that the number of events in the intervals [0, ¢] and
(t,t + h] are independent random variables and therefore

Po(t + h) = Po(t)Po(h).

Writing
PU(t+h)—P0(t) P[](h)—l
h = P(t)—
_ ppo PV =1) ~ Pr(N(h) 2 2) ~1
h
_ gDt =1) — Pr(N (k) > 2)

h ’
By taking the limit as h — 0, and by applying properties 2-4 in Definition 36 we
obtain:

Pyt +h) — Pyt

To solve

we rewrite it as

Integrating for ¢ gives
lnPO(t) ==\t + C,

or
Pg(t) — e—/\t-i-C‘

© Copyright Mitzenmacher and Upfal, 2003-2004

8.4 The Poisson Process 234

Since Py(0) = 1 we conclude that

Py(t) = e ™. (8.1)
For n > 1 we write

Pt = Y PR

n

= Pu(t)Po(h) + Paci () Pr(h) + Y Poi(t) Pr(N(h) = k).

k=2
Computing the first derivative of P, (t) we get

P,(t+ h) — P,(t)

Pi(t) = lim

1 -
= lim = | Pu(t)(Po(h) = 1) + Poa () Pu(h) + k; P (t) Pr(N(h) = k))

= —AP,(t) + AP, (%).
where we use the facts that by properties 2 and 3,
Py (h)

AT =
and by property 4,
1 < . Pr(N(h) >2)
< — e < — e
0 flLILI(l] h 2 P,_x(t)Pr(N(h) =k) < flLILI(l] . 0,

and so

R

flgr(l) 7 P, k(t)Pr(N(h)=k)=0

k=2
To solve
P! (t) = —AP,(t) + AP, (1)

we write

M (PL(t) + AP, (1)) = eMAP,_ (1),

which gives
d
%(e”Pn(t)) =XeMP, 1(1). (8.2)

Using (8.1) we get

d . x Y’ _
S (€T Pi(1) = AT By (t) = A

© Copyright Mitzenmacher and Upfal, 2003-2004

8.4 The Poisson Process

235

implying
Pi(t) = (Mt +c)e ™.

Since P;(0) = 0 we conclude that

Py (t) = Mte ™. (8.3)

We continue by induction on n to prove that for all n > 0,

v

Fa(t) n!

Using (8.2) and the induction hypothesis gives

d At Angn
P,(t)) = Xe"P, 1(t) = .
FEPB) = AP () =
Integrating and using the fact that P,(0) = 0 gives the result. O

The parameter A is also called the rate of the Poisson process, since as we have
proved, the expected number of events during any time period of length ¢ is a Poisson
random variable with expectation At.

The reverse is also true; that is, we could equivalently have defined the Poisson
process as a process with Poisson arrivals:

Theorem 56. Let {N(t) | t > 0} be a stochastic process such that

1. N(0) =0;

2. The process has independent increments. That is, the number of events in dis-
joint time intervals are independent events;

3. The number of events in an interval of length t has a Poisson distribution with
mean At.

Then {N(t) | t > 0} is a Poisson process with rate \.

Proof. The process clearly satisfies conditions (1) and (2) in Definition 36. To prove
(3) we have
Pr(N(t) = 1)

. e Mt
lim———~>—~ = lim =
t—0 t t—»0 ¢

A

Condition (4) follows from

fim ¢ == 0

© Copyright Mitzenmacher and Upfal, 2003-2004

8.4 The Poisson Process 236

8.4.1 Interarrival Distribution

Let X7 be the time of the first event of the Poisson process, and X,, be the interval
of time between the (n — 1)-st and the n-th event. The X,, are generally referred to
as interarrival times, since they represent the time between arrivals of events. Here,
we show that all of the X,, have the same distribution, and that this distribution is
exponential.

We begin by deriving the distribution of Xj.

Theorem 57. X, has an exponential distribution with parameter \.

Proof.
Pr(X; > t) = Pr(N(t) = 0) = e,

Thus,
F(X))=1-Pr(X;>t)=1—-e,

O

Using the fact that the Poisson process has independent and stationary incre-
ments, we can prove the stronger result:

Theorem 58. The random variables X;, 1 = 1,2,... are independent, identically dis-

tributed, exponential random variables with parameter .

Proof. The distribution of X; is given by

Pr(X; > ti | (Xo=t)N (X1 =) N (X; 1 =t1)) = Pr(N(i:tk)—N(lzitk)zo)

Thus, the distribution of X; is exponential with parameter A, and it is independent
of other interarrival values. O

Theorem 58 says that if we have a Poisson arrival process, then the interarrival
times are identically distributed exponential random variables. In fact, it is easy to
check that the reverse is also true (see exercise 17).

Theorem 59. Let {N(t) | t > 0} be a stochastic process such that

1. N(0) =0;

2. The interarrival times are independent, identically distributed, exponential ran-
dom variables with parameter .

Then {N(t) | t > 0} is a Poisson process with rate \.

© Copyright Mitzenmacher and Upfal, 2003-2004

8.4 The Poisson Process

237

8.4.2 Combining and Splitting Poisson Processes

The correspondence between Poisson processes and exponentially distributed interar-
rival times proves quite useful in proving facts about their behavior. One immediate
fact is that Poisson processes combine in a natural way. We say that two Poisson
processes N;(t) and No(t) are independent if and only if the values N;(t) and Ny (u)
are independent for any ¢ and u. Let Ny (t)+ N2 () denote the process that counts the
number of events corresponding to both of the processes Ny (¢) and Ny(t). We show
that if N;(¢) and Ny(t) are independent Poisson processes, they combine to form a
Poisson process Ni(t) + No(t).

Theorem 60. Let Ni(t) and Ny(t) be independent Poisson processes with parameters
A1 and Ay, respectively. Then Ni(t) + No(t) is a Poisson process with parameter
A1 + Ao, and each event for the process Ny(t) + Na(t) arises from the process Ni(t)
with probability A1/ (A + A2).

Proof. Clearly N;(0) + N5(0) = 0, and since the two processes are independent and
each has independent increments, the sum of the two processes also has independent
increments. The number of arrivals Ny () + Ny(t) is a sum of two independent Poisson
random variables, which as we saw in Lemma 19 has a Poisson distribution with the
sum of the two parameters. Thus, by Theorem 56, Ny () + N»(t) is a Poisson process
with rate \; + As.

By Theorem 57, the interarrival time for Ni(t) + No(t) is exponentially dis-
tributed with parameter A; + Ay, and by Lemma 41 an event in N;(t) + No(t) comes
from the process Nj(t) with probability A;/(A1 + A2). O

The theorem extends to more than two processes by induction.

Interestingly, Poisson processes can be split as well as combined. If we split
a Poisson process with rate A\ by labeling each event as either being Type 1 with
probability p or Type 2 with probability (1 — p), then it seems that we should get
two Poisson processes with rates Ap and A\(1 — p). In fact, we can say something even
stronger: the two processes will be independent.

Theorem 61. Suppose that we have a Poisson process N(t) with rate X\. Each event
is independently labeled as being Type 1 with probability p and Type 2 with probability
1 — p. Then the Type 1 events form a Poisson process Ni(t) of rate Ap, the Type 2
events form a Poisson process Ny(t) of rate \(1 — p), and the two Poisson processes
are independent.

Proof. We first show that the Type 1 events in fact form a Poisson process. Clearly
Ni(t) = 0, and since the process N (t) has independent increments, so does the process
Ny(t). Next we show that N, (¢) has a Poisson distribution,

© Copyright Mitzenmacher and Upfal, 2003-2004

8.4 The Poisson Process

238

Pr(Vi(t) = k) = ZPF(M(t) =k |N(t) = j) - Pr(N(t) = j)

=k
_ I\ pe T (AL)
= Y (1)pra-p]
i=k
AP'f(Apt o) = (At = p))yF
k! 2::]—k
e P \pt)F
k!

Thus, by Theorem 56, N;(t) is Poisson process with rate Ap.

To show independence, we need to show that Ny (¢) and Ny(u) are independent
for any t and w. In fact it suffices to show that N;(¢) and Ny(t) are independent
for any t; it then follows that N;(t) and Ny(u) are independent for any ¢ and u by
taking advantage of the fact that Poisson processes have independent and stationary
increments (see exercise 18).

Pr((Ni(t) =m) N (Na(t) =n)) = Pr((N(t) =m+n)N (Na(t) = n))
e A(\g)mHn (m + n)pm(l i

(m+n)! n
ef/\t()\t)ern . .
= — o P"(1-p)
_ e M) e MIP (ML — p))”
- m! n!

= Pr(Ni(t) =m) - Pr(Ny(t) = n).

8.4.3 Conditional Arrival Time Distribution

We have used the fact that a Poisson process has independent increments to show
that the distribution of the interarrival times is exponential. Another application of
this assumption is the following: if we condition on exactly one event occurring in
an interval, the actual time at which that event occurs is uniformly distributed over
that interval. To see this, consider a Poisson process where N(¢) = 1, and consider

© Copyright Mitzenmacher and Upfal, 2003-2004

8.4 The Poisson Process 239

the time of the single event X; that falls in the interval (0, ¢]:
Pr((X; <s)N(N(t) =1))

Pr(N(t) = 1)
Pr((N(s) =1)N(N(t) — N(s) =0))

Pr(X; <s|N(t)=1) =

~+| ®

Here we have used the independence of N(s) and N(t) — N(s).

To generalize this to the case of N(¢) = n, we use the concept of order statis-
tics. Let Xi,...,X, be n independent observations of a random variable. The
order statistics of Xi,..., X, consists of the n observations in (increasing) sorted
order. For example, if X, Xy, X3, and X, are independent random variables gen-
erated by taking a number chosen uniformly on [0, 1] and rounding to two decimal
places, we might have X; = 0.47, Xy = 0.33, X3 = 0.93, and X4 = 0.26. The
corresponding order statistics, where Y(; is used to refer the :-th smallest, would be
Y1) = 0.26,Y(2) = 0.33,Y(3) = 0.47, and Y4 = 0.93.

Theorem 62. Given that N(t) = n, the n arrival times have the same distribution
as the order statistics of n independent random variables with uniform distribution
over [0, t].

Proof. We first compute the distribution of the order statistics of n independent ob-
servations X, Xy, ..., X, drawn from a uniform distribution in [0,]. Let Y(1),..., Y(n)
denote the order statistics.

We want an expression for

Pr(Yy) <s1,Y) <s9,..., Y < 50).

Let £ be the event that

Yy <s1,Y0) < 89,000, Yy < s

For any permutation ij,1o,...,%, of the numbers from 1 to n, let &, 4, . ;. be the
event that

Xil S SlaXil S Xig S 59, ... 7Xin71 S Xln S Sn-
The events &, ;, ., are disjoint, except for the cases where X;, = X; for some j.

Since two uniform random variables are equal with probability 0, the total probability
of such events is 0, and can be ignored. By symmetry all events &;, ;, ;. have the
same probability. Also,
&= Ugil,iz,...,ina

© Copyright Mitzenmacher and Upfal, 2003-2004

8.4 The Poisson Process 240

where the union is over all permutations. It follows that
Pr(Y(1) < s1,Y2) < s2,..., Yy < 5p)
= ZPI'(X“ S Sleil S Xiz S 52, ... 7Xin71 S Xln S Sn)
= nlPr(X; <s1, X1 <Xy <s9,..., X1 <X, <s5y),

where the sum in the second line is over all n! permutations. Now if we think of wu;
as representing the value taken on by X;, then

S1 S9 Sn 1 n
Pr(X) < 51, X1 < Xy < 89,000y Xo 1 < X < 5) = / / / <;> duy - - - dus,
0 w1l Up—1

using the fact that the density function of a uniform random variable on [0,¢] is
f(t) =1/t. This gives

n! s1 So Sn
PY(Y(1)§81,Y(2)§S2,---,Y(n)§8n):t—n/ / / duy, - - - duy.
0 ul Up—1

We now consider the distribution of the arrival times for a Poisson process,
conditioned on N(t) = n. Let Sy,...,S,41 be the first n + 1 arrival times. Also let
Ty = S7 and T; = S; — S;_1 be the length of the interarrival intervals. By Theorem 58,
we know that without the condition that N(t) = n, the distributions of the random
variables T1, . .., T, are independent, and for each ¢, T; has an exponential distribution
with parameter A. Recalling that the density function of the exponential distribution
is de™, we have

Pr(S; < 1,5 < s9,...,5, < s,, N(t) =n)

n—1 n
= Pr(7) < s, T2§82—T1,---,Tn§8n—ZTi, Tn+1>t_ZTi)
i—1 i—1

S1 So—t1 snfzn:ll ti [e’e)
= _ n+1 ..
= / / .. / / AL ARSI tz)dtn_H oo dty
o Jo 0 t=is b

Integrating for t,,.; we get

o0
o n+l ;. o nt1, 1
/ Al A tz)dtn+1 = =\" [e A tz] .
="t t=>ima ti

= A\ M.

Thus,
n—1 t

s1 s2—11 i=1 Ui
PI'(SlSSl,SQSSQ,...,SnSSn,N(t):TL) =)\”e_/\t/ / / dtndtl
0 0
/.

Sn—
0
Sn
n, —At
= Nle / / du, - - - duy,
0 Un—1

© Copyright Mitzenmacher and Upfal, 2003-2004

8.5 Continuous Time Markov Processes 241

where the last equation is obtained by substituting u; = 22:1 t;.

Since ()"
—) — oAt
Pr(N(t) =n)=e o
because the number of events in an interval of length ¢ has a Poisson distribution

with parameter A\, the conditional probability computation gives

Pr(S; < s1,5 < $9,...,5, < s,, N(t) =n)
t) =n)

Pr(N(
| S1 S92 Sn
pu— & / / " e / dun .. dul.
36 0 u1 Up—1

This is exactly the distribution function of the order statistics, proving the theorem.
O

Pr(S; <s1,5 <s9,...,8, < s, | N(t)=n) =

8.5 Continuous Time Markov Processes

In Chapter 7, we studied discrete-time and discrete-space Markov chains. With the
introduction of continuous random variables, we can now study the continuous-time
analogue of Markov chains, where the process spends a random interval of time in a
state before moving to the next one. To distinguish between the discrete and contin-
uous processes, when dealing with continuous time we speak of Markov processes.

Definition 37. . A continuous time random process {X; | t > 0}, is Markovian (or
is called a Markov process) if for all s,t > 0:

Pr(X(s+t)=z | X(u),0<u<t)=Pr(X(s+1t) =z X(t)),

and this probability is independent of the time t.t

The definition says that distribution of the state of the system at time X (s+t),
conditioned on the history up to time ¢, depends only on the state X(¢) and is
independent of the particular history that led the process to state X ().

Restricting our discussion to discrete-space continuous-time Markov processes,
there is another equivalent way of formulating such processes that is more convenient
for analysis. Recall that a discrete-time Markov chain is determined by a transition
matrix P = (P, j), where P, ; is the probability of a transition from state i to state j
in one step. A continuous time Markov process can be expressed as a combination of
two random processes:

tTechnically, as with the discrete-time Markov chains, this is a time-homogeneous Markov process;
this will be the only type we study in this book.

© Copyright Mitzenmacher and Upfal, 2003-2004

8.5 Continuous Time Markov Processes

242

1. A transition matrix P = (p; ;); where p; ; is the probability that the next state
is j given that the current state is i. (We use lower-case for the transition prob-
abilities here for notational convenience.) The matrix P is the transition matrix
for what is called the embedded or skeleton Markov chain of the corresponding
Markov process.

2. A vector of parameters (6;, 6, . . .), such that the distribution of time the process
spends in state 7 before moving to the next step is exponential with parameter
;. The distribution of time spent at a given state must be exponential to satisfy
the memoryless requirement of the Markov process.

A formal treatment of continuous time Markov processes is more involved than their
discrete counterparts, and a full discussion is beyond the scope of this book. We limit
our discussion to the question of computing the stationary distribution (also called
equilibrium distribution) for discrete-space continuous-time processes, assuming that a
stationary distribution exists. As for the discrete-time case, a stationary distribution
m; gives the limiting probability that the Markov process will be in state ¢ infinitely
far out in the future, regardless of the initial state. That is, if we let P;;(t) be the
probability of being in state ¢ at time ¢ when starting from state j at time 0, then

Similarly, 7; gives the long-term proportion of the time the process is in state .

Furthermore, if the initial state j is chosen from the stationary distribution, then the
probability of being in state ¢ at time ¢ is m; for all ¢.

To determine the stationary distribution, consider the derivative Pj;(t):

P;i(t + h) — P;(t)

Pj(t) = lim

h—0 h
— lim Yk Pik(t)Pri(h) — Pji(t)
h—0 h
L Pyi(h) 1—P,;(h)

Since the distribution of time spent at state k is exponential with parameter 6,
we can use the properties of the Poisson process to observe that as h tends to 0, the
limiting probability of a transition out of state k£ in an interval of length h is hfj, and
the limiting probability of more than one transition is 0. Thus,

Py.i(h)
lim ———~
h

= Ok ;-
h—0 P

Similarly, 1 — P, ;(h) is the probability that a transition occurs over the interval of
time h, and the transition is not from state ¢ back to itself. Thus

lim 71 — Bi(h)
h—0 h

= 9i(1 - pzz)

© Copyright Mitzenmacher and Upfal, 2003-2004

8.5 Continuous Time Markov Processes 243

We now assume that we can interchange the limit and the summation; we
emphasize that in general this is not always justified if the state space is countably
infinite. Subject to this assumption,

lim (Z Pl p o) - ih“(h)zaj,i(t)) = S OpiPslt) — Pout)(0: — 6p1.)

h—0
k#i

= > Oprilir(t) — 0:P;(1).
k

#i

Now taking the limit as t — oo gives

lim Pj,(t) = Jim Xk: Okpr,iPji(t) — 0: P 4(t) = zk: Okpr,imr — 0;m;.

t—o00

If the process has a stationary distribution, it must be that

lim P!

t—oo It

(t) = 0.

Otherwise, P;;(t) would not converge to a stationary value. Hence, in the stationary
distribution 7 we have the following rate equations:

mit = Z Wkekpk,i- (8-5)
k

This set of equations has a nice interpretation. The expression on the left, m;6;, is the
rate at which transitions occur out of state ¢. The expression on the right, Y, m,8xps,
is the rate at which transitions occur into state i. (If a transition goes from state i
back to state 7, this is counted both as a transition into and a transition out of state
i.) At the stationary distribution, these rates must be equal, so that the long-term
rate of transitions into and out of the state are equal. This equalization of rates in
and out of every state provides a simple, intuitive way to find stationary distributions
for continuous Markovian processes. This observation can be generalized to sets of
states, showing that the cut-set formulation of Theorem 49 for discrete-time Markov
chains also applies to continuous-time Markov processes.

If the exponential distributions governing the time spent in all of the states have
the same parameter, so that all the 6; are equal, then equation 8.5 becomes

T = g TkPk,i-
k

This corresponds to

T =7P,

where P is the transition matrix of the embedded Markov chain. We can conclude
that the stationary distribution of the continuous time process is the same as the
stationary distribution of the embedded Markov chain in this case.

© Copyright Mitzenmacher and Upfal, 2003-2004

8.6 Application: Markovian Queues

244

8.6 Application: Markovian Queues

Queues appear in many basic applications in computer science. In operating systems,
schedulers can hold tasks in a queue until the processor or other required resources
are available. In parallel or distributed programming, threads can queue for a critical
section, which allow only one thread access at a time. In networks, packets are queued
while waiting to be forwarded by a router. Even before computer systems were
prevalent, queues were widely studied to understand the performance of telephone
networks, where similar scheduling issues arise. In this section, we analyze some of
the most basic queueing models, which use Poisson processes to model the stochastic
process of customers arriving at a queue.

In what follows, we refer to queue models using the standard notation Y/Z/n,
where Y represents the distribution of the incoming stream of customers, Z represents
the service time distribution, and n represents the number of servers. The standard
notation for a Markovian or memoryless distribution is M. Thus, M/M/n stands
for a queue model with customers arriving according to a Poisson process, served by
n servers having identical and independent exponentially distributed service times.
Other queueing models include the M /M /oo model, where there are an infinite num-
ber of queues, and the M/G/1 model where the G represents that the service time
can be any arbitrary general distribution.

A queue must also have a rule for determining the order in which customers are
served. Unless otherwise specified, we assume that a queue follows the First In First
Out (FIFO) rule, where customers are served in order of their arrival.

8.6.1 M/M/1 Queue in Equilibrium

Assume that customers arrive to a queue according to a Poisson process with pa-
rameter A\, and are served by one server. The service times for the customers are
independent and exponentially distributed with parameter p.

Let M(t) be the number of customers in the queue at time . Since both
the arrival process and the service time have memoryless distributions, the process
{M(t) | t > 0} defines a continuous-time Markov process. We consider the stationary
distribution for this process.

Let
Py(t) =Pr(M(t) = k)

denote the probability that the queue has k customers at time . We use the fact that
in the limit as h goes to 0, the probability of an arrival (respectively, a departure)

© Copyright Mitzenmacher and Upfal, 2003-2004

8.6 Application: Markovian Queues

245

over a time interval is A\h (respectively, ph). Thus

dP, —
o(t) lim Po(t +h) — Py(t)
dt h—0 h
_ g Py(t)(1 — Ah) + Pi(t)puh — Py (1)
= lim
h—0 h
and for £ > 1,
dPi(t) _ . Pult+h) = Pu(t)
dt 0 h
~ lim Pe(t)(1 = Ah — ph) + Py 1(t)Ah + Py (t)ph — Py(t)
 hs0 h
In equilibrium
P _ o for & =0,1,2,....
dt

If the system converges to a stationary distributiont 74, then applying (8.6) we
get
U =)\7'('0.

This equation has a simple interpretation in terms of rates. In equilibrium the rate
into the state where there are 0 customers in the queue is pumy; the rate out is Am.
These two rates must be equal. If we write this as m = my(A/u), then (8.7) and a

simple induction give
A A\
T =Tp—1\ —) =T | — .
I [

Since D, -, M, = 1, we must have

o ; <2>k =1. (8.8)

Assuming that A < p, this gives
A

7T0:]_——

A\ A
H H
If A > p, then the summation in equation 8.8 does not converge, and in fact
the system does not reach a stationary distribution. This is intuitively clear; if the

and

YAgain, the proof that the system indeed converges relies on renewal theory and is beyond the
scope of this book.

© Copyright Mitzenmacher and Upfal, 2003-2004

8.6 Application: Markovian Queues 246

rate of arrival of new customers is larger than the rate of service completions, then
the system cannot reach a stationary distribution. If A = pu, the system also cannot
reach an equilibrium distribution, as discussed in exercise 22.

To compute the expected number of customers in the system in equilibrium,
which we denote by L, we write

L = Zkﬂ'k

where in the third equation we used the fact that the sum is the expectation of a
geometric random variable with parameter 1 — %

Interestingly, so far nowhere did we use the fact that the service rule was to
serve the customer that had been waiting the longest. Indeed, since all service times
are exponentially distributed, and the exponential distribution is memoryless, all
customers appear equivalent to the queue in terms of the distribution of the service
time required until they leave, regardless of how long they have already been served.
Thus, our equations for the equilibrium distribution and the expected number of
customers in the system hold for any service rule that serves some customer whenever
at least one customer is in the queue.

Next we compute the expected time a customer spends in the system when the
system is in equilibrium, denoted by W, assuming a FIFO queue. Let L(k) denote
the event that a new customer finds k£ customers in the queue. We can write

W =Y E[W | L(k)] Pr(L(k)).

k=0
Since the service times are independent, memoryless, and have expectation 1/,
1
EW | L(k)] = (k+ 1);

To compute Pr(L(k)), we observe that if the system is in equilibrium, the rate
of transitions out of state k is w0, where 8y = X and 0, = A+ p for £ > 1. Applying
Lemma 41, the probability that the next transition from state k is caused by the
arrival of a new customer is \/f;. Therefore the rate at which customers arrive and

© Copyright Mitzenmacher and Upfal, 2003-2004

8.6 Application: Markovian Queues

247

find k£ customers already in the queue is

Tl — = T .
i Icgk k
Since the the total rate of new arrivals to the system is A, we conclude that the
probability that a new arrival finds £ customers in the system is

Pr(L(k)) = = T

This is an example of the PASTA principle, which states that Poisson Arrivals
See Time Averages. That is, if a Markov process with Poisson arrivals has a stationary
distribution where the fraction of time the system is in state & is m, then 7y is also the
proportion of arrivals that find the system in state & when they arrive. The PASTA
principle, which is due to the independence and memoryless properties of the Poisson
process, is a useful tool that often simplifies analysis.

We can now compute

W=) E[W | L(k)] Pr(L(k))

kE+1

I
(]

TImT = == T
[==)

>l =

The relationship L = AW is known as Little’s Result, and it holds not just for
M/M/1 queues, but for any stable queueing system. The proof of this fundamental
result is beyond the scope of this book.

Although the M/M/1 queue represents a very simple process, it can be useful
for studying more complicated processes. For example, suppose that we have several
types of customers entering a queue, with each type arriving according to a Poisson
process, and all customers having exponentially distributed service times of mean
1. Since Poisson processes combine, the arrival process to the queue is Poisson, and
this can be modeled as an M/M/1 queue. Similarly, suppose that we have a single

© Copyright Mitzenmacher and Upfal, 2003-2004

8.6 Application: Markovian Queues

248

Poisson arrival process, but we establish a separate queue for each type of customer.
If each arriving customer is of type ¢ with some fixed probability p;, then the Poisson
process splits into independent Poisson processes for each type of customer, and hence
the queue for each type is an M/M/1 queue. This type of splitting might occur,
for example, if we use separate processors for different types of jobs in a computer
network.

8.6.2 M/M/1/K Queue in Equilibrium

An M/M/1/K queue is an M/M/1 queue with bounded queue size. If a customer
arrives while the queue already has K customers this customer leaves the system
instead of joining queue. Models with bounded queue size are useful for applications
such as network routers, where packets that arrive once the packet buffer is full must
be dropped.

The system is entirely similar to the previous example. In equilibrium we have

mo(2)F for k < K
Tk — ®
0 for k > K

and
1

O — — 37—+

I GILY

These equations define a proper probability distribution for any A, > 0, and
we no longer require that A < p.

8.6.3 The Number of Customers in an M/M /oo Queue

Suppose new users join a peer-to-peer network according to a Poisson process with
rate \. The length of time a user stays connected to the network has exponential
distribution with parameter p. Assume that at time 0 no users were connected to
the network. Let M (¢) be the number of connected users at time ¢. What is the
distribution of M(t)?

We can view this process as a Markovian queue with an unlimited number of
servers. A customer starts being served the moment she joins the system, and leaves
when she is done. We demonstrate two ways of analyzing this process. We first
use the rate equations (8.5) to compute the stationary distribution for the process.
The second approach is more complex, but yields more information: we explicitly
compute the distribution of the number of customers in the system at time ¢, and
then considering the limit as ¢ goes to infinity.

To write the rate equations of the process we observe that if at a give time there
are k > 0 customers in the system, the next event can be either termination of service

© Copyright Mitzenmacher and Upfal, 2003-2004

8.6 Application: Markovian Queues

249

of one of the current k& customers or the arrival of a new customers. Thus, the time to
the first event is the minimum of £+ 1 independent exponentially distributed random
variables, k of these variables have parameter ; and one has parameter A. Applying
Lemma 41 we see that when there are k& customers in the system, the time to first
event has an exponential distribution with parameter 6; = ku + A. Furthermore, the
Lemma implies that given that an event occurs, the probability that the event is an
arrival of a new customers is

A
and when k£ > 1, the probability that in that event a customer leaves the system is
_ kp
Pkk—1 = o+ N

Plugging these values in (8.5) we have that the stationary distribution satisfies,
ToA = T1H,
and for £k > 1
Te(A+ kp) = 1 A + g1 (B + 1) (8.9)
We rewrite (8.9) as

7rk+1(k+1),u = 7Tk(>\+1€/L)—7Tk_1>\
= A+ mpkp — T A

A simple induction yields that

ek = Tp_1 A,
and therefore \
Tk+1 — mﬂk-

Now again a simple induction yields
AN * 1
=m0 |— | —

O
— 2 e
1—27’(’0 </L> X = Tp€ ",
k=0
We conclude that my = e=** and more generally

7)\/u>\ k
RS

k!

and therefore

© Copyright Mitzenmacher and Upfal, 2003-2004

8.6 Application: Markovian Queues

250

so that the equilibrium distribution is the discrete Poisson distribution with parameter
A .

We now proceed with our second approach, computing the distribution of the
number of customers in the system at time ¢, denoted by M (t), and then consider
the limit of M (t) as ¢ goes to infinity. Let N(¢) be the total number of users that
have joined the network in the interval [0,¢]. Since N(¢) has a Poisson distribution,
we can condition on this value and write

Pr(M(t) = j) = iPr(M(t) =J|N(t)= n)(fAltM (8.10)
n=0

If a user joins the network at time x, the probability that she is still connected

at time ¢ is e"#=%)_ From Section 8.4.3, we know that he arrival time of an arbitrary
user is uniform on [0, ¢]. Thus, the probability that an arbitrary user is still connected

at time ¢ is given by
t —u(t—z) d 1 —put
p= [e — =—(1—e7").
0 t wt

Since the events for different users are independent, for j < n

Pe(ar() = | ¥ =m) = ()=

Plugging this value into equation 8.10 we find

Thus, the number of users at time ¢ has a Poisson distribution with parameter
Atp.

Since
1

A
1—e M)y =2,
ut() 1%

lim Ap = lim Mt
t— 00 t—o0

© Copyright Mitzenmacher and Upfal, 2003-2004

8.7 Exercises

251

in the limit the number of customers has a Poisson distribution with parameter \/pu,
matching our previous calculation.

8.7 Exercises

1. Let X and Y be independent, uniform random variables on [0,1]. Find the
density function and distribution function for X + Y.

2. Let X and Y be independent, exponentially distributed random variables with
parameter 1. Find the density function and distribution function for X + Y.

3. Let X be a uniform random variable on [0, 1]. Determine Pr(X <1/2|1/4 <
X <3/4)and Pr(X <1/4 | (X <1/3)U (X > 2/3)).

4. We agree to try to meet between 12 and 1 for lunch at our favorite sandwich
shop. Because of our busy schedules, neither of us is sure when we’ll arrive; we
assume that for each of us, our arrival time is uniformly distributed over the
hour. So that neither of us has to wait too long, we agree that we will each
wait exactly 15 minutes for the other to arrive, and then leave. What is the
probability we actually meet each other for lunch?

5. In Lemma 39, we found the expectation of the smallest of n independent uniform
random variables over [0, 1] by directly computing the probability that it was
larger than y for 0 < y < 1. Do a similar calculation to find the probability
that the k-th smallest of the n random variables is larger than y, and use this
to show its expected value is k/(n + 1).

6. Let Xy, Xy,..., X, be independent exponential random variables with param-
eter 1. Find the expected value of the k-th largest of the n random variables.

7. Consider a complete graph on n vertices. Each edge is assigned a weight chosen
independently and uniformly at random from the real interval [0, 1]. Show that
the expected weight of the minimum spanning tree of this graph is at least
1—1/(1+ (})). Find a similar bound when each edge is independently assigned
a weight from an exponential distribution with parameter 1.

8. Consider a complete graph on n vertices. Each edge is assigned a weight chosen
independently and uniformly at random from the real interval [0, 1]. We propose
the following greedy method for finding a small-weight Hamiltonian cycle in the
graph. At each step, there is a head vertex. Initially the head is vertex 1. At
each step, we find the edge of least weight between the current head vertex
and a new vertex that has never been the head. We add this edge to the
cycle and set the head vertex to the new vertex. After n — 1 steps, we have a
Hamiltonian path, which we complete to make a Hamiltonian cycle by adding
the edge from the last head vertex back to vertex 1. What is the expected

© Copyright Mitzenmacher and Upfal, 2003-2004

8.7 Exercises

252

10.

11.

12.

weight of the Hamiltonian cycle found by this greedy approach? Also, find
the expectation when each edge is independently assigned a weight from an
exponential distribution with parameter 1.

. You would like to write a simulation that uses exponentially distributed ran-

dom variables. Your system has a random number generator that produces
independent, uniformly distributed numbers from the real interval (0,1). Give
a procedure that transforms a uniform random number as given to an exponen-
tially distributed random variable with parameter \.

Let n points be placed uniformly at random on the boundary of a circle of
circumference 1. These n points divide the circle into n arcs. Let Z; for 1 <
Z; < n be the length of these arcs in some arbitrary order.

(a) Prove that all Z; are at most clnn/n with probability at least 1 — 1/n¢"t.

(b) Prove that for sufficiently large n there exists a constant ¢’ such that at
least one Z; is at least ¢ Inn with probability at least 1/2. (Hint: use the
second moment method.)

(c) Prove that all Z; are at least 1/2n? with probability at least 1/2.

(d) Prove that for sufficiently large n there exists a constant ¢’ such that at
least one Z; is at most ¢//n? with probability at least 1/2. (Hint: use the
second moment method.)

(e) Explain how these results relate to the following problem: X, X5, ..., X,,_;
are values chosen independently and uniformly at random from the real
interval [0,1]. We let Y3,Y5,...,Y,, | represent these values in increasing
sorted order, and also define Yy = 0 and Y,, = 1. The points Y; break the
unit interval into n segments. What can we say about the shortest and
longest of these segments?

BucketSort is a simple sorting algorithm discussed in Section 5.2.2.

(a) Explain how to implement BucketSort so that its expected running time is
O(n) when the n elements to be sorted are independent, uniform random
numbers chosen from [0, 1].

(b) We now consider how to implement BucketSort when the elements to be
sorted are not necessarily uniform over an interval. Specifically, suppose
the elements to be sorted are numbers of the form X + Y, where for
each element X and Y are independent, uniform random numbers chosen
from [0,1]. How can you modify the buckets so that BucketSort still has
expected running time O(n)? What if the elements to be sorted were
numbers of the form max(X,Y’) instead of X + Y7

Let n points be placed uniformly at random on the boundary of a circle of
circumference 1. These n points divide the circle into n arcs. Let Z; for 1 <
1 < n be the length of these arcs in some arbitrary order.

© Copyright Mitzenmacher and Upfal, 2003-2004

8.7 Exercises

253

(a) Find the expected number of arcs of length at least 1/n.

(b) Use a martingale bound (see Chapter 12) to show that the number of arcs
of length at least 1/n is close to its expectation with high probability.

13. A digital camera needs two batteries. You buy a pack of n batteries, labeled
1 to n. Initially, you install batteries 1 and 2. Whenever a battery is drained,
you immediately replace the drained battery with the lowest numbered unused
battery. Assume that each battery lasts for an amount of time that is exponen-
tially distributed with mean p before being drained, independent of all other
batteries. Eventually, all the batteries but one will be drained.

(a) Find the probability that the battery numbered 7 is the one that is not
eventually drained.

(b) Find the expected time your camera will be able to run with this pack of
batteries.

14. Let Xy, Xs,..., be exponential random variables with parameter 1.

(a) Argue that X; + X3 is not an exponential random variable.

(b) Let N be a geometric random variable with parameter p. Prove that
vaz 1 X; is exponentially distributed with parameter p.

15. (a) Let Xy, Xs,..., be a sequence of independent exponential random vari-
ables, each with mean 1. Given a positive real number k, let N be defined

by
N:min{n:ZXi>k}.
i=1
That is, N is the smallest number for which the sum of the first N of the
X, is larger than k. Determine E[N].

(b) Let Xy, Xs,..., be a sequence of independent uniform random variables
on the interval (0,1). Given a positive real number k, with 0 < k£ < 1, let

N be defined by
N:min{n:HXi<k}.

i=1
That is, N is the smallest number for which the product of the first N of

the X; is smaller than k. Determine E[N]. (Hint: you may find exercise 9
helpful.)

16. There are n tasks, given to n processors. Each task has two phases, and the
time for each phase is given by an exponentially distributed random variable
with parameter 1. The times for all phases and for all tasks are independent.
We say that a task is half-done if it has finished one of its two phases.

© Copyright Mitzenmacher and Upfal, 2003-2004

8.7 Exercises

254

17.

18.

19.

20.

21.

(a) Derive an expression for the probability that there are k tasks that are
half-done at the instant when one task becomes completely done.

(b) Derive an expression for the expected time until one task becomes com-
pletely done.

(c) Explain how this problem is related to the birthday paradox.
Prove Theorem 59.

Complete the proof of Theorem 61 by formally showing that if N;(¢) and N (t)
are independent then so are Ni(t) and No(u) for any ¢,u > 0.

You are waiting at a bus stop to catch a bus across town. There are actually
n different bus lines you can take, each following a different route. Which bus
you decide to take will depend on which bus gets to the bus stop first. As
long as you are waiting, the time you have to wait for a bus on the i-th line is
exponentially distributed with mean p; minutes. Once you get on a bus on the
i-th line, it will take you #; minutes to get across town.

Design an algorithm for deciding when a bus arrives whether or not you should
get on the bus, when your goal is to minimize the expected time to cross town.
(Hint: you want to determine the set of buses that you want to take as soon
as they arrive. There are 2" possible sets, which is far too large for an efficient
algorithm. Argue that you need only consider a small number of these sets.)

Given a discrete-space continuous-time Markov process X (¢), we can obtain a
discrete-time Markov chain Z(¢) by considering the states the process visits.
That is, let Z(0) = X (0), Z(1) be the state the process X (¢) first moves to
after time ¢ = 0, Z(2) be the next state the process X (¢) moves to, and so on.
(If the Markov process X (¢) makes a transition from state i to state i, which
can occur when p;; # 0 in the associated transition matrix, then the Markov
chain Z(t) should also make a transition from state i to state i as well.)

(a) Show that if in the process X (¢) the time spent in state i is exponentially
distributed with parameter §; = 0 that is the same for all 7, and the process
X has a stationary distribution, then the Markov chain Z(t) has the same
stationary distribution.

(b) Give an example showing that if the ; are not all equal, then the stationary
distributions for X (¢) and Z(t) may differ.

The following model, known as the Ehrenfest model, is a basic model used in
physics. There are n particles moving randomly in a container. We consider
the number of particles in the left and right halves of the container. A particle
in one half of the container moves to the other half after an amount of time
that is exponentially distributed with parameter 1, independently of all other
particles. (See Figure 8.6.)

© Copyright Mitzenmacher and Upfal, 2003-2004

8.7 Exercises

255

Figure 8.6: The Ehrenfest model

(a) Find the stationary distribution of this process.

(b) What state has the highest probability in the stationary distribution? Can
you suggest an explanation for this?

22. We can obtain a discrete-time Markov chain from the M/M/1 queueing process
by letting the time ¢ increase by one whenever an arrival or departure occurs.

(a) Describe the possible transitions of this discrete-time chain and give their
probabilities.

(b) Show that the stationary distribution of this chain when A < yx is the same
as for the M/M/1 process.

(c) Show that in the case A = p there is no valid stationary distribution for
the Markov chain.

23. In a tandem queue, customers arrive to an M/M/1 queue according to a Poisson
process of rate A with service times independent and exponentially distributed
with parameter u;. After completing service at this first queue, the customers
proceed immediately to a second queue, also being served by a single server,
where service times are independent and exponentially distributed with param-
eter p1o. Find the stationary distribution of this system. (Hint: try to generalize
the form of the stationary distribution for a single queue.)

24. Write a program to simulate the balls and bins with feedback model.

(a) Start your simulation with 51 balls in bin 1 and 49 balls in bin 2, using
p = 2. Run your program 100 times, having it stop each time one bin has
60% of the balls. On average, how many balls are in the bins when the
program stops? How often does bin 1 have the majority?

(b) Perform the same experiment starting with 52 balls in bin 1 and 48 balls
in bin 2. How much does this change your answers?

(c) Perform the same experiment, starting 102 balls in bin 1 and 98 balls in
bin 2. How much does this change your answers?

(d) Perform the same experiment, starting with 51 balls in bin 1 and 49 balls
in bin 2, but use p = 1.5. How much does this change your answers?

© Copyright Mitzenmacher and Upfal, 2003-2004

8.7 Exercises

256

25. We consider here one approach for studying a FIFO queue with a constant
service time of duration 1, and Poisson arrivals with parameter A < 1. We
replace the constant service time by k exponentially distributed service stages,
each of mean duration 1/k. A customer must pass through all k stages before
leaving the queue, and once one customer begins going through the £ stages,
no other customer can receive service until that customer finishes.

(a)

(b)

26.

Derive Chernoff bounds that bound the probability that the total time
taken in k exponentially distributed stages, each of mean 1/k, deviates
significantly from 1.

Derive a set of equations that define the stationary distribution for this
situation. Hint: try letting m; be the limiting probability of having j stages
of service left to be served the queue. Each waiting customer requires &
stages; the one being served requires between 1 and & stages. (You should
not try to solve these equations to give a closed form for 7;.)

Use these equations to numerically determine the average number of cus-
tomers in the queue in equilibrium, say for A = 0.8 and for k£ = 10, 20, 30, 40,
and 50. Discuss if your results seem to be converging as k increases, and
compare the expected number of customers with a similar queue with Pois-
son arrivals and exponentially distributed service times.

Write a simulation for a bank of n M/M/1 FIFO queues, each with Poisson
arrivals of rate A < 1 per second, and each with service times exponentially
distributed with mean 1 second. Your simulation should run for ¢ seconds,
and return the average amount of time each customer that has completed

service spent in the system. You should present results for your simulations
for n = 100 and for ¢ = 10,000 seconds with A = 0.5,0.8,0.9, and 0.99.

One natural way to write the simulation that we now describe is to keep a
priority queue of events. A priority queue of events stores the times of all
pending events, such as the next time a customer will arrive or the next
time a customer will finish service at a queue. A priority queue can answer
queries of the form, “What is the next event?” Priority queues are often
implemented as heaps, for example.

When a customer bound for queue k arrives, the arrival time for the next
customer to queue k£ must then be calculated and entered in the priority
queue. If queue k is empty, the time that the arriving customer will com-
plete service should be put in the priority queue. If queue k is not empty,
the customer is put at the tail of the queue. When a queue completes
service for a customer, if the queue is not empty, the time that the next
customer at the head of the queue will complete service should be calcu-
lated and put in the priority queue. For each customer, you will have to
track its arrival time and completion time.

You may find ways to simplify the general scheme above. For example,
instead of considering a separate arrival process for each queue, you can

© Copyright Mitzenmacher and Upfal, 2003-2004

8.7 Exercises 257

combine them into a single arrival process, using what we know from Sec-
tion 8.4.2. Explain whatever simplifications you use.

You may wish to use exercise 9 to help construct exponentially distributed
random variables for your simulation.

Modify your simulation so that instead of service times being exponentially
distributed with mean 1 second, they are always exactly 1 second. Again
present results for your simulation for n = 100 and for ¢ = 10, 000 seconds
with A = 0.5,0.8,0.9, and 0.99. Do customers complete more quickly with
exponentially distributed service times or constant service times?

© Copyright Mitzenmacher and Upfal, 2003-2004

Chapter 9

Entropy, Randomness, and
Information

Suppose that we have two biased coins. One comes up head with probability 3/4,
and the other comes up heads with probability 7/8. Which coin produces more
randomness per flip? In this chapter, we introduce the entropy function as a universal
measure of randomness. In particular, we show that the number of independent
unbiased random bits that can be extracted from a sequence of biased coin flips
corresponds to the entropy of the coin. Entropy also plays a fundamental role in
information and communication. To demonstrate this role, we examine some basic
results in compression and coding, and see how they relate to entropy. The main
result we prove is Shannon’s coding theorem for the binary symmetric channel, one
of the fundamental results of the field of information theory. Our proof of Shannon’s
theorem uses several ideas that we have developed in previous chapters, including
Chernoff bounds, Markov’s inequality, and the probabilistic method.

9.1 The Entropy Function

The entropy of a random variable is a function of its distribution that, as we shall see
later in the chapter, gives a measures of the randomness of the distribution.

Definition 38. 1. The entropy in bits of a discrete random variable X is given
by

H(X)=—) Pr(X = 1)log, Pr(X =),

where the summation is over all values x in the range of X. FEquivalently, we
may write

H(X)=E {mg2 m] .

© Copyright Mitzenmacher and Upfal, 2003-2004

9.1 The Entropy Function 259

2. The binary entropy function H(p) for a random variable that assumes only two
possible outcomes, one of which occurs with probability p, is

H(p) = —plogyp — (1 — p) logy(1 — p).

We define H(0) = H(1) = 0, so the binary entropy function is continuous in
the interval [0,1]. The function is drawn in Figure 9.1.

1_

0.8 1

0.6 1

0.4

0.2 1

O T T T T 1
0 0.2 0.4 0.6 0.8 1

Figure 9.1: The binary entropy function.

For our two biased coins, the entropy of the coin that comes up heads with
probability 3/4 is

3 3 1 1
H(3/4) =~ log, § — 7 log

3

while the entropy of the coin that comes up heads with probability 7/8 is

7 7 1 1 7
H(7/8) = —glog2 3~ glog2 3= 3— glog27 ~ 0.5436.

Hence the coin that comes up head with probability 3/4 has a larger entropy.
Taking the derivative of H(p),

dH (p)
dp

1—p
= —log, p +log,(1 — p) = log, —

© Copyright Mitzenmacher and Upfal, 2003-2004

9.1 The Entropy Function

260

we see that H(p) is maximized when p = 1/2, and H(1/2) = 1 bit. One way of
interpreting this statement is to say that each time we flip a two-sided coin, we get
out at most 1 bit worth of randomness, and we obtain exactly 1 bit of randomness
when the coin is fair. While this seems quite clear, it is not yet clear in what sense
H(3/4) = 2 — 3log, 3 means that each time we flip a a coin that lands heads with
probability 3/4, we obtain H(3/4) random bits. We clarify this later in this chapter.

As another example, the entropy of a standard six-sided die that comes up on
each side with probability 1/6 has entropy log, 6. In general a random variable that
has n equally likely outcomes has entropy

En 1l ! 1
- — log, — = log, n.
—'n 825 &2

The entropy of an eight-sided die is therefore 3 bits. This result should seem quite
natural; if the faces of the die were numbered from 0 to 7 written in binary, then
the outcome of the die roll would give a sequence of three bits uniform over the set
{0,1}3, which is equivalent to three bits generated independently and uniformly at
random.

It is worth emphasizing that the entropy of a random variable X does not
depend on the values that X can take, but only on the probability distribution of X
over those values. The entropy of the eight-sided die above does not depend on what
the numbers are on the faces of the die; it only matters that all eight sides are equally
likely to come up. This property does not hold for the expectation or variance of X,
but it does makes sense for a measure of randomness. To measure the randomness in
a die, we should not care what numbers are on the faces, but only on how often the
die comes up on each side.

Often in this chapter we consider the entropy of a sequence of independent
random variables, such as the entropy of a sequence of independent coin flips. For
such situations, the following lemma allows us to consider the entropy of each random
variable to find the entropy of the sequence.

Lemma 42. Let X; and X, be independent random variables, and let Y = (X1, X3).
Then
H(Y)=H(X))+ H(X>).

Of course the lemma is trivially extended to the case where Y is any finite
sequence of independent random variables by induction.

Proof. In what follows, the summations are to be taken over all possible values that
can be taken on by X; and X5. The result follows by using the independence of X;

© Copyright Mitzenmacher and Upfal, 2003-2004

9.2 Entropy and Binomial Coefficients 261

and X, to simplify the expression:

HY) = —3; Pr((Xy, X3) = (21, 72)) log, Pr((Xy, X2) = (21, 22))
- Z Pr(X; = z) Pr(Xy = 2,) log, (Pr(X; = z;) Pr(Xy =)
- Z Pr(X, = 1) Pr(Xy = 25) (log, Pr(X, = z,) + log, Pr(X, = 2,))
- _ ZZ Pr(X, =) Pr(X, = z,) log, Pr(X, = ;)
_I;%: Pr(X; = z1) Pr(X, = 25) log, Pr(X, = z5)

= (ZPI‘ Xl—.'L'l)lOgQPI' X1—1'1> (ZPI’XQ—IQ)

z1

<ZPr (Xy = x9) log, Pr(X, = x9)) (ZPr (X =m)

T2

= — ZPY(X1 = x1)log, Pr(X; = z1) — Z Pr(X, = z3) log, Pr(Xs = z3)

z1 2

= H(X)+H(Y).

9.2 Entropy and Binomial Coefficients
As a prelude to showing the various applications of entropy, we first demonstrate how
it naturally arises in a purely combinatorial context.

Lemma 43. Suppose nqg is an integer in the range [0,n], then

H
i <(") < onil(a),
n+1 7~ \nqg/) —

Proof. The statement is trivial if ¢ = 0 or ¢ = 1, so assume that 0 < ¢ < 1. To prove
the upper bound, notice that by the binomial theorem:

n

<;:q> ¢"(1—g)m < Y <Z> ¢F1—q" "

< g+ 1-g)
= 1,

© Copyright Mitzenmacher and Upfal, 2003-2004

9.2 Entropy and Binomial Coefficients 262

Hence,
<:q> < q—qn(l _ q)—(l—q)n — 2—qn10g2 q2—(1—q)nlog2(1—q) — 2nH(q)

For the lower bound, we know that (:q) g™ (1—q)"~9" is one term of Y_p_; (7)¢* (1 —

q)"*. We show that it is the largest term. Consider the difference between two
consecutive terms as follows:

(i (oo - (e (-t

This difference is non-negative whenever

_n—kL>0,
k+11—¢q —

or equivalently, after some algebra, whenever

k>qn—1+q.
The terms are therefore increasing up to & = ¢gn and decreasing after that point.
Thus k = gn is the largest term in the summation.

Since the summation has n+1 terms and (:q) q™ (1 —q)"~9" is the largest term,
we have

<”)qqn(l -

ng n+1’

or

—qn(1 — o)~ (1-9)n nH(q)
nY) . "0-q) _ e
ng) — n+1 n+1

We often use the following slightly more specific corollary:

Corollary 11. When 0 < ¢ < 1/2,

() <27 &)

and similarly when 1/2 < g <1,

(1) <27 (92

ZT?SQ%O' 53)

© Copyright Mitzenmacher and Upfal, 2003-2004

For 0 <q<1,

9.3 Entropy: A Measure of Randomness 263

Proof. We first prove equation 9.1; the proof of equation 9.2 is entirely similar. When
0<q<1/2

ng

from which we can proceed exactly as in Lemma 43.

Equation 9.3 also holds similarly, as the analysis of Lemma 43 shows that

Q;@)qm%l—qykmn

is the largest term of >, _, (Z) (1 —qnF=1. 0

While these bounds are loose, they are sufficient for our purposes. The relation
between the combinatorial coefficients and the entropy function arises repeatedly in
the proofs of this chapter when we consider a sequence of biased coin tosses, where
the coin lands heads with probability p > 1/2. Applying the Chernoff bound, we
know that for sufficiently large n, the number of heads will almost always be close to
np. Thus the sequence will almost always be one of roughly (;Lp) ~ 2"H(P) gequences,
where the approximation follows from Lemma 43. Moreover, each such sequence
occurs with probability roughly

(1 — p)n(lfp) ~ 9 nH(p)

Hence, when we consider the outcome of n flips with a biased coin, we can essen-
tially restrict ourselves to the roughly 2™() outcomes that occur with roughly equal
probability.

9.3 Entropy: A Measure of Randomness

One way of interpreting the entropy of a random variable is as a measure of how many
unbiased, independent bits can be extracted, on average, from one instantiation of the
random variable. We consider this question in the context of a biased coin, showing
that, for sufficiently large n, the expected number of bits that can be extracted from
n flips of a coin that comes up heads with probability p > 1/2 is essentially nH (p).
In other words, on average, one can generate H(p) independent bits from each flip of
a coin with entropy H(p). This result can be generalized to other random variables,
but we focus on the specific case of biased coins here (and throughout this chapter)
to keep the arguments more clear.

We begin with a definition that clarifies what we mean by extracting random
bits.

© Copyright Mitzenmacher and Upfal, 2003-2004

9.3 Entropy: A Measure of Randomness

264

Definition 39. Let |y| be the number of bits in a sequence of bits y. An extraction
function takes an input the value of a random variable X and outputs a sequence of
bits y such that

Pr(Bat(X) =y | [yl = k) =1/2"

whenever Pr(ly| = k) > 0.

In the case of a biased coin the the input X is the outcome of n flips of our
biased coin. The number of bits in the output is not fixed, but can depend on the
input. If the extraction function outputs & bits, we can think of these bits as having
been generated independently and uniformly at random, since each sequence of k
bits is equally likely to appear. Also, there is nothing in the definition that requires
that the extraction function be efficient to compute. We do not concern ourselves
with efficiency here, although we do consider an efficient extraction algorithm in
exercise 12.

As a first step toward proving our results about extracting unbiased bits from
biased coins, we consider the problem of extracting random bits from a uniformly dis-
tributed integer random variable. For example, let X be an integer chosen uniformly
at random from {0,...,7}, and let Y be the sequence of three bits obtained when
we write X as a binary number. When X = 0, then Y = 000, and when X = 7,
then Y = 111. It is easy to check that every sequence of three bits is equally likely to
arise, so we have a trivial extraction function EFxt by associating any input X with
the corresponding output Y.

Things are slightly harder when X is uniform over {0,...,11}. If X <7, then
we can again let Y be the sequence of 3 bits obtained when we write X in binary. This
leaves the case X € {8,9,10,11}. We can associate each of these four possibilities
with a distinct sequence of two bits, for example by letting Y be the sequence of two
bits obtained from writing X — 8 as a binary number. Then for X =8, Y = 00, and
for X = 11, Y = 11. The entire extraction function is shown in Figure 9.2. Every
three-bit sequence arises with the same probability 1/12, and every two-bit sequence
arises with the same probability 1/12, so Definition 39 is satisfied.

Input 0 1 2 3 4 5 6 7
Output | 000 | 001 | 010 | 011 | 100 | 101 | 110 | 111

Input 0 1 2 3 4 Y 6 7 819 |10]11
Output | 000 | 001 | 010 | 011 | 100 | 101 | 110 | 111 | 00 | 01 | 10 | 11

Figure 9.2: Extraction functions for numbers chosen uniformly at random from
{0,...,7} and {0,...,11} given in table form.

We generalize from these examples to the following theorem.

Theorem 63. Suppose that the value of a random variable X is chosen uniformly at
random from the integers {0,...,m — 1}, so that H(X) = logy, m. Then there is an

© Copyright Mitzenmacher and Upfal, 2003-2004

9.3 Entropy: A Measure of Randomness

265

extraction function for X that outputs on average more than [log, m|—1 = |H(X)]—1
independent and unbiased bits.

Proof. If m > 1 is a power of two, then the extraction function can simply output the
bit representation of the input X using log, m bits. (If m = 1, it outputs nothing,
or equivalently an empty sequence.) All output sequences have log, m bits, and all
sequences of log, m bits are equally likely to appear, so this satisfies Definition 39.
If m is not a power of two, then things are more complicated. We describe the
extraction function recursively. (A non-recursive description is given in exercise 8.)
Let o = [logy,m]. If X < 2% — 1, the function outputs the binary representation of
X; all sequences of « bits are equally likely to be output in this case. If X > 2% then
X — 2 is uniformly distributed in the set {0,...,m — 2% — 1} which is smaller than
the set {0,...,m}. The extraction function can then recursively produce the output
from the extraction function for the variable X — 2¢.

The recursive extraction function maintains the property that for every k, each
of the 2¥ sequences of k bits are output with the same probability. We claim by
induction that the expected number of unbiased, independent bits produced by this
extraction function is at least |log, m| — 1. The cases where m is a power of 2 are
trivial. Otherwise, by induction, the number of bits Y in the output satisfies

BIB] > o+ " ((logy(m —2%)] ~ 1)
= a+— a([logz(m—Qa)J—a—l).

Suppose [log,(m —2%)| = 3, where 0 < < a — 1. Then (m — 2%)/m is maximized
when m is as large as possible, which corresponds to m = 2% 4+ 2% — 1. Hence

EIY] > a+ st —(f—a-1)
at+ ——m(f—a—
- 20 +26 —1
1
2 a—ggla—-F+1)
Z & — 17
completing the induction. O

We use Theorem 63 in our proof of the main result of this section.
Theorem 64. Consider a coin that comes up heads with probability p > 1/2. For

any constant 0 > 0, and n sufficiently large,

1. there exists an extraction function Ext that outputs, on an input sequence of n
independent flips, an average of at least (1 — 0)nH (p) independent random bits;
and

2. the average number of bits output by any extraction function Ext on an input
sequence of n independent flips is at most nH (p).

© Copyright Mitzenmacher and Upfal, 2003-2004

9.3 Entropy: A Measure of Randomness

266

Proof. We begin by describing an extraction function that generates, on average, at
least nH (p)(1 — ¢) random bits from n flips of the biased coin. We saw before that
in the case of a biased coin, the outcome of n flips is most likely be one of roughly
2nH(P) sequences, each occurring with probability roughly 2 "#®)_ If we in fact had
a uniform distribution of this type, we could use the extraction function for numbers
chosen uniformly at random that we have just described to obtain on average almost
nH (p) uniform random bits. In what follows, we handle the technical details that
arise because the distribution is not exactly uniform.

There are (?) possible sequences with exactly j heads, and each of them have
the same probability of occurring, p? (1—p)™ 9. For each value of j, 0 < j < n, we map
each of the (?) sequences with j heads to a unique integer in the set {0, ..., (?) —1}.
When j heads come up, we map the sequence to the corresponding number. Condi-
tioned on there being j heads, this number is uniform on the integers {0, ..., (?) -1},
and hence we can apply the extraction function of Theorem 63 designed for this case.
Let Z be a random variable representing the number of heads flipped and B be the
random variable representing the number of bits our extraction function produces.

Then .
EB|=) Pr(Z=k)-E[B|Z =k,

E[B|Z =k > {mg2 (Z)J ~1.

Let € < p — 1/2 represent a constant to be determined. We lower bound E[B]
by considering only values of k£ with n(p —¢) < k < n(p + €). For every such £k,

(Z> - (Ln(pn+ e)J) - %

where the last inequality follows from Corollary 11. Hence

and by Theorem 63,

[n(p+e)]
EB] > Y Pr(Z=k)-E[B|Z=F
k=[n(p—c)]
[n(p+e)] o
> pu— . E—
> Y Pr(Z=k) (Llog2 (,)J 1)
k=[n(p—¢)]
onH(p-+e) npe)
> <1og2 — —2> Y Pr(Z=k)

k=n(p—e)
> (nH(p+¢€) —logy(n+1) —1) - Pr(|Z —np| < en).

Now E[Z] = np, and Pr(|Z — np| > en) can be bounded by using the Chernoff bound
of equation 4.7, giving
Pr(|Z — np| > en) < 2 /3P,

© Copyright Mitzenmacher and Upfal, 2003-2004

9.3 Entropy: A Measure of Randomness

267

Hence
E[B] > (nH(p+ ¢€) — logy(n + 1) — 1)(1 — 27" /%),

We can conclude that for any constant 6 > 0 we can have
E[B] = (1 - 6)nH (p)

by choosing € sufficiently small and n sufficiently large. For example, for sufficiently
small e,

nH(p+e€) > (1-06/3)nH(p),
and when n > (3p/€*) In(6/8), we have
1—2e /% >1-6/3.
Hence with these choices
E[B] > ((1 —6/3)nH(p) — logy(n + 1) — 1)(1 — 4§/3).

As long as we now also choose n large enough so that (§/3)nH (p) is larger than
log,(n + 1) + 1, we have

E[B] > (1 =26/3)nH (p))(1 - 6/3) = (1 — 0)nH (p),

proving that there exists an extraction function that can extract (1 — d)nH (p) inde-
pendent and uniform bits on average from n flips of the biased coin.

We now show that no extraction function can obtain more than nH(p) bits
on average. The proof relies on the following basic fact: if an input sequence x
occurs with probability ¢, the corresponding output sequence Ezxt(r) can have at
most |Ext(x)| < log2§ bits. This is because all sequences with |Ext(z)| bits would
have probability at least ¢, so
olBzt@)l o < 1,

giving the desired bound on Ext(x). Given any extraction function, if B is a random
variable representing the number of bits our extraction function produces on input
X, then we have

E[B] = ZPr)| Ext(z)]

O

Another natural question to ask is how to generate biased bits from an unbiased
coin. This question is partially considered in exercise 11.

© Copyright Mitzenmacher and Upfal, 2003-2004

9.4 Compression

268

9.4 Compression

A second way of interpreting the entropy value comes from compression. Again
suppose we have a coin that comes up heads with probability p > 1/2 and we flip it
n times, keeping track of which flips are heads and which flips are tails. We could
represent every outcome using one bit per flip by using 0 to represent heads and 1 to
represent tails, using a total of n bits. If we take advantage of the fact that the coin is
biased, we can do better on average. For example, suppose that p = 3/4. For a pair
of consecutive flips, we use 0 to represent that both flips were heads, 10 to represent
that the first flip was heads and the second tails, 110 to represent that the first flip
was tails and the second heads, and 111 to represent that both flips were tails. Then
the average number of bits we use per pair of flips is

9 3 3 1 27
1. - 49.2 43.2 43.—_-_2" 9
6 16 716 016 16
Hence, on average, we can use less than the 1 bit per flip of the standard scheme by
breaking a sequence of n flips into pairs and representing each pair in the manner
above. This is an example of compression.

It is worth emphasizing that the representation that we used above has a special
property: if we write the representation of a sequence of flips, it can be uniquely
decoded simply by parsing it from left to right. For example, the sequence

011110

corresponds to two heads, followed by two tails, followed by a heads and a tail.
There is no ambiguity, as no other sequence of flips could produce this output. Our
representation has this property because each bit sequence we use to represent a
pair of flips has the property that no sequence in the prefix of another sequence.
Representations with this property are called prefiz codes. Prefix codes are discussed
further in exercise 15.

Compression has been and continues to be a subject of considerable study.
When storing or transmitting information, saving bits usually corresponds to saving
resources, so finding ways to reduce the number of used bits by taking advantage of
the structure of the data is often worthwhile.

We consider here a very special case, compressing the outcome of a sequences
of biased coin flips. We show that for a biased coin with entropy H(p), the outcome
of n flips of the coin can be represented by approximately nH (p) bits on average, and
approximately nH (p) bits on average are necessary. In particular, any representation
of the outcome of n flips of a fair coin essentially requires n bits. The entropy is
therefore a measure of the average number of bits generated by each coin flip after
compression. This argument can be generalized to any discrete random variable
X; n independent, identically distributed random variables Xy, Xy, ..., X,, with the
same distribution X can be represented using approximately nH (X)) bits on average.

© Copyright Mitzenmacher and Upfal, 2003-2004

9.4 Compression

269

In the setting of compression, entropy can be viewed as measuring the amount of
information in the input sequence. The larger the entropy of the sequence, the more
bits are needed in order to represent it.

We begin with a definition that clarifies what we mean by compression in this
context.

Definition 40. A compression function Com takes as input a sequence of n coin
flips, given as an element of {H,T}", and outputs a sequence of bits, so that each
mput sequence of n flips yields a distinct output sequence.

Definition 40 is rather weak, but will prove sufficient for our purposes. Usu-
ally, compression functions must satisfy stronger requirements; for example, we may
require a prefix code to simplify decoding. Using this weaker definition makes our
lower bound proof stronger. Also, while here we are not concerned with the efficiency
of compressing and decompressing procedures, there are very efficient compression
schemes that perform near optimally in many situations. We will consider an effi-
cient compression scheme in exercise 17.

The following theorem formalizes the relationship between the entropy of a
biased coin and compression:

Theorem 65. Consider a coin that comes up heads with probability p > 1/2. For
any constant 6 > 0, when n is sufficiently large,

1. there exists a compression function Com such that the expected number of bits
output by C'om on an input sequence of n independent coin flips is at most
(14 6)nH (p); and

2. the expected number of bits output by any compression function Com on an
input sequence of n independent coin flips is at least (1 — §)nH (p).

Theorem 65 is quite similar to Theorem 64. The lower bound on the expected
number of bits output by any compression function is slightly weaker. In fact, we
could raise this lower bound to nH (p) if we insisted that the code was a prefix code,
so that no output was the prefix of any other, but we do not prove this here. The
compression function we design to prove an upper bound on the expected number of
bits output does give a prefix code. Our construction of this compression function
follows roughly the same intuition as Theorem 64. We know that with high probability
the outcome from the n flips will be one of roughly 277" sequences with roughly np
heads. We can use about nH (p) bits to represent each one of these sequences, yielding
the existence of an appropriate compression function.

Proof. We first show that there exists a compression function as guaranteed by the
theorem. Let ¢ > 0 be a suitably small constant, with p — e > 1/2. Let X be
the number of heads in n flips of the coin. The first bit output by the compression

© Copyright Mitzenmacher and Upfal, 2003-2004

9.4 Compression

270

function we use as a flag. We set it to 0 if there are more than n(p — €) heads in the
sequence, and 1 otherwise. When the first bit is a 1, the compression function uses
the expensive default scheme, using 1 bit for each of the n flips. This requires n + 1
total bits be output; however, by the Chernoff bound 4.6, the probability that this
case happens is bounded by

Pr(X < n(p—¢)) < e /%,

Now let us consider the case where there are at least n(p—e¢) heads. The number
of coin flip sequences of this form is

n

SRS S PR B

j=In(p—e)] j=In(p—e)l

The first inequality arises because the binomial terms are decreasing as long k > n/2,
and the second is a consequence of Corollary 11. For each such sequence of coin flips,
the compression function can assign a unique sequence of exactly |nH (p—e€)+log, n|
bits to represent it, since

glnH(p—e)tlogan| > onti(p—e)

Including the flag bit, it therefore takes at most nH (p—e)+log, n+1 bits to represent
the sequences of coin flips with this many heads.

Totaling the above, we find the expected number of bits the compression func-
tion requires is at most

efn62/2p(n + 1) + (1 _ efn52/2p)(nH(p — 6) —+ 10g2 n -+ 2) S (1 + (S)nH(p),

where the final inequality holds by first taking e sufficiently small and then taking n
sufficiently large, in a manner similar to that of Theorem 64.

We now show the lower bound. To begin, recall that the probability that a
specific sequence with k heads is flipped is p*(1 —p)™ *. Because p > 1/2, if sequence
S1 has more heads than another sequence Ss, then Sy is more likely to appear than
Sy. Also, we have the following lemma:

Lemma 44. If sequence Sy is more likely than Sy, then the compression function that
minimizes the expected number of bits in the output assigns a bit sequence to Sy that
s at least as long as Sy.

Proof. Suppose that a compression function assigns a bit sequence to Ss that is shorter
than the bit sequence it assigns to S;. We can improve the expected number of bits
output by the compression function by switching the output sequences associated
with S; and S,, and thus this compression function is not optimal. O

© Copyright Mitzenmacher and Upfal, 2003-2004

9.5 Coding: Shannon’s Theorem *

271

Hence sequences with more heads should get shorter strings from an optimal
compression function.

We also make use of the following simple fact. If the compression function
assigns distinct sequences of bits to represent each of s coin flip sequences, one of the
output bit sequences for the s input sequences must have length at least log, s—1 bits.
This is because there are at most 1 +2+4+ ...+ 2° = 21 — 1 distinct bit sequences
with up to b bits, so if all sequences of s coin flips are assigned a bit sequence of at
most b bits, then 2! > s, and hence b > log, s — 1.

Fix a suitably small ¢ > 0 and count the number of input sequences that
have |(p + €)n] heads. There are (_(p-li)n]) sequences with [(p + €)n] heads, and

by Corollary 11,
n onH (p+e)
> —.
((p+e)n]) = n+1

Hence any compression function must output at least log, (2”H(p+5)/(n + 1)) —1=
nH(p + €) — logy(n + 1) — 1 bits on at least one of the sequences of coin flips with
| (p+€)n] heads. The compression function that minimizes the expected output length
must therefore use at least this many bits to represent any sequence with fewer heads
by Lemma 44.

By the Chernoff bound 4.2, the number of heads X satisfies
Pr(X > n(p+¢)) < e /%,

Therefore with probability at least 1 —e ""/3 we obtain an input sequence with fewer
than n(p + €) heads, and by our previous reasoning the compression function that
minimizes the expected output length must still output at least nH (p + €) — log,(n +
1) — 1 bits in this case. The expected number of output bits is therefore at least

(1—e /™) (nH(p+e) — logy(n+1) — 1).

This can be made to be at least (1 — §)nH (p) by first taking € to be sufficiently small
and then taking n to be sufficiently large. O

9.5 Coding: Shannon’s Theorem *

We have seen how compression can reduce the expected number of bits required
to represent data by changing the representation of the data. Coding also changes
the representation of the data. Instead of reducing the number of bits required to
represent the data, however, coding adds redundancy in order to protect the data
against loss or errors.

In coding theory, we model the information being passed from a sender to a
receiver through a channel. The channel may introduce noise in the transmission.

© Copyright Mitzenmacher and Upfal, 2003-2004

9.5 Coding: Shannon’s Theorem *

272

The channel can be a wired connection, a wireless connections, or a storage network.
For example, if I store data on a recordable medium, and I later try to read it back,
[am both the sender and the receiver, and the storage medium acts as the channel.

In this section, we focus on one specific type of channel.

Definition 41. The input to a binary symmetric channel with parameter p is a
sequence of bits x1,xs,..., and the output is a sequence of bits yy,ya, ..., such that
Pr(z; = y;) = 1 — p independently for each i. Informally, each bit sent is flipped to
the wrong value independently with probability p.

To get useful information out of the channel, we may introduce redundancy, to
help protect against the introduction of errors. As an extreme example, suppose the
sender wants to send the receiver a single bit of information over a binary symmetric
channel. To protect against the possibility of error, the sender and receiver agree to
repeat the bit n times. If p < 1/2, a natural decoding scheme for the receiver is to look
at the n bits received and decide that the value that was received more frequently
is the bit value the sender intended. The larger n is, the more likely the receiver
determines the the correct bit; by repeating the bit enough times, the probability of
error can be made arbitrarily small. This example is considered more extensively in
exercise 18.

Coding theory studies the tradeoff between the amount of redundancy required
and the probability of a decoding error over various types of channels. For the binary
symmetric channel, simply repeating bits may not be the best use of redundancy.
Instead we consider more general encoding functions.

Definition 42. A (k,n) encoding function Enc : {0,1}f — {0,1}" takes as input
a sequence of k bits and oulputs a sequence of n bits. A (k,n) decoding function

Dec : {0,1}" — {0,1}* takes as input a sequence of n bits and outputs a sequence of
k bits.

Using coding, the sender takes a k-bit message, and encodes it into a block of
n > k bits using the encoding function. These bits are then sent over the channel.
The receiver examines the n bits received and attempts to determine the original
k-bit message using the decoding function.

Given a binary channel with parameter p, we wish to determine the largest value
of k so that there exist (k,n) encoding and decoding functions with the property that
for any input sequence of k bits, with suitably large probability the receiver decodes
the correct input from the corresponding n bit encoding sequence after it has been
distorted by the channel.

Let M € {0,1}* be the message to be sent, and Enc(M) be the sequence of
bits sent over the channel. Here M need not be a random variable. Let the random
variable X denote the sequence of received bits. We require that Dec(X) = M with
probability at least 1 — y for all possible messages M and a pre-chosen constant .

© Copyright Mitzenmacher and Upfal, 2003-2004

9.5 Coding: Shannon’s Theorem *

273

If there were no noise, then we could send the original k£ bits over the channel. The
noise reduces the information that the receiver can extract from each bit sent, so that
the sender can reliably send messages of only about k& = n(1 — H(p)) bits within each
block of n bits. This result is known as Shannon’s theorem. We prove the following
form of the theorem:

Theorem 66. For a binary symmetric channel with parameter p < 1/2, and any
constants 6,y > 0, when n s sufficiently large:

1. for any k < n(1— H(p) —), there exist (k,n) encoding and decoding functions
such that the probability the recewwer fails to obtain the correct message is at
most v for every possible k-bit input message; and

2. there are no (k,n) encoding and decoding functions with k > n(1—H (p)+9) such
that the probability of decoding correctly is at least v for a k-bit input message
chosen uniformly at random.

Proof. We first prove the existence of suitable (k,n) encoding and decoding functions
when k < n(1 — H(p) — d) by using the probabilistic method. In the end, we want
our encoding and decoding functions to have error probability at most v on every
possible input. We begin with a weaker result, showing that there exists appropriate
coding functions when the input is chosen uniformly at random from all k-bit inputs.

The encoding function assigns each of the 2* strings an n-bit codeword chosen
independently and uniformly at random from the space of all n bit sequences. Label
these codewords X, X1,..., Xor ;. The encoding function simply outputs the code-
word assigned to the k-bit message using a large look-up table containing an entry
for each k-bit string. (You may be concerned that two codewords may turn out to be
the same. The probability of this is very small, and is handled in the analysis below.)

To describe the decoding function, we provide a decoding algorithm based on the
lookup table for the encoding function, which we may assume the receiver possesses.
The decoding algorithm makes use of the fact that the receiver expects the channel
to make roughly pn errors. The receiver therefore looks for a codeword that differs
from the n bits received in between (p — €)n and (p + €)n places for some suitably
small constant ¢ > 0. If just one codeword has this property, then the receiver
will assume that this was the codeword sent, and recover the message accordingly.
If more than one codeword has this property, the decoding algorithm fails. This
decoding algorithm, as described, requires exponential time and space. As with the
rest of the chapter, we are not concerned with efficiency issues here.

The corresponding (k,n) decoding function can be obtained from the algorithm
by simply running through all possible n-bit sequences. Whenever a sequence de-
codes properly with the above algorithm, the output of the decoding function for
that sequence is set to the k-bit sequence associated with the corresponding code-
word. Whenever the algorithm fails, the output for the sequence can be any arbitrary

© Copyright Mitzenmacher and Upfal, 2003-2004

9.5 Coding: Shannon’s Theorem *

274

sequence of k bits. For the decoding function to fail, at least one of the two following
events must occur:

e the channel does not make between (p — €)n and (p + €)n errors, or

e when a codeword is sent, the received sequence differs from some other codeword
in between (p — €)n and (p + €)n places.

The path of the proof is now clear. A Chernoff bound can be used to show
that with high probability the channel does not make too few or too many errors.
Conditioning on the number of errors being neither too few or too many, the question
becomes how large k£ can be while ensuring that with the required probability, the
received sequence does not differ from multiple codewords in between (p — €)n and
(p + €)n places.

Now that we have described the encoding and decoding functions, we establish
the notation we use in the analysis. Let R be the received sequence of bits. For
sequences s; and so of n bits, we write A(sy, s9) for the number of positions where
these sequences differ. In coding theory, this value A(sy, s9) is referred to as the
Hamming distance between the two strings. We say that the pair (sq, s2) has weight

w(sl, 82) — pA(81,s2)(1 _ p)n—A(sl,”)‘

The weight corresponds to the probability that ss is received when s; is sent over
the channel. We introduce random variables Sy, Sy, ..., Sor—1 and Wy, Wi, ... Wor
defined as follows. The set S; is the set of all received sequences that decode to Xj.
The value W; is given by
W= w(X;r).
ré&S;

The S; and W; are random variables that depend only on the random choices of
Xo, X1,..., Xok-1. The variable W; represents the probability that when X; is sent,
the received sequence R does not lie in S;, and hence is decoded incorrectly. It is
also helpful to express W; in the following way: if we let I; ; be an indicator random
variable that is 1 if s ¢ S; and 0 otherwise, then we can write

Wi =Y L,w(X,r).

We start by bounding E[W;]. By symmetry, E[W;] is the same for all i, so we
bound E[W;]. Now

EW, = E

Zlo,rw(Xg,r)]
=) E[w(Xo,r)I,].

© Copyright Mitzenmacher and Upfal, 2003-2004

9.5 Coding: Shannon’s Theorem * 275

We split the sum into two parts. Let 77 = {s : |A(Xy,s) —pn| > en} and T, =
{s : |A(Xo,s) —pn| < en}, where € > 0 is some constant to be determined. Then

> Elw(Xo,r) o, =Y Elw(Xo,r) o, + > Elw(Xo,r) Iy,

reTy reTs

and we bound each term.
We first bound

> Ew(Xo,r),] < > w(Xo,r)

reTy rely

= Z w(Xo, 1)

r : |A(Xo,r)—pn|>en

= Pr(|A(Xy, R) — np| > en).

That is, to bound the first term, we simply bound the probability that the receiver
fails to decode correctly and there are not between (p —€)n and (p+ €)n errors by the
probability that there are not between (p — €)n and (p + €)n errors. Equivalently, we
obtain our bound by assuming that whenever there are too many or too few errors
introduced by the channel, we fail to decode correctly. This probability is very small,
as we can see by using the Chernoff bound 4.7 that

Pr(|A(Xo, R) — np| > en) < 9p—€'n/3p

For any € > 0, we can choose n sufficiently large so that this probability, and hence
> ver Bw(Xo,7) 1o, is less than /2.

We now find an upper bound for) ., Elw(Xo,7)I,]. For every r € Ty, the
decoding algorithm will be successful when r is received unless r differs from some
other codeword X; in between (p — €)n and (p + €)n places. Hence I, will be 1 only
if such an X; exists, and hence for any values of Xy and r € T,

E[w(Xo,7)1o,] = w(Xo,) Pr(for some X; with 1 <i < 2F —1,|A(X;,7) —pn| < en).
It follows that if we obtain an upper bound
Pr(for some X; with 1 < i < 2F — 1, |A(X;,r) —pn| < en) < /2

for any values of Xy and r € T3, then we have

> Elw(Xo, n)o,] <Y w(Xo,r)7/2 < /2.

reTs rels

To obtain this upper bound, we recall that the other codewords Xy, X, ..., Xor—1
are chosen independently and uniformly at random. The probability that any other

© Copyright Mitzenmacher and Upfal, 2003-2004

9.5 Coding: Shannon’s Theorem *

276

specific codeword X;, ¢ > 0, differs from any given string r of length n in between
(p —€)n and (p + €)n places is therefore at most

[n(p+e€)| (n n
f—: (Ln) <n (LH(SZG)J) ‘
j=[n(p—e)]

Here we have bounded the summation by n times its largest term; (?) is largest when
j = |n(p+€)] over the range of j in the summation, as long as € is chosen so that
p+e<1/2

Using Corollary 11,

n
(Ln(p-l-e)J) < 2H(ptem
AL - AL
9—n(1-H(p+e))

Hence the probability that any specific X; matches a string » on a number of bits
so as to cause a decoding failure is at most n2 "(1=H®+9)) By a union bound, the
probability that any of the 2 — 1 other codewords cause a decoding failure when X
is sent is at most

n2~n(1—H(p+e)) (2’9 _ 1) < p2MHp+e-H(p)=0)

Y

where we have used the fact that £ < n(1 — H(p) — 0). By choosing € small enough
so that H(p-+¢€) — H(p) — 0 is negative, and then choosing n sufficiently large, we can
make this term as small as desired, and in particular we can make it less than /2.

By summing the bounds over the two sets T} and 75, which correspond to the
two types of error in the decoding algorithm, we find that E[WW,] < ~.

We can bootstrap this result to show that there exists a specific code such that
when the k-bit message to be sent is chosen uniformly at random, then the code fails
with probability v. We use the linearity of expectations and the probabilistic method.
We have that

E:IE[WJ-] =E rzl W]} < 20y,

where again the expectation is over the random choices of the codewords X, X1, ..., Xor_;.
By the probabilistic method, there must exists a specific set of codewords xg, 1, ..., Tor_;
2k 1
W< 2by,
=0

When a k-bit message to be sent is chosen uniformly at random, the probability of

error is
2k _1

1
ﬁZWjSV

=0

© Copyright Mitzenmacher and Upfal, 2003-2004

9.5 Coding: Shannon’s Theorem *

277

for this set of codewords, proving the claim.

We now prove the stronger statement in the theorem: we can choose the code-
words so that the probability of failure for each individual codeword is bounded above
by ~. Notice that this is not implied by the previous analysis, which simply shows
that the average probability of failure over the codewords is bounded above by ~.

We have shown that there exists a set of codewords zg, x1,...,z9_; for which

i W, < 2Fy.
7=0

Without loss of generality, let us assume that the x; are sorted in increasing order of
W;. Suppose that we remove the half of the codewords that have the largest values
W;; that is, we remove the codewords that have the largest probability of yielding
an error when being sent. We claim that each z;, i < 2!, must satisfy W; < 2.
Otherwise we would have

2k _1

> Wi > 21 (2y) =2,

j:2k—1

a contradiction. (We used similar reasoning in the proof of Markov’s inequality in
Section 3.1.)

We can set up new encoding and decoding functions on all (k£ — 1)-bit strings
using just these 27! codewords, and now the error probability for every codeword is
simultaneously at most 2. Hence we have shown that when £k —1 < n(1— H(p) —9),
there exists a code such that the probability that the receiver fails to obtain the
correct message at most 2y for any message that is sent. Since § and were arbitrary
constants, let v/ = /2 and §' = §/2. Then we have k — 1 < n(1 — H(p) — 2¢), which
implies that £ < n(l — H(p) —¢'), and the probability that the decoding fails for any
individual codeword is bounded by +'. This is exactly the statement of the first half
of the theorem, with 4/ and ¢’ in place of v and 0, and hence this part of the theorem
has been proven.

Having completed the first half of the theorem, we move to the second half: for
any constants 0,y > 0, when n is sufficiently large, there do not exist (k,n) encoding
and decoding functions with £ > n(1— H(p)+4) such that the probability of decoding
correctly is at least v for a k-bit input message chosen uniformly at random.

Before giving the proof, let us first consider some helpful intuition. We know
that the number of errors introduced by the channel is, with high probability, between
[(p — €)n] and [(p + €)n| for a suitable constant € > 0. Suppose that we try to set
up the decoding function so that each codeword is decoded properly whenever the
number of errors is between (p — ¢)n and (p + €)n. Then each codeword is associated

© Copyright Mitzenmacher and Upfal, 2003-2004

9.5 Coding: Shannon’s Theorem * 278

[n(p+e)] n n onH(p)
E > >
k |np| n+1

k=[n(p—e)]
bit sequences by the decoding function; the last inequality follows from Corollary 11.
But there are 2% different codewords, and

with

nH nH
L2 (p) - 2n(1—H(p)+6)2 () S on

n+1 — n+1

2

when n is sufficiently large. Since there are only 2" possible bit sequences that can be
received, we cannot create a decoding function that always decodes properly whenever
the number of errors is between (p — €)n and (p + €)n.

We now need to extend this argument for any encoding and decoding functions.
This argument is more complex, since we cannot assume that the decoding function
necessarily tries to decode properly whenever the number of errors is between (p—e€)n
and (p + €)n, even though this would seem to be the best strategy to pursue.

Given any fixed encoding function with codewords xg,x1,...,T9_; and any
fixed decoding function, let z be the probability of successful decoding. Define S; to
be the set of all received sequences that decode to x;. Then

2k—1
z = Z ZPr((mi is sent) N (R = s))
i=0 s€ES;
2k—1
= Z ZPr(azi is sent) Pr(R = s | x; is sent)
=0 s€S;
1 2k —1
= % Z ZPr(R: s | x; is sent)
i=0 s€S;
2k—1

= % Z Zw(xi,s).

1=0 s€S;

The second line follows from the definition of conditional probability. The third line
uses the fact that the message sent and hence the codeword sent is chosen uniformly
at random from all codewords. The fourth line is just the definition of the weight
function.

To bound this last line, we again split the summation 212231 > ses; W(Ti,)

into two parts. Let S;1 = {s € S; : |A(z;,8) —pn| > en} and S;» = {s €
S; ¢ |A(x;, s) — pn| < en}, where again € > 0 is some constant to be determined.
Then

Zw(xi,s) = Z w(xi, s) + Z w(x;, 8).

SES; SE€ES; 1 s€S; 2

© Copyright Mitzenmacher and Upfal, 2003-2004

9.5 Coding: Shannon’s Theorem * 279

Z w(x;, s) < Z w(x;, $),

SE€ESi 1 s:|A(z4,8)—pn|>en

Now

which can be bounded using Chernoff bounds. The summation on the right is simply
the probability that the number of errors the channel introduces is not between (p—e)n
and (p + €)n, which we know from previous arguments is at most 2e~€'n/3 This
bound is equivalent to assuming that whenever there are too many or too few errors
introduced by the channel that decoding is successful; since the probability of too
many or too few errors is small, this assumption still yields a good bound.

Tobound) w(w;, s), we note that w(z;, s) is decreasing in A(z;, s). Hence,
for s € Si,z,

w(xi7 S) < p(p—e)n(l . p)(l—p—l—e)n

= (1 — p)(lfp)n <1;p>m

p

_ 9-H@n <1;p> _
p

Therefore
en
> wles) < 302 ron (10)
SESi,Q SESi,Q p
1 _ en
_ o-H®)n <_p> 1S;4.
p
We continue with
2k_1
= Y Y w
=0 s€S;
1 2k_1
= o Z Z w(z;,) + Z w(z;, s)
=0 sESi1 SES; 2
2k 1

IA
2| =
(]

1 . €en
(26_5%/31) + 9~ H(p)n <—p>) |Si2]
=0 g

k_

—e2n/3p 1 —H(p)n l—p S
2e + ?2 T Z |Si,2

=0

_ 2 /3 1 _H 1 - p e
< 2e v o Hm (2 T o
In this last line, we have used the important fact that the S;’s, and hence the S, ’s,

are disjoint, so their total size is at most 2". This is where the fact that we are using
a decoding function comes into play, allowing us to establish a useful bound.

© Copyright Mitzenmacher and Upfal, 2003-2004

9.6 Exercises

280

To conclude,

en
. < 26762"7,/3]7 +2n7(17H(p)+5)n7H(p)n <1;p)

p
—e2n/3 l—p ‘ -5 "
= 2e P+l —) 2 :
p

As long as we choose € sufficiently small so that

1 _ €
(—p> 270 < 1,
p

then when n is sufficiently large z < 7, proving the theorem. U

Shannon’s theorem demonstrates that there exist codes that transmit arbitrarily
closely to the capacity of the binary symmetric channel over long enough blocks. It
does not give explicit codes, nor does it say that such codes can be encoded and
decoded efficiently. It took decades after Shannon’s original work before practical
codes with near-optimal performance were found, but there are now very effective
codes that achieve the promise of Shannon’s coding theorem.

9.6 Exercises

1. (a) Let S=3,0, 2. Consider a random variable X such that Pr(X = k) =
=z for integers k = 1,...,10. Find H(X).

(b) Let S =3,2, 2. Consider a random variable X such that Pr(X = k) =

= for integers k= 1,...,10. Find H(X).
(c) Conmsider S, = 3,7, ==, where a > 1 is a constant. Consider random
variables X, such that Pr(X,lpha = k) = Saﬁ for integers k = 1,...,10.

Give an intuitive explanation explaining whether H(X,,) is increasing or
decreasing with a and why.

2. Consider an n-sided die, where the ¢-th face comes up with probability p;. Show
that the entropy of a die roll is maximized when each face comes up with equal
probability 1/n.

3. (a) A fair coin is repeatedly flipped until the first head occurs. Let X be the
number of flips required. Find H(X).

(b) Your friend flips a fair coin repeatedly until the first head occurs. You
want to determine how many flips were required. You are allowed to ask
a series of yes-no questions of the following form: you give your friend a
set of integers, and your friend answers yes if the number of flips is in that
set, and no otherwise. Describe a strategy so that the expected number of
questions you have to ask before determining the number of flips is H(X).

© Copyright Mitzenmacher and Upfal, 2003-2004

9.6 Exercises 281

(c) Give an intuitive explanation of why you cannot come up with a strategy
that would allow you to ask fewer than H(X) questions on average.

4. (a) Show that

is finite.

(b) Consider the integer-valued discrete random variable X given by

1

n

Show that H(X) is unbounded.

5. Suppose p is chosen uniformly at random from the real interval [0, 1]. Calculate
E[H (p)].

6. The conditional entropy H(Y | X) is defined by

HY [X)=) Pr((X=2)n (Y =y))log, Pr(Y =y |X =).

If Z=(X,Y), show that

7. One form of Stirling’s formula is

n n
2mn (ﬁ> <n!l <V2mn (ﬁ> el/(12n)
e

e
n onH(q)
> o /=
<qn> T 2Vn

which is a tighter bound than that of Lemma 43.

Using this, prove

8. We have shown in Theorem 64 that we can extract, on average, at least |log, m|—
1 independent, unbiased bits from a number X chosen uniformly at random
from S = {0,...,m — 1} using a recursive procedure. Consider the following
extraction function: let o = |log, m |, and write

m = [3,2% + 5a—12a_1 +.. 50207

where each f3; is either 0 or 1.

Let k£ be the number of values of ¢ for which ; equals 1. Then we split S into
k disjoint subsets in the following manner: there is one set for each value of 3;

© Copyright Mitzenmacher and Upfal, 2003-2004

9.6 Exercises 282

that equals 1, and the set for this i has 2¢ elements. The assignment of S to sets
can be arbitrary, as long as the resulting sets are disjoint. To get an extraction
function, we map the elements of the subset with 2° elements in a one-to-one
manner with the 2¢ binary strings of length 1.

Show that this mapping is equivalent to the recursive extraction procedure given
in Theorem 64, in that both produce ¢ bits with the same probability for all i.

9. We have shown that we can extract, on average, at least [log,m| — 1 in-
dependent, unbiased bits from a number chosen uniformly at random from
{0,...,m —1}. Tt follows that if we have k£ numbers chosen independently and
uniformly at random from {0,...,m — 1}, we can extract, on average, at least
k|log, m| — k independent, unbiased bits from them. Give a better procedure
that extracts, on average, at least k|log, m| —1 independent, unbiased bits from
these numbers.

10. Suppose that we have a means of generating independent, fair coin flips.

(a) Give an algorithm using the coin to generate a number uniformly from

{0,1,...,n— 1} when n is a power of 2 using exactly log, n flips.

(b) Argue that that if n is not a power of 2, no algorithm can generate a
number uniformly from {0,1,...,n — 1} using exactly & coin flips for any
fixed k.

(c) Argue that that if n is not a power of 2, no algorithm can generate a
number uniformly from {0, 1,...,n — 1} using at most k coin flips for any
fixed k.

(d) Give an algorithm using the coin to generate a number uniformly from
{0,1,...,n— 1}, even when n is not a power of 2, using at most 2[log, n]
expected flips.

11. Suppose that we have a means of generating independent, fair coin flips.

(a) Give an algorithm using the fair coin that simulates flipping a biased coin
that comes up heads with probability p. The expected number of flips your
algorithm uses should be at most 2. Hint: think of p written as a decimal
in binary, and use the fair coin to generate binary decimal digits.

(b) Give an algorithm using the coin to generate a number uniformly from
{0,1,...,n—1}. The expected number of flips your algorithm uses should
be at most [log, n] + 2.

12. Here is an extraction algorithm A whose input is a sequence X = x1,Z3,..., T,
of n independent flips of a coin that comes up heads with probability p > 1/2.
Break the sequence into |n/2] pairs, a; = (x9;—1,xy;) for i =1,...,|n/2]. Con-
sider the pairs in order. If y; =(heads,tails) then output a 0; if a; =(tails,heads)
then output a 1; otherwise, move on to the next pair.

© Copyright Mitzenmacher and Upfal, 2003-2004

9.6 Exercises

283

(a) Show that the bits extracted are independent and unbiased.

(b) Show that the expected number of extracted bits is [n/2|2p(1 — p) ~
np(l —p).

(c) We can derive another set of flips Y = yi,9s,... from the sequence X
as follows: Start with j,k = 1. Repeat the following operations until
j = |n/2]: If a; =(heads,heads) set y; to tails and increment j and k. If
a; =(tails,tails) set yj, to tails and increment j and k. Otherwise, increment
j. See Figure 9.3 for an example.

The intuition here is that we take some of the randomness that A was
unable to use effectively and re-use it. Show that the bits produced by
running A on Y are independent and unbiased, and further argue that
they are independent of those produced from running A on X.

(d) We can derive a second set of flips Z = 21, 22, ..., 2|n/2| from the sequence
X as follows: let z; be heads if y; =(heads,heads) or (tails,tails), and let
z; be tails otherwise. See Figure 9.3 for an example. Show that the bits
produced by running A on Z are independent and unbiased, and further
argue that they are independent of those produced from running A on X
and Y.

(e) After we derive and run A on Y and Z, we can recursively derive two
further sequences from each of these sequences in the same way, run A on
those, and so on. See Figure 9.3 for an example. Let A(p) be the average
number of bits extracted for each flip (with probability p of coming up
heads) in the sequence X, in the limit as the length of the sequence X
goes to infinity. Argue that A(p) satisfies the recurrence

2

Alp) =p(1—p) + %(p2 +¢*)A (pgi q2) + %A(p2 +(1-p)?).

(f) Show that the entropy function H(p) satisfies the recurrence for A(p).

(g) Implement the recursive extraction procedure explained above. Run it
1000 times on sequences of 1024 bits generated by a coin that comes up
heads with probability p = 0.7. Give the distribution of the number of
flips extracted over the 1000 runs and discuss how close your results are
1024 - H(0.7).

13. Suppose that instead of a biased coin we have a biased six-sided die, with entropy
h > 0. Modify our extraction function for the case of biased coins so that it
extracts, on average, almost h random bits per roll from a sequence of die rolls.
Prove formally that your extraction function works by modifying Theorem 64
appropriately.

14. Suppose that instead of a biased coin we have a biased six-sided die, with
entropy h > 0. Modify our compression function for the case of biased coins

© Copyright Mitzenmacher and Upfal, 2003-2004

9.6 Exercises

284

X
Y

HHT THTHHHTHHHTTTHTTT
H T H H T T
H HT HTHT H T H

HTHHTT Z | HHTHTHTHTH
H T H

T H H H T T T T

Figure 9.3: After running A on the input sequence X, we can derive further sequences
Y and Z. After running A on each of Y and Z, we can derive further sequences from
them, and so on.

15.

16.

so that it compresses a sequence of n die rolls to almost nh bits on average.
Prove formally that your compression function works by modifying Theorem 65
appropriately.

We wish to compress a sequence of independent, identically distributed random
variables X, X5, ...,. Each X, takes on one of n values. We map the i-th value
to a codeword, which is a sequence of ¢; bits. We wish these codewords to have
the property that no codeword is the prefix of any other codeword.

a) Explain how this property can be used to decompress the string created
y g
by the compression algorithm easily when reading the bits sequentially.

(b) Prove that the ¢; must satisfy

i 274 < 1.
=1

This is known as the Kraft inequality.

We wish to compress a sequence of independent, identically distributed random
variables X, Xy, ...,. Each X; takes on one of n values. The i-th value occurs
with probability p;, where p; > py ... > p,. The result is compressed as follows:

set
i—1
Jj=1

© Copyright Mitzenmacher and Upfal, 2003-2004

9.6 Exercises

285

17.

18.

and let the i-th codeword be the first ﬂog2 —-] bits of T;. Start with an empty
string, and consider the X; in order. If X takes on the i-th value, append the
i-th codeword to the end of the string.

(a) Show that no codeword is the prefix of any other codeword.

(b) Let z be the average number of bits appended for each random variable
X;. Show that
HX)<z<H(X)+1.

Arithmetic coding is a standard compression method. In the case where the
string to be compressed is a sequence of biased coin flips, it can be described as
follows. Suppose that we have a sequence of bits X = (X3, Xs,..., X,,), where
each X; is independently 0 with probability p and 1 with probability 1 — p.
The sequences can be ordered lexicographically, so for x = (x1, 29, ...,z,) and
v = (y1,Y2,..-,yn) we say x < y if z; = 0 and y; = 1 in the first coordinate
¢ such that x; # y;. If z, is the number of 0’s in the string x, then define

p(z) =p=(1 —p)* %, and ¢(z) = 3, ., p(y)-

(a) Suppose we are given X = (X, Xy, ..., X,,) sequentially. Explain how to
compute ¢(X) in time O(n). (You may assume that any operation on real
numbers takes constant time.)

(b) Argue that the intervals [¢(x), ¢(z)+p(z)) are disjoint subintervals of [0, 1).

(c) Given the above, the sequence X can be represented by any point in the
interval [¢(X),q¢(X) 4+ p(X)). Show that we can choose a codeword in
[¢(X), ¢(X)+p(X)) with [log, I)(LXW + 1 binary decimal digits to represent
X in such a way that no codeword is the prefix of any other codeword.

(d) Given a codeword chosen as above, explain how to decompress it to deter-
mine the corresponding sequence (X7, Xo,..., X,,).

(e) Using a Chernoff bound, argue that log, zﬁ is close to nH (p) with high
probability. Hence this approach yields an effective compression scheme.

Alice wants to send Bob the result of a fair coin flip over a binary symmetric
channel that flips each bit with probability p < 1/2. To avoid errors in trans-
mission, she encodes heads as a sequence of 2k + 1 zeroes and tails as a sequence
of 2k 4+ 1 ones.

(a) Consider the case where k = 1, so heads is encoded as 000 and tails as 111.
For each of the eight possible sequences of three bits that can be received,
determine the probability that Alice flipped a heads conditioned on Bob
receiving that sequence.

(b) Bob decodes by examining the three bits. If two or three of the bits are 0,
Bob decides the corresponding coin flip was a heads. Prove that this rule
minimizes the probability of error for each flip.

Copyright Mitzenmacher and Upfal, 2003-2004

9.6 Exercises

286

19.

20.

21.

(c) Argue that for general k£, Bob minimized the probability of error by decid-
ing the flip was heads if at least k + 1 of the bits are 0.

(d) Give a formula for the probability that Bob makes an error that holds for
general k. Evaluate the formula for p = 0.1 and % ranging from 1 to 6.

(e) Give a bound on this probability using Chernoff bounds.

Consider the following channel: the sender can send a symbol from the set
{0,1,2,3,4}. The channel introduces errors; when the symbol & is sent, the
receiver receives k+1 mod 5 with probability 1/2, and receives k—1 mod 5 with
probability 1/2. The errors are mutually independent when multiple symbols
are sent.

Let us define encoding and decoding functions for this channel. A (j,n) en-
coding function Enc maps a number in {0,1,...,j — 1} into sequences from

{0,1,2,3,4}" and a (j, n) decoding function Dec maps sequences from {0, 1,2, 3, 4}"

back into {0,1,...,j — 1}. Notice that this definition is slightly different than
the one we used for bit sequences over the binary symmetric channel.

There are (1, 1) encoding and decoding functions with zero probability of error.
The encoding function maps 0 to 0 and 1 to 1. When a 0 is sent, the receiver
will receiver either a 1 or 4, so the decoding function maps 1 and 4 back to
0. When a 1 is sent, the receiver will receiver either a 2 or 0, so the decoding
function maps 2 and 0 back to 1. This guarantees that no error is made. Hence
at least one bit can be sent without error per channel use.

e Show that there are (5, 2) encoding and decoding functions with zero prob-
ability of error. Argue that this means more than one bit of information
can be sent per use of the channel.

e Show that if there are (j,n) encoding and decoding functions with zero
probability of error, then n > log, j/(log, 5 — 1).

A binary erasure channel transfers a sequence of n bits. Each bit either arrives
successfully without error, or fails to arrive successfully and is replaced by a ’?’
symbol, denoting that it is not known if that bit is a 0 or a 1. Failures occur
independently with probability p. We can define (k,n) encoding and decoding
functions for the binary erasure channel in a similar manner as for the binary
symmetric channel, except here the decoding function Dec : {0,1,?7}" — {0,1}F
must handle sequences with the ’?" symbol.

Prove that for any p > 0 and any constants d,y > 0, when n is sufficiently large
there exist (k,n) encoding and decoding functions when k£ < n(1 — p — §) such
that the probability that the receiver fails to obtain the correct message is at
most v for every possible k-bit input message.

In proving Shannon’s theorem, we used the following decoding method: look
for a codeword that differs from the received sequence of bits in between (p —

© Copyright Mitzenmacher and Upfal, 2003-2004

9.6 Exercises 287

e)n and (p + €)n places, for an appropriate choice of e. If there is only one
such codeword, the decoder concludes that that codeword was the codeword
sent. Suppose instead the decoder looks for the codeword that differs from the
received sequence in the smallest number of bits (breaking ties arbitrarily), and
concludes that that codeword was the codeword sent. Show how to modify
the proof of Shannon’s theorem for this decoding technique to obtain a similar
result.

© Copyright Mitzenmacher and Upfal, 2003-2004

Chapter 10

The Monte Carlo Method

The Monte Carlo method refers to a collection of tools for estimating values through
sampling and simulation. Monte Carlo techniques are used extensively in almost all
areas of physical sciences and engineering. In this chapter, we first present the basic
idea of estimating a value though sampling, using a simple experiment that gives an
estimate of the value of the constant 7. Estimating through sampling is often more
complex than this simple example suggests. We demonstrate the potential difficulties
that can arise in devising an efficient sampling procedure by considering how to
appropriately sample in order to estimate the number of satisfying assignments of a
DNF Boolean formula.

We then move to more general considerations, by demonstrating a general reduc-
tion from almost uniform sampling to approximate counting of combinatorial objects.
This leads us to consider how to obtain almost uniform samples. One method is the
Markov chain Monte Carlo (MCMC) technique, introduced in the last section of this
chapter.

10.1 The Monte Carlo Method

Consider the following approach for estimating the value of the constant 7. Let (X,Y)
be a point chosen uniformly at random in a 2 X 2 square centered at the origin (0, 0)
This is equivalent to choosing X and Y independently from a uniform distribution on
[—1,1]. The circle of radius 1 centered at (0,0) lies inside this square, and has area

. If we let
S 1V LL
| 0 otherwise,

then because the point was chosen uniformly from the 2 x 2 square, the probability
that Z = 1 is exactly the ratio of the area of the circle to the area of the square. (See

© Copyright Mitzenmacher and Upfal, 2003-2004

10.1 The Monte Carlo Method

289

Figure 10.1.) Hence

E

Figure 10.1: A point chosen uniformly at random in the square has probability 7/4
of landing in the circle.

Assume that we run this experiment m times (with X and Y chosen indepen-
dently among the runs), with Z; being the value of Z at the i-th run. IfW = >"1" | Z;,

then "
>z

=1

EW]=E

-~ N E[z] = @,
=1 4

and hence W' = %W is a natural estimate for 7. Applying the Chernoff bound of
equation 4.7 we compute

Pr(|W'— 7| >er) = Pr (|W— %| > GTZW>

— Pr(|W —E[V]| = E[W))
S 2671—12m7re2.
Therefore if we use a sufficiently large number of samples, we can obtain with high

probability as tight an approximation of 7 as we wish.

This method for approximating 7 is an example of a more general class of
approximation algorithms that we now characterize.

Definition 43. A randomized algorithm gives an (e, d)-approximation for the value
V' if the output X of the algorithm satisfies

Pr(l X —V|<eV)>1-4.

Our method for estimating 7 gives an (e, d)-approximation, as long as we choose
m large enough to make
9~ 13T’ < 4.

© Copyright Mitzenmacher and Upfal, 2003-2004

10.1 The Monte Carlo Method 290

Algebraic manipulation yields that choosing

121In(2
s 120C/0)
TE
is sufficient.

We may generalize the idea behind our technique for estimating 7 to provide a
relation between the number of samples and the quality of the approximation. We
use this simple application of the Chernoff bound throughout this chapter:

Theorem 67. Let Xq,...,X,, be independent and identically distributed indicator
3 n%

random variables, with p = E[X;]. If m > !2—“’ then

1 m
Pr(E;Xi—,u

That is, m samples provide an (€, §)-approzimation for p.

Zw) <4

The proof is left as exercise 1.

More generally, we will want an algorithm that approximates not just a single
value, but instead takes as input a problem instance and approximates the solution
value for that problem. Here we are considering problems that map inputs x to values
V(z). For example, given an input graph, we might want to know an approximation
to the number of independent sets in the graph.

You might ask why we should settle for an approximation; perhaps we should
aim for an exact answer. In the case of 7, we cannot obtain an exact answer, since
7 is an irrational number. Another reason for seeking an approximation is that, as
we shall see shortly, there are problems for which the existence of an algorithm that
gives an exact answer would imply that P = NP, and hence it is unlikely that such
an algorithm will be found. This does not preclude the possibility of an efficient
approximation algorithm.

Definition 44. A fully polynomial randomized approximation scheme (FPRAS) for
a problem is a randomized algorithm for which, given an input x and any parameters
e and § with 0 < €,§ < 1, the algorithm outputs an (€,0)-approzimation to V(x) in
time that is polynomial in 1/¢, Ind~', and the size of the input x.

Exercise 3 considers a seemingly weaker but actually equivalent definition of an
FPRAS that avoids the parameter 0.

The Monte Carlo method essentially consists of the approach we have outlined
above to obtain an efficient approximation for a value V. We require an efficient
process that generates a sequence of independent and identically distributed random
samples X, Xs, ..., X, such that E[X;] = V. We then take enough samples to get

© Copyright Mitzenmacher and Upfal, 2003-2004

10.2 The DNF Counting Problem

291

an (¢, d0)-approximation to V. Generating a good sequence of samples is often a non-
trivial task, and is a major focus of the Monte Carlo method.

The Monte Carlo method is also sometimes called Monte Carlo simulation. As
an example, suppose we want to estimate the expected price of a stock some time
in the future. We may develop a model where the price p(Y7,...,Y) of the stock at
that time depends on random variables Y3, Y5, ..., Y;. If we can repeatedly generate
independent random vectors (y1,ya, - - -, yx) from the joint distribution of the Y, then
we can repeatedly generate independent random variables X, X5, ..., where

X; = p(Yi,..., Ya).

We can then use the X; to estimate the expected future price E[p(Y7,...,Y};)] with
the Monte Carlo method. That is, by simulating the possible future outcomes of the
Y; many times, we can estimate the desired expectation.

10.2 The DNF Counting Problem

As an example of an estimation problem that requires non-trivial sampling technique,
we consider the problem of counting the number of satisfying assignments of a Boolean
formula in disjunctive normal form (DNF). A DNF formula is a disjunction (OR) of
clauses C7 V Cy V - - - V (Y, where each clause is a conjunction (AND) of literals. For
example, the following is a DNF formula:

(1‘1 /\"L'_Q/\"L'g) V (1‘2 /\1‘4) V (Tl /\IL‘3 /\1‘4).

Recall from section 6.2.2 that in a standard Satisfiability problem, the input
formula is a conjunction (AND) of a set of clauses, and each clause is the disjunction
(OR) of literals. This is commonly called conjunctive normal form (CNF). While
determining the satisfiability of a formula in CNF form is difficult, determining the
satisfiability of a formula in DNF form is simple. Since a satisfying assignment for a
DNF formula needs only to satisfy one clause, it is easy to find a satisfying assignment
or prove that it is not satisfiable.

How hard is it to exactly count the number of satisfying assignment of a DNF
formula? Given any CNF formula H, we can apply de Morgan’s laws to obtain a DNF
formula for H, the negation of the formula H, with the same number of variables and
clauses as the original CNF formula. The formula H has a satisfying assignment if
and only if there is some assignment for the variables that does not satisfy H. Thus,
H has a satisfying assignment if and only if the number of satisfying assignments of
H is strictly less than 2", the total number of possible assignments for n Boolean
variables. We conclude that counting the number of satisfying assignments of a DNF
formula is at least as hard as solving the NP-complete problem SAT.

There is a complexity class associated with the problem of counting solutions
to problems in NP, denoted by #P and pronounced “sharp-P.” Formally, a problem

© Copyright Mitzenmacher and Upfal, 2003-2004

10.2 The DNF Counting Problem

292

is in the class P if there a polynomial time, non-deterministic Turing machine such
that for any input 7, the number of accepting computations equals the number of
different solutions associated with the input I. Counting the number of satisfying
assignments of a DNF formula is actually gP-complete; that is, this problem is as
hard as any other problem in this class. Other complete problems for the class §P
include counting the number of Hamiltonian cycles in a graph, and counting the
number of perfect matchings in a bipartite graph.

It is unlikely that there is a polynomial time algorithm that computes the exact
number of solutions of a fP-complete problem, as at the very least such an algorithm
would imply that P = NP. It is therefore interesting to find an FPRAS for the
number of satisfying assignments of a DNF formula.

10.2.1 The Naive Approach

We start by trying to generalize the approach that we used to approximate 7, and
demonstrate why it unsuitable in general. We then show how to improve our sampling
technique in order to solve the problem.

Let ¢(F) be the number of satisfying assignments of a DNF formula F'. Below
we assume that c¢(F) > 0, since it is easy to check if ¢(F) = 0 before running our
sampling algorithm. To approximate 7w, we generated points uniformly from the 2 x 2
square, and checked if they were in the target, a circle of radius 1. We first try
a similar approach here: we generate assignments uniformly at random for the n
variables, and see if resulting assignment is in the target of satisfying assignments for
F. Formally, we have the following algorithm:

DNF Counting Algorithm I
Input: A DNF formula F' with n variables.
Output: Y = an approximation of ¢(F).

1. X < 0.
2. For k =1 to m do:

(a) Generate a random assignment for the n variables, chosen uniformly at
random from all 2" possible assignments;

(b) If the random assignment satisfies F' then X + X + 1.

3. Return Y « %2".

Let Xj be 1 if the k-th trial generated a satisfying assignment and 0 otherwise.
Then X = Y "," | X}, where the X}, are independent 0 — 1 random variables, each
taking the value 1 with probability ¢(F')/2". Hence by linearity of expectations

E[X] _ «F)

EYl==r =%

© Copyright Mitzenmacher and Upfal, 2003-2004

10.2 The DNF Counting Problem

293

Applying Theorem 67 we see that the algorithm gives an (¢, d)-approximation of ¢(F)
when 3-2"1In(2/0
3.2
— e¢(F)

If ¢(F) > 2"/a(n) for some polynomial «, then the above analysis tells us
we only need a number of samples n that is polynomial in n and 1/e. We cannot,
however, exclude the possibility that ¢(F') is much less than 2". In particular, ¢(F)
might be polynomial in n. Since our analysis requires a number of samples m that is
proportional to 2" /¢(F'), our analysis does not yield that the run time of the algorithm
is always polynomial in the problem size.

This is not simply an artifact of the analysis. We provide a rough sketch of an
argument that is elaborated on in exercise 4. If the number of satisfying assignments
is polynomial in n, and at each step we sample uniformly at random from all 2"
possible assignments, with high probability we must sample an exponential number
of assignments before finding the first satisfying assignment. We can conclude, for
example, that we cannot distinguish between instances with n, n?, and n? satisfying
assignments without considering exponentially many random assignments, since with
high probability we would obtain zero satisfying assignments in all three cases.

The problem with this sampling approach is that the set of satisfying assign-
ments might not be sufficiently dense in the set of all assignments. This is an ad-
ditional requirement of our sampling technique that was not explicit before. In the
phrasing of Theorem 67, the value y that we are attempting to approximate needs to
be sufficiently large so that sampling is efficient.

To obtain an FPRAS for this problem we need to devise a better sampling
scheme that avoids wasting so many steps on assignments that do not satisfy the
formula. We need to construct a sample space that includes all the satisfying assign-
ments of F', and moreover has the property that these assignments are sufficiently
dense in the sample space to allow for efficient sampling.

10.2.2 A Fully Polynomial Randomized Scheme for DNF Count-

ing

We now revise our sampling procedure to obtain an FPRAS. Let FF = C; vV Cy V
-+ -V (Y, and assume without lost of generality that no clause includes a variable and
its negation. (If there is such a clause it is not satisfiable and we can eliminate it
from the formula.) A satisfying assignment of F' needs to satisfy at least one of the
clauses C', ..., C,;. Each clause is a conjunction of literals, therefore there is only one
assignments for the variables that appear in the clause that satisfies this clause. All
other variables can have arbitrary values. For example, for the clause (x; A T3 A x3)
to be satisfied, x; and x3 must be set to true, and x5 must be set to false.

© Copyright Mitzenmacher and Upfal, 2003-2004

10.2 The DNF Counting Problem

294

It follows that if clause C; has ¢; literals, then there are exactly 2"~% satisfying
assignment for C;. Let SC; denote the set of assignments that satisfy clause i, and
let

U={(i,a)] 1<i<tandae SC}.

Notice that we know the size of U, since

t
> 1sci| = |Ul,
1=1

and we can compute |SCj|.

The value that we want to estimate is given by
t
e(F) = | JSCil.
i=1

Here ¢(F) < |U], since an assignment can satisfy more than one clause, and thus
appears in more than one pair in U.

To estimate ¢(F') we define a subset S of U with size ¢(F). We construct this
set by selecting for each satisfying assignment of F' exactly one pair in U that has this
assignment; specifically, we can use the pair with the smallest clause index number,
giving

S={(t,a) | 1<i<t, aecSC; a¢gSC, forj <i}.

Since we know the size of U, we can estimate the size of S by estimating the ratio
|S]/|U]|. We can estimate this ratio efficiently if we can sample uniformly at random
from U using our previous approach, choosing pairs uniformly at random from U and
counting how often they are in S. We avoid the problem we encountered by simply
sampling assignments at random, because S is relatively dense in U. Specifically,
since each assignment can satisfy at most ¢ different clauses, |S|/|U| > 1/t.

The only question left is how to sample uniformly from U. Suppose that we first
choose the first coordinate, i. Since the i-th clause has |SC;| satisfying assignments,
we should choose i with probability proportional to |SC;|. Specifically, we should
choose ¢ with probability

1SGi| _ [9C]
S lsc Ul
We then can choose a satisfying assignment uniformly at random from SC;. This is
easy to do; we choose the value true or false independently and uniformly at random
for each literal not in clause i. Then the probability we choose the pair (i, a) is

Pr((i,a) is chosen) = Pr(i is chosen) - Pr(a is chosen |i is chosen)
sG] 1
Ul I8¢y
1
— m,

© Copyright Mitzenmacher and Upfal, 2003-2004

10.3 From Approximate Sampling to Approximate Counting

295

giving a uniform distribution.

These observations are implemented in the following algorithm:

DNF Counting Algorithm II
Input: A DNF formula F' with n variables.
Output: Y = an approximation of ¢(F).

1. X < 0.
2. For k=1 to m do:

(a) With probability % choose, uniformly at random, an assignment
=1 7
a € SOZ

(b) If a is not in any SCj, j < i, then X < X + 1.
3. Return YV « £ 350 |SC;;

Theorem 68. DNF Counting Algorithm II is a fully polynomial randomized approz-
imation scheme (FPRAS) for the DNF counting problem, when m is taken to be

[lng].

Proof. Step 2a of the algorithm chooses an element of U uniformly at random. The
probability that this element belongs to S is at least 1/¢. Fix any € > 0 and § > 0,

and let 5t 9
—1Zmi.

m =[5 In]
Then m is polynomial in ¢, ¢ and In(§)~!, and the processing time of each sample
is polynomial in ¢. By Theorem 67, with this number of samples we have an (¢, 0d)-

approximation for ¢(F)). O

10.3 From Approximate Sampling to Approximate
Counting

The example of DNF formulas demonstrates that there is a fundamental connection
between being able to sample from an appropriate space, and being able to count the
number of objects with some property in that space. In this section we present the
outline of a general reduction that shows that if you can sample almost uniformly a
solution to a self-reducible combinatorial problem, then you can construct a random-
ized algorithm that approximately counts the number of solutions to that problem.
We do not define self-reducibility here, but instead for concreteness we demonstrate
this technique for the problem of counting the number of independent sets in a graph.
In the next chapter, we also consider the problem of counting the number of proper
colorings in a graph, and apply this technique there as well.

© Copyright Mitzenmacher and Upfal, 2003-2004

10.3 From Approximate Sampling to Approximate Counting

296

We first need to formulate the concept of approximate uniform sampling. In
this setting we are given a problem instance in the form of an input z, and there is
an underlying finite sample space €(z) associated with the input.

Definition 45. Let w be the (random) output of a sampling algorithm for a finite
sample space 2. The sampling algorithm generates an e-uniform sample of Q if, for
any subset S of €1, S

S

Pr(w € S) Q) <e.

A sampling algorithm is a fully polynomial almost uniform sampler (FPAUS) for a
problem if, given an input x and a parameter € > 0, it generates an e-uniform sample
of Q(x), and it runs in time polynomial in Ine~" and the size of the input x.

In the next chapter, we introduce the notion of total variation distance, which
allows for an equivalent definition of an e-uniform sample.

For example, an FPAUS for independent sets would take as input a graph
G = (V,F) and a parameter e. The sample space would be all independent sets in
the graph. The output would be an e-uniform sample of the independent sets, and
the time to produce such a sample would be polynomial in the size of the graph and
Ine . In fact in the reduction below we only need the running time to be polynomial
in e~!, but we use the standard definition given in Definition 45.

Our goal is now to show that given an FPAUS for independent sets, we can
construct an FPRAS for counting the number of independent sets. Assume that the
input G’ has m edges, and let ey,..., e, be an arbitrary ordering of the edges. Let
E; be the set of the first 7 edges in F and let G; = (V, E;). Note that G = G,,, and
G;_1 is obtained from G; be removing a single edge.

We let Q(G;) denote the set of independent sets in G;. The number of indepen-
dent sets in G' can then be expressed as
2Gm)| _ 2Cm-)| [UCm—2)] ©2(Gh)]

O = G)] UG)] 190G) T UG

X |Q(Go)].

Since Gy has no edges, every subset of V' is an independent set and Q(Gy) = 2".
To estimate |2(G)| we need good estimates for the ratios

. 1Q2(G)|
QG-

=1,...,m.

More formally, we will develop estimates 7; for the ratios r;, and then our estimate
for the number of independent sets in G will be

m
n ~
2][7
=1

© Copyright Mitzenmacher and Upfal, 2003-2004

10.3 From Approximate Sampling to Approximate Counting

297

while the true number is .
QG) =2"]] -
i=1

To evaluate the error in our estimate we need to bound the ratio

Specifically, to have an (e, d)-approximation, we want Pr(|R — 1| <€) > 1 —4J. We
will make use of the following lemma.

Lemma 45. Suppose that for all i, 1 < i < m, 7; is an (¢/2m,d/m)-approzimation
for r;. Then
Pr(lR—1|<¢)>1-0.

Proof. For each 1 < i < m, we have

Equivalently,

€)
Pr (|7:Z—T‘l| > —Ti> < —.
2m m
By the union bound the probability that |7 — 73| > 55r; for any i is at most ¢, and
hence |7 — r;| < 55r; for all ¢ with probability at least 1 — 0. Equivalently,

- € cfigy e

2m T r; 2m

holds for all ¢ with probability at least 1 — . When these bounds hold for all 7, we
can combine them to obtain

€™ 1 Ti € \™
1- <(1——) < —’<(1 —) <(1 ,
€= 2m _HTz'_ " om <{+e)

giving the lemma. 0

Hence all we need is a method to obtain an (e/2m,d§/m)-approximation for
the r;. We estimate each of these ratios by a Monte Carlo algorithm that uses the
FPAUS for sampling independent sets. To estimate r;, we sample independent sets
in GG;_; and compute the fraction of these sets that are also independent sets in G;,
as described in the procedure below. The constants in the procedure were chosen for
the proof that follows.

© Copyright Mitzenmacher and Upfal, 2003-2004

10.3 From Approximate Sampling to Approximate Counting

298

Estimating r;
Input: Graphs G; 1 = (V, F; 1) and G; = (V| E).
Output: 7; = an approximation of r;.

1. X < 0.

2. Repeat for M = [1296m?*¢?In %] independent trials:

(a) Generate an g—-uniform sample from Q(G;_);

(b) If the sample is an independent set in G;, let X < X + 1.

= X
3. Return r; < -

Lemma 46. When m > 1 and 0 < € < 1, the procedure for estimating r; yields an
(e/2m, § /m)-approzimation for r;.

Proof. We first show that r; is not too small, avoiding the problem that we found in
section 10.2.1. Suppose that G;_; and G; differ in that edge {u,v} is present in G;
but not in G;_;. An independent set in GG; is also an independent set in G;_1, so

Q(G;) C QG).

An independent set in Q(G;-1) \ Q(G;) contains both u and v. To bound the size of
the set Q(G; 1) \ Q(G;), we associate each I € Q(G; 1) \ Q(G;) with an independent
set T\ {v} € Q(G;). An independent set I" € Q(G;) is associated with no more than
one independent set TU{v} € Q(G; 1)\ Q(G;), and thus |Q2(G;_1) \ Q(G;)| < |QG))].
It follows that

) 906
UG 9G]+ UG \ UG

>1/2.

Now consider our M samples, and let X, = 1 if the k-th sample is in Q(G;),
and 0 otherwise. Because our samples are generated by an z—-uniform sampler, by
Definition 45 each X; must satisfy

€

QG|
|Q(Gi—1)|‘ :

Since the X} are indicator random variables, it follows that

2(GH)| €
E[X;] - ——| < —
1% - o] < o
and further by linearity of expectations
N AN (RN
M |Q(Gl,1)| - 6m

© Copyright Mitzenmacher and Upfal, 2003-2004

10.3 From Approximate Sampling to Approximate Counting

299

We therefore have

Zf‘ik X
M

[E[ri] —ri| = |E

122(G)|
QUGi-1)]
<
- 6m

We now combine the fact that 7; will be close to E[r;] for a sufficiently large
number of samples and the above fact that E[r;] is close to r; to complete the lemma.
Using r; > 1/2, we have

—_

€ 1 €
E[f|>rm— — >- — — >_,
e el Bl

Applying Theorem 67 yields that when the number of samples M satisfies

31n 2 2
M > o — 1296m2e2In 22,

() (3) g

then
r; €

Pr (‘ﬁ . 1\ > %) = Pr (17~ BI7) > < Blr]) < O

Equivalently, with probability 1 — %,

€ r; €
- < — < 14— 10.1
12m — E[f;] — * 12m (10.1)
As |E[r;] — r;| < &, we have that
o LER g, e
émr; = r; T 6mr;
Using the fact that r; > 1/2 gives
A L) (P (10.2)
3m — r; 3m’ ’

Combining equations (10.1) and (10.2), we have that with probability 1 — £,
€ € € 75 € € €
1——<(1——>(1——)<i<(1 —)(1 —><1 —.
2m — 3m 12m/ — r; — + 3m + 12m/ — + 2m
This gives the desired (e/2m, §/m)-approximation. O
The number of samples M is polynomial in m, € and Ind~!, and the time for
each sample is polynomial in the size of the graph and Ine~!. We therefore have the

following theorem:

© Copyright Mitzenmacher and Upfal, 2003-2004

10.4 The Markov Chain Monte Carlo Method

300

Theorem 69. Given a fully polynomial almost uniform sampler (FPAUS) for inde-
pendent sets in any graph, we can construct a fully polynomial randomized approzi-
mation scheme (FPRAS) for the number of independent sets in a graph G.

In fact the theorem is more often used in the following form:

Theorem 70. Given a fully polynomial almost uniform sampler (FPAUS) for inde-
pendent sets in any graph with mazimum degree at most A, we can construct a fully
polynomial randomized approximation scheme (FPRAS) for the number of indepen-
dent sets in a graph G with maximum degree at most A.

This version of the theorem follows from our previous argument, since our graphs
GG; are subgraphs of the initial graph GG. Hence if we start with a graph of maximum
degree at most A, our FPAUS only needs to work on graphs with maximum degree
at most A. In the next chapter, we will see how to create an FPAUS for graphs with
maximum degree four.

This technique can apply to a broad range of combinatorial counting problems.
For example, in Chapter 11, we consider its application to finding proper colorings of
a graph GG. The only requirement is that we can construct a sequence of refinements
of the problem, starting with an instance that is easy to count (the number of inde-
pendent sets in a graph with no edges in our example) and ending with the actual
counting problem, and such that the ratio between the count in successive instances
is it most polynomial in the size of the problem.

10.4 The Markov Chain Monte Carlo Method

The Monte Carlo method is based on sampling. It is often difficult to generate a
random sample with the required probability distribution. For example, we saw in
the previous section that we can count the number of independent sets in a graph if
we can generate an almost uniform sample from the set of independent sets. But how
can we generate an almost uniform sample?

The Markov chain Monte Carlo (MCMC) method provides a very general ap-
proach to sampling from a desired probability distribution. The basic idea is to define
an ergodic Markov chain whose set of states is the sample space, and whose station-
ary distribution is the required sampling distribution. Let X, X1,..., X, be a run of
the chain. Since the Markov chain converges to the stationary distribution from any
starting state Xy, after a sufficiently large number of steps 7, the distribution of the
state X, will be close to the stationary distribution, so it can be used as a sample.
Similarly, repeating this argument with X, as the starting point, we can use X, as
a sample, and so on. We can therefore use the sequence of states X,, Xo., X3,,...
as almost independent samples from the stationary distribution of the Markov chain.
The efficiency of this approach depends on how large r has to be to get a suitably

© Copyright Mitzenmacher and Upfal, 2003-2004

10.4 The Markov Chain Monte Carlo Method

301

good sample, and how much computation is required for each step of the Markov
chain. In this section, we focus on finding efficient Markov chains with the appropri-
ate stationary distribution, and ignore the issue of how large r needs to be. Coupling,
which is one method for determining the relationship between the value of r and the
quality of the sample, is discussed in the next chapter.

In the simplest case, the goal is to construct a Markov chain with a stationary
distribution that is uniform over the state space €2. The first step is to design a set of
moves that ensures that the state space is irreducible under the Markov chain. Let
us call the set of states reachable in one step from a state x (but excluding) the
neighbors of x, denoted by N(z). We adopt the restriction that if y € N(x) then
also x € N(y). Representing the Markov chain as a graph with weighted edges, the
restriction ensures that the graph is undirected. Generally N(z) will be a small set,
so that performing each move is simple computationally.

We again use the setting of independent sets in a graph G = (V| E) as an
example. The state space is all of the independent sets of G. A natural neighborhood
framework is to say that states x and y, which are independent sets, are neighbors
if they differ in just one vertex. That is, x can be obtained from y by adding or
deleting just one vertex. This neighbor relationship guarantees that the state space
is irreducible, since all independent sets can reach the empty independent set by a
sequence of vertex deletions.

Once the neighborhoods are established, we need to establish transition proba-
bilities. One natural thing to try would be to perform a random walk on the graph of
the state space. This might not lead to a uniform distribution, however. As we saw
in Theorem 52 of section 7.4, in the stationary distribution of a random walk, the
stationary probability for a vertex is proportional to the degree of the vertex. Noth-
ing in our discussion above requires all states to have the same number of neighbors,
which is equivalent to all vertices in the graph of the state space having the same
degree.

The following lemma shows that by modifying the random walk by giving each
vertex an appropriate self-loop probability, we can obtain a uniform stationary dis-
tribution.

Lemma 47. For a finite state space Q and neighborhood structure, let N = max,cq |N(z)].

Let M be any number such that M > N. Consider a Markov chain where for all x and
y withy # x, Py = 17 if y € N(z), and P,y = 0 otherwise. Also, Py, = I—KM@'. If
this chain is wrreducible and aperiodic, then the stationary distribution is the uniform
distribution.

Proof. We show that the chain is time-reversible, and apply Theorem 50. For any
x #y, if 7, = 7y, then

TPy = Ty Py a,
since P, , = P,, = 1/M. It follows that the uniform distribution 7, = 1/|| is the
stationary distribution. O

© Copyright Mitzenmacher and Upfal, 2003-2004

10.4 The Markov Chain Monte Carlo Method

302

Consider now the following simple Markov chain whose states are independent
sets in a graph G = (V, E):

1. Xy is an arbitrary independent set in G.
2. To compute X, 1:

(a) Choose a vertex v uniformly at random from V.

(b) If v € X then X; 11 = X; \ {v};

(c) if v ¢ X, and adding v to X still gives an independent set, then X;; =
Xi U{vh;

(d) otherwise, X;,; = X,.

This chain has the property that the neighbors of a state X; are all independent
sets that differ from X; in just one vertex. Since every state can reach and is reachable
from the empty set, the chain is irreducible. Assuming that G' has at least one edge
(u,v), then the state {v} has a self-loop (P,, > 0), and chain is aperiodic. Further,
when y # z, Py, = 1/|V| or 0. Lemma 47 therefore applies, and the stationary
distribution is the uniform distribution.

10.4.1 The Metropolis Algorithm

We have seen how to construct chains with a uniform stationary distribution. In some
cases, however, we may want to sample from a chain with a non-uniform stationary
distribution. The Metropolis algorithm refers to a general construction that trans-
forms any irreducible Markov chain on a state space {2 to a time-reversible Markov
chain with a required stationary distribution. The approach generalizes the idea
we used above to create chains with uniform stationary distributions: add self-loop
probabilities to states to obtain the desired stationary distribution.

Let us again assume that we have designed an irreducible state space for our
Markov chain, and now we want to construct a Markov chain on this state space with a
stationary distribution 7, = b(x)/B, where for allz € , b(x) > 0and B =) __, b(7)
is finite. As we see in the following lemma, which generalizes Lemma 47, we only need
the ratios between the required probabilities, and the sum B can be unknown.

Lemma 48. For a finite state space Q and neighborhood structure, let N = max,cq |N(x)].

Let M be any number such that M > N. For all x € Q, let 7, > 0 be the desired
probability of state x in the stationary distribution. Consider a Markov chain where

for all x and y with y # x,
1
P,, = — min < ,:—i)

ify € N(z), and P, , = 0 otherwise. Further, P, , = 1—2#55 P, . Then if this chain
15 1rreducible and aperiodic, the stationary distribution is given by the probabilities m,.

© Copyright Mitzenmacher and Upfal, 2003-2004

10.4 The Markov Chain Monte Carlo Method

303

Proof. As in the proof of Lemma 47, we show the chain is time-reversible, and apply
Theorem 50. For any z # y, if 7, < m,, then P,, =1 and P,, = 7m,/m,. It follows
that 7, P, = m,P, ;. Similarly, if n, > m,, then P, , = m, /7, and P,, = 1, and it
follows that m, P, , = m,P,,. By Theorem 50 the stationary distribution is given by
the values m,,. O

As an example of how to apply Lemma 48, let us consider how to modify our
previous Markov chains on independent sets. Let us suppose that now we want to
create a Markov chain where in the stationary distribution each independent set I has
probability proportional to A’l, for some constant parameter A > 0. That is, 7, =
)\‘I”/B, where I, is the independent set corresponding to state z and B =) pUE
When A = 1, this is the uniform distribution; when A > 1, larger independent sets
have a larger probability then smaller independent sets; and when A\ < 1, larger
independent sets have a smaller probability than smaller independent sets.

Consider now the following variation on the previous Markov chain for indepen-
dent sets in a graph G = (V, E):

1. Xy is an arbitrary independent set in G.
2. To compute X, 1:

(a) Choose a vertex v uniformly at random from V.
(b) If v € X; then set X;;; = X; \ {v} with probability min(1,1/)\);

(c) if v ¢ X;, and adding v to X; still gives an independent set, then set
X411 = X; U {v} with probability min(1, A);

(d) otherwise, set X; 11 = X;.

We now follow a two-step approach. We first propose a move by choosing a
vertex v to add or delete, where each vertex is chosen with probability 1/M; here
M = |V|. This proposal is then accepted with probability min(1,m,/7,), where x is
the current state and y is the proposed state to which the chain will move. Here, 7, /m,
is A if the chain attempts to add a vertex and m,/m, is 1/ if the chain attempts to
delete a vertex. This two-step approach is the hallmark of the Metropolis algorithm:
each neighbor is selected with probability ﬁ, and then it is accepted with probability

min (1, :—Z) Using this two-step approach, we naturally obtain that the transition

1
Px,yzﬂmin< %)
xr

It is important that in designing this Markov chain, we never needed to know
B =5, M=l A graph with n vertices can have exponentially many independent
sets, and hence calculating this sum directly would be too computationally expensive

probability P, , is

so Lemma 48 applies.

© Copyright Mitzenmacher and Upfal, 2003-2004

10.5 Exercises

304

for many graphs. Our Markov chain gives the right stationary distribution by using
the ratios %, which are much easier to deal with.

10.5 Exercises

5.

. Formally prove Theorem 67.

Another method for approximating 7 using Monte Carlo techniques is based on
the problem of Buffon’s needle. Research and explain the problem of Buffon’s
needle, and further explain how it can be used to obtain an approximation for
.

Show that the following alternative definition is equivalent to the definition of
an FPRAS given in the chapter: a fully polynomial randomized approximation
scheme (FPRAS) for a problem is a randomized algorithm for which, given an
input = and any parameter € with 0 < € < 1, the algorithm outputs an (e, 1/4)-
approximation in time that is polynomial in 1/e and the size of the input z.
Hint: to boost the probability of success from 3/4 to 1 —§, consider the median
of several independent runs of the algorithm. Why is the median a better choice
than the mean?

Suppose we have a class of instances of the DNF satisfiability problem with
a(n) satisfying truth assignments. Show that if we apply the naive approach
of sampling assignments and checking whether they satisfy the formula, after
sampling 2"/? assignments, the probability of finding even a single satisfying
assignment for a given instance is exponentially small in n.

(a) Let Si,Ss,...,S, be subsets of a finite universe U. We know |S;| for
1 < i < m. We wish to obtain an (¢, d)-approximation to the size of the

set
S =um,S;.

We have available a procedure that can, in one step, choose an element
uniformly at random from a set S;. Also, given an element x € U, we can
determine the number of sets S; for which x € S;. We call this number
c(x).
Define p; to be
s

TS
The j-th trial consists of the following steps: we choose a set S;, where
the probability of each set S; being chosen is p;, and then we choose an
element z; uniformly at random from S;. In each trial the random choices

© Copyright Mitzenmacher and Upfal, 2003-2004

10.5 Exercises

305

are independent of all other trials. After ¢ trials, we estimate |S| by

() ()

Determine as a function of m, €, and ¢ the number of trials needed to
obtain an (e, §)-approximation to |S]|.

(b) Explain how to use the above to obtain an alternative approximation al-
gorithm for counting the number of solutions to a DNF formula.

6. The problem of counting the number of solutions to a knapsack instance can be
defined as follows: given items with sizes ay, as, ..., a, > 0 and an integer b > 0,
find the number of vectors (z1,zs,...,z,) € {0,1}" such that >, a;z; < b.
The number b can be thought of as the size of a knapsack, and the x; denote
whether or not each item can be placed into the backpack. Counting solutions
corresponds to counting the number of different sets of items that can be placed
into the knapsack without exceeding capacity.

(a) A naive solution to count the number of solutions to this problem is to
repeatedly choose (z1,xs,...,2,) € {0,1}" uniformly at random, and re-
turn the 2" times the fraction of samples that yield valid solutions. Argue
why this is not a good strategy in general, in particular argue that it will
work poorly when each a; is 1 and b = \/n.

(b) Consider a Markov chain Xy, Xy, ... on vectors (xy,xs,...,x,) € {0,1}".
Suppose X; is (21, %2,...,2,). At each step, the Markov chain chooses
i € [1,n] uniformly at random. If z; = 1, then X, is obtained from X;
by setting z; to 0. If z; = 0, then then X, is obtained from X; by setting
x; to 1 if doing so maintains the restriction 2?21 a;x; < b. Otherwise,
Xj+1 = X]
Argue that this Markov chain has a uniform stationary distribution when-
ever > ', a; > b. Be sure to argue that the chain is irreducible and
aperiodic.

(c) Argue that if we have an FPAUS for the knapsack problem, we can derive
an FPRAS for the problem. To set the problem up properly, assume
without loss of generality that a; < a; < ... < a,. Let by = 0 and
bi = > ._y ai. Let Q(b;) be the set of vectors (21, 23,...,2,) € {0,1}" that
satisfy > | a;z; < b;. Consider the equation

_ el (9G] 190)]
[b01)] [0 2) 2(bo)

You will need to argue that [Q(b; 1)|/|€2(b;)| is not too small. Specifically,
argue that |Q(b;)| < (n+ 1)|Q(b;—1)]-

1€2(b)] x |Q2(by)].

© Copyright Mitzenmacher and Upfal, 2003-2004

10.5 Exercises

306

7.

10.

11.

12.

An alternative definition for an e-uniform sample of 2 is the following: a sam-
pling algorithm generates an e-uniform sample w if, for all z € €,
Pr(w = z) — 1/]02]]
/1€

<e

Show that an e-uniform sample under this definition yields an e-uniform sample
as given in Definition 45.

Let S = Y 2, i7% = %2. Design a Markov chain based on the Metropolis
algorithm on the positive integers such that in the stationary distribution m; =
#. The neighbors of any integer ¢ > 1 for your chain should be only ¢ — 1 and
t 4+ 1, and only neighbor of 1 should be the integer 2.

Recall the Bubblesort algorithm of Problem 22. Suppose that we have n cards
labeled 1 through n. The order of the cards X can be the state of a Markov
chain. Let f(X) be the number of Bubblesort moves necessary to put the cards
in increasing sorted order. Design a Markov chain based on the Metropolis
algorithm where in the stationary distribution the probability of an order X is
proportional to AX) for a given constant A > 0. The neighbors in the chain
should be pairs of orderings that can be obtained by interchanging at most two
cards.

A A-coloring C of an undirected graph G = (V| F) is an assignment labeling
each vertex with a number, representing a color, from the set {1,2,...,A}. An
edge (u,v) is improper if both u and v are assigned the same color. Let I(C') be
the number of improper edges of a coloring C'. Design a Markov chain based on
the Metropolis algorithm where in the stationary distribution the probability of
a coloring C' is proportional to AI(®) for a given constant A > 0. The neighbors
in the chain should be pairs of colorings that differ in just one vertex.

In section 10.4.1, we constructed a Markov chain on the independent sets of
a graph where in the stationary distribution, m, = A’=//B. Here I, is the
independent set corresponding to state z and B =) M=l Using a similar
approach, construct a Markov chain on the independent sets of a graph ezcluding
the empty set, where 7, = |I,|/B for a constant B. Because the chain excludes
the empty set, you should first design a neighborhood structure that ensures
the state space is connected.

The following generalization of the Metropolis algorithm is due to Hastings.
Suppose we have a Markov chain on a state space {2 given by the transition
matrix Q, and we want to construct a Markov chain on this state space with
a stationary distribution 7, = b(z)/B, where for all x € Q, b(z) > 0 and
B =3, .qb(z) is finite. Define a new Markov chain as follows: when X, = =,
generate a random variable Y with Pr(Y = y) = @,,. Notice that ¥ can be

Copyright Mitzenmacher and Upfal, 2003-2004

10.5 Exercises

307

13.

generated by simulating one step of the original Markov chain. Set X, ,; to V

with probability
min (M’ 1> ,
7T:1:Qx,y

and otherwise set X, ;1 to X,,. Argue that if this chain is aperiodic and irre-
ducible, it is also time reversible and has a stationary distribution given by the
T

Suppose that we have a program that takes as input a number x on the real
interval [0, 1] and outputs f(z) for some bounded function f taking on values
in the range [1,b]. We want to estimate

/x LO f(w)de.

Assume that we have a random number generator that can generate independent
uniform random variables X, X5, Show that

m X,
Z;f(m)

gives an (e, 0)-approximation for the integral for a suitable value of m.

© Copyright Mitzenmacher and Upfal, 2003-2004

10.6 An Exploratory Assignment on Minimum Spanning Trees 308

10.6 An Exploratory Assignment on Minimum Span-
ning Trees

Consider a complete, undirected graph, with (g) edges. FEach edge has a weight,
which is a real number chosen uniformly at random on [0, 1].

Your goal is to estimate how the expected weight of the minimum spanning
tree grows as a function of n for such graphs. This will require implementing a
minimum spanning tree algorithm, as well as procedures that generate the appropriate
random graphs. (You should check to see what sorts of random number generators
are available on your system, and determine how to seed them, say with a value from
the machine’s clock.)

Depending on the algorithm you use and your implementation, you may find
that your program uses too much memory when n is large. To reduce memory when
n is large, we suggest the following approach. In this setting, the minimum spanning
tree is extremely unlikely to use any edge of weight greater than k(n), for some
function k(n). We can estimate k(n) using repeated runs for small values of n, and
then try to throw away edges of weight larger than k(n) when n is large. If you use
this approach, be sure to explain why throwing away edges in this manner will not
lead to a situation where the program finds an spanning tree that is not actually
minimal.

Run your program for n = 16,32,64,128,256,512,1024,2048,4096,8192 and larger
values, if your program runs fast enough. Run your program for each value of n at
least five times and take the average. (Make sure you re-seed the random number
generator appropriately!) You should present a table listing the average tree size for
the values of n that your programs runs successfully. What seems to be happening
to the average size of the minimum spanning tree as n grows?

In addition, you should write 1-2 pages discussing your experiments in more
depth. This discussion should reflect what you have learned from this assignment.
Here are some possible suggestions for your discussion:

e What minimum spanning tree algorithm did you use, and why?
e What is the running time of your algorithm?

e If you chose to throw away edges, how did you determine k(n), and how effective
was this approach?

e Can you give a rough explanation for your results? (The limiting behavior as
n grows large can be proven rigorously, but it is very difficult; you need not
attempt to prove any exact result.)

e Did you have any interesting experiences with the random number generator?
Do you trust it?

© Copyright Mitzenmacher and Upfal, 2003-2004

Chapter 11

*

Coupling of Markov Chains

When we studied discrete-time Markov chains in Chapter 7, we found that ergodic
Markov chains converge to a stationary distribution. We did not determine, however,
how quickly they converge, which is important in a number of algorithmic appli-
cations, such as sampling using the Markov chain Monte Carlo technique. In this
chapter, we introduce the concept of coupling, a powerful method for bounding the
rate of convergence of Markov chains. We demonstrate the coupling method in sev-
eral applications, including card shuffling problems, random walks, and Markov chain
Monte Carlo sampling of independent sets and vertex coloring.

11.1 Variation Distance and Mixing Time

Consider the following method for shuffling n cards. At each step, a card is chosen
independently and uniformly at random and put on the top of the deck. We can think
of the shuffling process as a Markov chain, where the state is the current order of the
cards. You can check that the Markov chain is finite, irreducible, and aperiodic, and
hence it has a stationary distribution.

Let x be a state of the chain, and let N(z) be the set of states that can reach
x in one step. Here |N(z)| = n, as the top card in x could have been in n different
places in the previous step. If 7, is the probability associated with state y in the
stationary distribution, then for any state =z,

1
Ty = ﬁ Z Ty
YyEN(z)

The uniform distribution satisfies these equations, and hence the unique stationary
distribution is uniform over all possible permutations.

We know that the stationary distribution is the limiting distribution of the
Markov chain as the number of steps grows to infinity. If we could run the chain

© Copyright Mitzenmacher and Upfal, 2003-2004

11.1 Variation Distance and Mixing Time

310

“forever,” then in the limit we would obtain a state that was uniformly distributed.
In practice, we run the chain for a finite number of steps. If we want to use this
Markov chain to shuffle the deck, how many steps are necessary before we obtain a
shuffle that is close to uniformly distributed?

To quantify what we mean by close to uniform, we must introduce a distance
measure.

Definition 46. The variation distance between two distributions D and Dy on a
countable state space S is given by

1Dy~ Dal| = 5 37 IDy(a) — Daf)].

z€eS

A pictorial example of the variation distance is given in Figure 11.1.

(I N N
78 V0%

1/10 o o i i e

Figure 11.1: An example of variation distance. The areas shaded by upward diagonal
lines correspond to values x where D;(x) > Dy(x); the areas shaded by downward
diagonal lines correspond to values x where D;(z) < Dy(x). The total area shaded
by upward diagonal lines must equal the total areas shaded by downward diagonal
lines, and the variation distance equals one of these two areas.

The factor % in the definition of variation distance guarantees that the vari-
ation distance is between 0 and 1. It also allows the following useful alternative
characterization.

Lemma 49. For any AC S, let Dij(A) =Y, .4 Di(z), fori=1,2. Then,
||D1 — Dsf| = IXS§<|D1(A) — Dy(A)].

A careful examination of Figure 11.1 helps make the proof of Lemma 49 trans-
parent.

Proof. Let ST C S be the set of states such that D;(x) > Dy(x), and S~ C S be the
set of states such that Dy(z) > Dy (x).

© Copyright Mitzenmacher and Upfal, 2003-2004

11.1 Variation Distance and Mixing Time

311

Clearly

I/Illéi;(Dl(A) — Dy(A) = Di(ST) — Dy(S™),

and
max Dy(A) — D1(A) = Do(S™) — D1(S7).

ACS
But since D;(S) = Dy(S) = 1, we have

Dy(S*) + Di(S7) = Do(S*) + Dy(S7) = 1,
which implies that
Dy(S*) — Dy(ST) = Dy(S™) — Dy(S7).
Hence

rilg§(|D1(A) — Dy(A)| = [Di(ST) = Dy(ST)[= |Di(S7) = D2(S7)|.

Finally, since

[D1(ST) = Da(S¥)| +|D1(S7) = Da(S7)| =) IDi(x) — Da(x)| = 2[[Dy — Do,

z€eS

we have

max |D;(A) — Dy(A)| = || Dy — Dy,

ACS

completing the proof. O

As an application of Lemma 49, suppose that we run our shuffling Markov chain
until the variation distance between the distribution of the chain and the uniform
distribution is less than €. This is a strong notion of close to uniform, because every
permutation of the cards must have probability at most # + €. In fact the bound
on the variation distance gives an even stronger statement: for any subset A C S,
the probability that the final permutation is from the set A is at most 7(A) + €. For
example, suppose someone is trying to make the top card in the deck an ace. If the
variation distance from the distribution to the uniform distribution is less than e, we
can safely say that probability that an ace is the first card in the deck is at most €
greater than if we had a perfect shuffle.

As another example, suppose that we take a 52-card deck, and we shuffle all of
the cards, but leave the ace of spades on top. In this case, the variation distance be-
tween the resulting distribution D; and the uniform distribution D, could be bounded
by considering the set B of states where the ace of spaces is on the top of the deck:

1 ol

||Dy — Dyl r}llgqul(A) Dy(A)| > [Dy(B) — Dy(B)| =1 52 52

© Copyright Mitzenmacher and Upfal, 2003-2004

11.2 Coupling

312

The definition of variation distance coincides with with the definition of an e-
uniform sample, given in Definition 45). A sampling algorithm returns an e-uniform
sample on €2 if and only if the variation distance between its output distribution D
and the uniform distribution U satisfies

ID-Ul[<e

Bounding the variation distance between the uniform distribution and the distribution
of the state of a Markov chain after some number of steps can therefore be a useful
way of proving the existence of efficient e-uniform samplers, which we showed in
Chapter 10 can in turn lead to efficient approximate counting algorithms.

We now consider how to bound this variation distance after ¢ steps. In what
follows, we assume that the Markov chains under consideration are discrete-space and
discrete-time chains, and that they have well-defined stationary distributions. The
following definitions will be useful:

Definition 47. Let m be the stationary distribution of a Markov chain with state
space S. Let pt. represent the distribution of the state of the chain starting at state x
after t steps. We define

A =1l —ll; A() = max A, (0.

TES

That is, Ay(t) is the variation distance between the stationary distribution and pt,
and A(t) is the mazimum of these values over all states x.

We also define

7(€) =min{t : A, (t) <e€}; 7(e) = max 72 (€).
[
That is, T,(€) is the first step t at which the variation distance between p', and the
stationary distribution is less than €, and 7(€) is the mazimum of these values over
all states x.

When 7(€) is considered as a function of €, it is generally called the mizing time
of the Markov chain. A chain is called rapidly mizing if 7(€) is polynomial in log1/e
and the size of the problem. The size of the problem depends on the context; in the
shuffling example, the size would be the number of cards.

11.2 Coupling

Coupling of Markov chains is a general technique for bounding the mixing time of a
Markov chain.

© Copyright Mitzenmacher and Upfal, 2003-2004

11.2 Coupling

313

Definition 48. A coupling of a Markov chain M,; with state space S is a Markov
chain Z; = (X,Y};) on the state space S x S such that

Pr(Xy =2'|Z, = (z,y)) = Pr(My, = 2'|My = x);
Pr(Yon =92 = (z,y)) = Pr(My =y|M,=vy).

That is, a coupling consists of a two copies of the Markov chain M running
simultaneously. These two copies are not literal copies; the two chains are not nec-
essarily in the same state, nor do they necessarily make the same move. Instead,
we mean that each copy behaves exactly like the original Markov chain, in terms of
its transition probabilities. One obvious way to get a coupling is to just take two
independent runs of the Markov chain. Such a coupling, as we will see, is generally
not particularly useful for our purposes.

Instead, we are interested in couplings that bring the two copies of the chain
to the same state, and then keep them in the same state by having the the two
chains make identical moves once they are in the same state. When the two copies of
the chain reach the same state, they are said to have coupled. The following lemma
motivates why we seek couplings that couple.

Lemma 50 (Coupling Lemma). Let 7, = (X, Y;) be a coupling for a Markov
chain M on a state space S. Suppose that there exists a T so that for every x,y € S,

Pr(Xy #Yr | Xo=2,Yy=y) <e.

Then
7(e) < T.

That is, for any initial state, the variation distance between the distribution of the
state of the chain after T steps and the stationary distribution is at most €.

Proof. Consider the coupling when Yj is chosen according to the stationary distri-
bution and X, takes on any arbitrary value. For the given T and ¢, and for any
ACS

PI'(XT € A)

v

Pr((Xy =Yr)N (Yr € A))

1 Pr{(Xr £ Ye) U (Y € 4)
(1—Pr(Yr ¢ A)) — Pr(Xr # Yr)
Pr(Yr e A) —¢

m(A) —e.

(AVARAVS

Here the third line follows from the union bound. For the fourth line, we use the fact
that Pr(X7 # Y7) < € for any initial states X and Yjp; in particular, this holds when
Y} is chosen according to the stationary distribution.

It follows that

max [p; (4) — 7(4)] <,

© Copyright Mitzenmacher and Upfal, 2003-2004

11.2 Coupling

314

so from Lemma 49 the variation distance from the stationary distribution after the
chain runs for T steps is bounded above by e. O

11.2.1 Example: Shuffling Cards

To apply the Coupling Lemma effectively to the card shuffling Markov chain, we
must choose an appropriate coupling. Given two copies X; and Y; of the chain in
different states, one possibility for the coupling is to choose a position j uniformly at
random from 1 to n and simultaneously move to the top the j-th card from the top
in both chains. This is a valid coupling, because each chain individually acts as the
original shuffling Markov chain. Although this coupling is natural, it does not appear
immediately useful. Since the chains start in different states, the j-th cards from the
top in the two chains might both be different. Moving these two different cards to the
top does not necessarily seem to bring the two copies of the chain toward the same
state.

A more useful coupling is to choose a position j uniformly at random from 1 to
n, and obtain X;,; from X; by moving the j-th card to the top. Denote the value
of this card by C'. To obtain Y;;; from Y}, move the card with value C' to the top.
The coupling is again valid, because in both chains, the probability a specific card
is moved to the top at each step is 1/n. With this coupling, it is easy to see by
induction that once a card C is moved to the top, it is always in the same position
in both copies of the chain. Hence, the two copies are sure to become coupled once
every card has been moved to the top at least once.

Now our coupling problem for shuffling Markov chain looks like a coupon col-
lector’s problem; to bound the number of steps until the chains couple, we simply
bound how many times cards must be chosen uniformly at random before every card
is chosen at least once. We know that when the Markov chain runs for nlnn + cn
steps, the probability that a specific card has not been moved to the top at least once

is at most
1 nlnn+cn e C
1-— = < e—(lnn—l—c) =
n o n

and therefore by the union bound the probability that any card has not been moved
to the top at least once is at most e, Hence, after only nlnn+nln(1/e) = nln(n/e)
steps, the probability that the chains have not coupled is at most €. The Coupling
Lemma allows us to conclude that the variation distance between the uniform distri-
bution and the distribution of the state of the chain after nln(n/e) steps is bounded
by e.

© Copyright Mitzenmacher and Upfal, 2003-2004

11.2 Coupling

315

11.2.2 Example: Random Walks on the Hypercube

Recall from section 4.5.1 that an n-dimensional hypercube, or n-cube, consists of
N = 2" nodes, numbered from 0 to N — 1. Let = (xy,...,z,) be the binary
representation of x. Nodes x and y are connected by an edge if and only if and ¥
differ in exactly one bit.

We consider the following Markov chain defined on the n-cube: at each step,
choose a coordinate i uniformly at random from [1,n], and then set z; to 0 with
probability 1/2 and 1 with probability 1/2. This Markov chain is exactly the random
walk on the hypercube, except that with probability 1/2 the chain stays at the same
vertex instead of moving to a new one, which removes the potential problem of peri-
odicity. It follows easily that the stationary distribution of the chain is uniform over
the vertices of the hypercube.

We bound the mixing time 7(¢) of this Markov chain using the obvious coupling
between two copies X; and Y; of the Markov chain: at each step, we have both chains
make the same move. With this coupling, the two copies of the chain will surely agree
on the i-th coordinate once the i-th coordinate has been chosen for a move of the
Markov chain. Hence the chains will have coupled after all n coordinates have each
been chosen at least once.

The mixing time can therefore be bounded by bounding the number of steps
until each coordinate has been chosen at least once by the Markov chain. This again
reduces to the coupon collector’s problem, just as in the case of the shuffling chain.
By the same argument, after nIn(ne~") steps the probability that the chains have not
coupled is less than €, and hence by the Coupling Lemma the mixing time satisfies

7(e) < nln(ne™t).

11.2.3 Example: Independent Sets of Fixed Size

We consider a Markov chain whose states are all independent sets of size exactly k in
a graph G = (V| E)). Because we restrict ourselves to independent sets of a fixed size,
we need a different Markov chain than the chain for all independent sets developed in
section 10.4. A move is made from the independent set X; by choosing a vertex v € X,
uniformly at random and a vertex w € V uniformly at random. The move m(v, w, X;)
can be described as follows: if w ¢ X; and (X; — {v}) U {w} is an independent set,
then Xy = (X; —{v})U{w}; otherwise, X;;1 = X;. Let n be the number of vertices
in the graph, and A the maximum degree of any vertex. We show here that this
chain is rapidly mixing whenever £ < n/(3A + 3). In exercise 12 we also prove the
important related facts that for £ < n/(2A + 2) the Markov chain is irreducible and
aperiodic, that its stationary distribution is uniform over all independent sets of size
k, and that a slightly more clever coupling can be used to show that the chain is
rapidly mixing for these values of k.

© Copyright Mitzenmacher and Upfal, 2003-2004

11.2 Coupling

316

We consider a coupling on Z; = (X;,Y;). Our coupling will require an arbitrary
perfect matching M between the vertices of X; — Y; and Y; — X, at each step; for
example, we may label the vertices 1 to n and match the elements of X; —Y; in sorted
order in a one-to-one mapping with the elements of Y; — X, in sorted order. For our
coupling, we first choose a transition for the chain X; by choosing v € X; and w € V'
uniformly at random and perform the move m(v, w, X;). Clearly the copy of the chain
X, follows the original Markov chain faithfully as required by Definition 48. For the
transition for Y;, if v € Y}, we use the same pair of vertices v and w and perform the
move m(v,w,Y;). If v € Y}, then we perform the move m(M (v), w,Y;). The copy of
the chain Y; also follows the original Markov chain faithfully, as each pair of vertices
with v € ¥; and w € V is chosen with probability 1/kn.

An alternative way of establishing the coupling is as follows: we again choose
v € X; and w € V uniformly at random and perform the move m(v,w, X;) in the
chain X;. If v € Y}, we perform the move m(v, w, Y;) in the chain Y}, and otherwise, we
choose uniformly at random a vertex v’ € Y; — Xy, and perform the move m(v', w, Y;)
in the chain Y;. We see in exercise 10 that this also satisfies Definition 48.

Let d; = | X; —Y;| measure the difference between the two independent sets after
t steps. Clearly d; can change by at most 1 at each step. We show that d; is more
likely to decrease than increase, and use this fact to upper bound the probability that
d; > 0 for sufficiently large t.

Suppose that d; > 0. If d;y; = d; + 1, then a vertex v is chosen in X; NY;, and
w is chosen so that there is a transition in exactly one of the chains. Thus, w must
be either a vertex in the set or a neighbor of a vertex in the set (X; —Y;) U (Y; — X).

It follows that E—d 2d (A +1
Pr(dy, =d;+1) < ;t t(n+)

Now for d;,1 = d; — 1, it is sufficient that v € Y; and w is not a vertex of the set or a
neighbor of the set X; UY; — {v,v'}. Note that |X; UY;| = k + d;. It follows that

din—(k+di—2)(A+1
Pr(dt+1:dt_1)2in (+t)(+)

n
We therefore have for d; > 0,
E[dt+1 | dt] = dt + Pr(dt+1 = dt + 1) — Pr(dt+1 = dt — 1)
< d+ k—di2d(A+1) dyn—(k+d —2)(A+1)
k n k n
n— (3k—d,—2)(A+1)
- dt 1 —
kn
< 4 (1_ n— (3k—3)(A—|—1)> .
kn

Once d; = 0, the two chains follow the same path, thus E[d;,, | d, = 0] = 0.

© Copyright Mitzenmacher and Upfal, 2003-2004

11.3 Application: Variation Distance is Non-Increasing in Time 317

Using the conditional expectation equality, we have

(n—3k+3)(A+1)>_

E[di1] = E[E[d;1, | di]] < E[d,] (1 - kn

By induction, we find

Bld) < dy <1_n—(3k—3)(A+1)>t‘

kn

Since dy < k, and d; is a non-negative integer,

Pr(d; > 1) <E[d] < k <1 _r-@k—3)Aa+ ”)t < e 1T

kn

Our result implies that the variation distance shrinks to zero whenever k£ < n/(3A+3),

and that in this case
knlne!

2 Bk—3)(A+1)

In particular, when & and A are constants, 7(€) = O(lne!).

We can in fact improve upon the above result. In problem 12 we use a slightly

more sophisticated coupling to obtain a bound that holds for any k£ < m.

11.3 Application: Variation Distance is Non-Increasing
in Time

We know that a Markov chain eventually converges to its stationary distribution. In

fact, the variation distance between the state of a Markov chain and its stationary

distribution is non-increasing in time. To show this, we start with an interesting
lemma which gives another useful property of the variation distance.

Lemma 51. Given distributions ox and oy on a state space S, let Z = (X,Y) be a
random variable on S xS, where X 1is distributed according to ox and Y 1is distributed
according to oy. Then

Pr(X £Y) > [loy — oy]|. (11.1)

Moreover, there exists a joint distribution Z = (X,Y") where X is distributed according
to ox and Y is distributed according to oy for which equality holds.

Again, examining a specific example such as in Figure 11.1 helps to understand
the proof below.

© Copyright Mitzenmacher and Upfal, 2003-2004

11.3 Application: Variation Distance is Non-Increasing in Time

318

Proof. For each s € S, we have
Pr(X =Y =2) < min(Pr(X = x),Pr(Y = z)).

Hence
Pr(X =Y) <> min(Pr(X =z),Pr(Y = 1)),

and therefore

Pr(X #Y) > 1-Y min(Pr(X =z),Pr(Y = 1))
=) (Pr(X =) — min(Pr(X = z),Pr(Y = 1))).

z€eS

Hence we are done if we can show

llox —oy|| = Z (Pr(X =2) — min(Pr(X = z),Pr(Y =2))). (11.2)

But Pr(X = z) — min(Pr(X = z),Pr(Y = z)) = 0 when ox(z) < oy(x), and is
Pr(X =2z) — min(Pr(X = z),Pr(Y = x)) = ox(z) — oy(x)

when ox (z) > oy (z). If we let ST be the set of all states for which ox(z) > oy (z),
then the right hand side of equation (11.2) is equal to ox(S™) — oy (S™), which equals
||lox — oy || from the argument in Lemma 49. This gives the first part of the lemma.

Equality holds in equation (11.1) if we take a joint distribution where X =
Y as much as possible. Specifically, let m(z) = min(Pr(X = z),Pr(Y = z)). If
Y- m(x) =1 then X and Y have the same distribution, and we are done. Otherwise,
let Z = (X,Y) be defined by

m(z) if x=y;

Pr(X =u,Y =y) = { (ox(e)l-maos W=m) oihoruise.

The idea behind this choice of Z is to first match X and Y as much as possible, and
then force X and Y to behave independently if they do not match.

For this choice of Z,

Pr(X=Y)= Zm(x) =1—|lox —oy||

x

[t remains to show for this choice of Z, Pr(X = z) = ox(z); the same argument
will hold for for Pr(Y = y). If m(z) = ox(x) then Pr(X = z,Y = z) = m(z) and

© Copyright Mitzenmacher and Upfal, 2003-2004

11.3 Application: Variation Distance is Non-Increasing in Time

319

Pr(X =z,Y =y) =0 when 2 # y, so Pr(X = z) = ox(x). If m(z) = oy(x), then

Pr(X =z) =) Pr(X=zY=y)

(o () = m()) (o (5) — m(y)
)+ 2 T3 m(e)
 (oxls) = m() o (0) — oly)
T x.m()
| (030) =) (= 0y (o) = (S, m(e) = ()
T SRTE
) +

= Ux(a?),

completing the proof. O

Recall that A(t) = max, A,(t), where A, (¢) is the variation distance between
the stationary distribution and the distribution of the state of the Markov chain
after ¢ steps when starting at state 2. Using Lemma 51, we can prove that A(¢) is
non-increasing over time.

Theorem 71. For any Markov chain M;, A(T + 1) < A(T).

Proof. Let x be any given state, and let y be a state chosen from the stationary
distribution. Then

Au(T) = lpa = py .

Indeed, if X is distributed according to p. and Y7 is distributed according to p,
then by Lemma 51 there exists a random variable Zr = (X, Yr) with Pr(Xp #
Yr) = A,(T). From this state Zr, consider any one-step coupling for the Markov
chain that takes Zr = (Xr,Y7) to Zry1 = (X741, Yri1) in such a way that whenever
Xr = Yr, the coupling makes the same move, so that X1 = Y711, Now Xy is
distributed according to pL ! and Y7, is distributed according to p]*!, which is the
stationary distribution. Hence by Lemma 51,

Ay(T) = Pr(Xp #Y7)

> Pr(Xry # Yr)
> lpltt —py]
= A (T+1).
The result follows since the above holds for every state x. O

© Copyright Mitzenmacher and Upfal, 2003-2004

11.4 Geometric Convergence

320

11.4 Geometric Convergence

The following general result, derived from a trivial coupling, is useful for bounding
the mixing time of some Markov chains.

Theorem 72. Let P be the transition matriz for a finite, irreducible, aperiodic
Markov chain. Let m; be the smallest entry in the jth column of the matriz, and
let m=73%;mj. Then for all z andt,

Ipe = Il < (1 —m)".

Proof. If the minimum entry in column j is m;, then in one step the chain reaches
state j with probability at least m; from every state. Hence we can design a coupling
where the two copies of the chain both move to state 7 together with probability at
least m; in every step. Since this holds for all j, at each step the two chains can
be made to couple at with probability at least m. Hence the probability they have
not coupled after m steps is at most (1 —m)*, yielding the theorem via the Coupling
Lemma. 0

Theorem 72 is not immediately helpful if there is a zero entry in each column,
in which case m = 0. In exercise 6, we consider how it make it useful for any finite,
irreducible, aperiodic Markov chain. Theorem 72 shows that under very general
conditions, Markov chains converge very quickly to their stationary distributions,
with the variation distance shrinking geometrically in the number of steps.

A more general related result is the following. Suppose that we can obtain an
upper bound on 7(¢), for some constant ¢ < 1/2. For example, such a bound might
be found by a coupling. This is sufficient to bootstrap a bound for 7(¢) for any € > 0.

Theorem 73. Let P be the transition matriz for a Markov chain M, with 7(c) < T

for some ¢ < 1/2. Then for this Markov chain 7(€) < [h}?;c)]T.

Proof. Consider any two initial states Xo = x and Yy = y. By the definition of 7(c),
we have that ||p] —7|| < cand ||p] —n|| < c. It follows that ||p] —p] || < 2¢, and hence
by Lemma 51 there exists a random variable Zr,, = (X7, Y7) with X7 distributed
according to p! and Y7 distributed according to pg such that Pr(Xr # Y7) < 2c.

If we now consider the Markov chain M/ given by P which corresponds to a
chain that take 1" steps of M, for each of its steps, the Zr,, give a coupling for this
new chain. That is, given two copies of the chain M, in the paired state (z,y), we
can let the next paired state be given by the distribution Z7,,, which guarantees
that the probability the two states have not coupled in one step is at most 2¢c. The
probability that this coupling of the chain M] has not coupled over k steps is then at
most (2¢)* by induction. By the Coupling Lemma, M, is within variation distance €
of its stationary distribution after k steps if

(2¢)F < e.

© Copyright Mitzenmacher and Upfal, 2003-2004

11.5 Approximately Sampling Proper Colorings

321

It follows that after at most (lr}?;c)—l steps, M| is within variation distance € of its
stationary distribution. But M/ and M, have the same stationary distribution, and

each step of M, corresponds to 71" steps of M;. It follows that

Ine
In(2c)

T(e) < T

for the Markov chain M,;. O

11.5 Approximately Sampling Proper Colorings

A wertex coloring of a graph gives each vertex v a color from a set C', which we can
assume without loss of generality is the set {1,2,...,c}. In a proper coloring the two
endpoints of every edge are colored by two different colors. Any graph with maximum
degree A can be colored properly with A+1 colors by the following procedure: choose
an arbitrary ordering of the vertices, and color them one at a time, labeling each vertex
with a color not used by any of its neighbors.

Here we are interested in sampling almost uniformly at random a proper col-
oring of a graph. We present a Markov Chain Monte Carlo (MCMC) process that
generates such a sample, and use a coupling technique to show that its mixing time is
polynomial. More precisely, we show that after a number of transitions that is poly-
nomial in the size of the graph and Ine~! the variation distance between the state
distribution of the chain and the uniform distribution is at most €. In the terminology
of chapter 10, this gives an FPAUS for proper colorings. Applying the general reduc-
tion from approximate counting to almost uniform sampling, as in Theorem 69, we
can use the FPAUS for sampling proper colorings to obtain an FPRAS for the number
of proper colorings. The details of this reduction are left as part of exercise 15.

To begin, we present a straightforward coupling that allows us to approximately
sample colorings efficiently when there are ¢ > 4A 4 1 colors. We then show how to
improve the coupling to reduce the number of colors necessary to 2A + 1.

Our Markov chain on proper colorings is the simplest one possible. At each step,
choose a vertex v uniformly at random and a color ¢ uniformly at random. Recolor
vertex v with color £ if the new coloring is proper (v does not have a neighbor colored
), and otherwise the state of the chain is unchanged. This finite Markov chain
is aperiodic since it has non-zero probability of staying in the same state. When
¢ > A+ 2, it is also irreducible. To see how from any state X we can reach any
other state Y, consider an arbitrary ordering on the vertices. Recolor the vertices in
X to match Y in this order. If there is a conflict at any step, it must arise because
a vertex v that needs to be colored ¢ is blocked by some other vertex v’ later in the
ordering. But v’ can be recolored to some other non-conflicting color, since ¢ > A+2,
allowing the process to continue. Hence, when ¢ > A + 2, the Markov chain has a

© Copyright Mitzenmacher and Upfal, 2003-2004

11.5 Approximately Sampling Proper Colorings

322

stationary distribution. The fact that this stationary distribution is uniform over all
proper colorings can be verifying by applying Lemma 47 of the last chapter.

When there are 4A + 1 colors, we use a trivial coupling on the pair of chains
+,Y;): choose the same vertex and color on both chains at each step.
X, Y;): ch th t d col both chai t each st

Theorem 74. For any graph with n vertices and mazimum degree A, the mizing
time of the graph-coloring Markov chain is

ne
<
) < | /e
as long as ¢ > 4A + 1.

Proof. Let D, be the set of vertices that have different colors in the two chains at
time ¢, and let d; = |D;|. At each step in which d; > 0, it can either stay at the same
value, or increase or decrease by at most 1. We show that in fact d; is more likely to
decrease than increase, and use this fact to bound the probability that d; is non-zero
for sufficiently large t.

Consider any vertex v that is colored differently in the two chains. Since the
degree of v is at most A, there are at least ¢ — 2A colors that do not appear on the
neighbors of v in either of the two chains. If the vertex is recolored to one of these
¢ — 2A colors, it will have the same color in both chains. Hence

dt c—2A

Pr(dt+1 = dt -]_) Z - .
n (&

Now consider any vertex v that is colored the same in both chains. For v to be
colored differently at the next step, it must have some neighbor w that is differently
colored in the two chains; in that case, it is possible that trying to recolor v to a color
that the neighbor w has in one of the two chains will recolor the vertex v in one chain
but not the other. Every vertex colored differently in the two chains can affect at
most A neighbors in this way. Hence

Ady; 2
Pr(dt+1 = dt - 1) < -
n c
We find
E[dt+1 | dt] = dt + Pl"(dt+1 = dt +].) - PI'(dH_l = dt —].)

< dt+%g—%6_2A
n c n c

" <1_c—4A>,
ne

© Copyright Mitzenmacher and Upfal, 2003-2004

IN

which also holds if d; = 0.

11.5 Approximately Sampling Proper Colorings

323

Using the conditional expectation equality, we have

Eldy1] = BBldy, |] < Bld)] (1 - C‘an) |

By induction, we find

—4A\'
E[d,] < dy (1—0) .
nc

Since dy < n, and d; is a non-negative integer,

c—4AN" ey
Pr(dt Z 1) S E[dt] S ni{l-— S ne ¢ ne,
nc

Hence the variation distance is at most e after

t= [C_”Z X ln(n/e)-‘

steps. [

Assuming that each step of the Markov chain can be accomplished efficiently,
in time polynomial in n, Theorem 74 gives an FPAUS for proper colorings.

Theorem 74 is rather wasteful. For example, when bounding the probability that
d; decreases, we used the loose bound ¢ — 2A. The number of colors that decrease d;
could be much higher, if some of the vertices around v have the same color in both
chains. By being a bit more careful, and being slightly more clever with the coupling,
we can improve the result above to cover any ¢ > 2A + 1.

Theorem 75. Given an n vertex graph with mazimum degree /A, the mizing time of
the graph-coloring Markov chain s

0 < [o |

as long as ¢ > 2A + 1.

Proof. As before, let D; be the set of vertices that have different colors in the two
chains at time ¢, with |D;| = d;. Let A; be the set of vertices that have the same color
in the two chains at time t. For a vertex v in Ay, let d’(v) be the number of vertices
adjacent to v that are in Dy; similarly, for a vertex w in Dy, let d’(w) be the number
of vertices adjacent to w that are in A;. Note that

> d@) =3 dw)
vEAL we Dy
since the two sums both count the number of edges connecting vertices in A; to

vertices in D;. Denote this summation by m/’.

© Copyright Mitzenmacher and Upfal, 2003-2004

11.5 Approximately Sampling Proper Colorings

324

Consider the following coupling: if a vertex v € D, is chosen to be recolored, we
simply choose the same color in both chains. That is, when v is in D;, we are using
the same coupling we used before. The vertex v will have the same color whenever
the color chosen is different from any color on any of the neighbors of v in both copies
of the chain. There are ¢ — 2A + d'(v) such colors; notice that this is a tighter bound
that we used in the proof of Theorem 74. Hence the probability that d;; = d; — 1 is
at least

Ly s 2A6+ T _ L (- an)d, +).

=, cn

Assume now that the vertex to be recolored is v € A;. In this case we change the
coupling slightly. Recall that in the previous coupling, recoloring a vertex v € A(t)
results in v becoming differently colored in the two chains if the randomly chosen
color appears on a neighbor of v in one chain but not the other. For example, if v
is colored green, and a neighbor w is colored red in one chain and blue in the other,
and no other neighbor of v is colored red or blue in either chain, then attempting to
color v either red or blue will cause v to be recolored in one chain but not the other.
Hence there are two potential choices for v’s color that increase d;.

In this specific case where just one vertex w neighboring v has different colors
in the two chains, we could improve the coupling as follows: when we try to recolor
v blue in the first chain, we try to recolor it red in the second chain, and when we
try to recolor it red in the first chain, we try to recolor it blue in the second chain.
Now v either changes color in both chains, or it stays the same in both chains. By
changing the coupling, we have collapsed two potentially bad moves that increase d,
into just one bad move. See Figure 11.2 for an example.

More generally, if there are d'(v) differently colored vertices around v, we can
couple the colors so that at most d'(v) color choices cause d; to increase, instead of
up to 2d'(v) choices in the original coupling. Concretely, let S;(v) be the set of colors
on neighbors of v in the first chain but not the second, and similarly let Sy(v) be the
set, of colors on neighbors of v in the second chain but not the first. Couple pairs of
colors ¢; € Si(v) and ¢ € Sy(v) as much as possible, so that when ¢; is chosen in
one chain ¢y is chosen in the other. Then the total number of ways to color v that
increases d; is at most max(S;(v), Se(v)) < d'(v).

It follows that the probability that d;,; = d; + 1 is at most

Ly d(v) _m
n C _CTL.

vEA:L

We therefore find

© Copyright Mitzenmacher and Upfal, 2003-2004

11.5 Approximately Sampling Proper Colorings

325

Figure 11.2: In (a), the original coupling is shown. The gray vertex has the same color
in both chains, and it has a neighbor that has different colors in the two chains, one
black and one white. If an attempt is made to recolor the gray vertex black, the move
will succeed in one chain, but not the other, increasing d;. Similarly, if an attempt is
made to recolor the gray vertex white, the move will succeed in one chain, but not the
other, giving a second move that increases d;. In (b), the improved coupling is shown.
Now when the gray vertex is recolored white in X;, the gray colored is recolored black
in Y}, and vice versa, giving just one move that increases d;.

Following the same reasoning as in Theorem 74, we find

c—2A

nc

t
Pr(d; > 1) <Eld)] <n (1 — > < pe—He=28)/ne.

and the variation distance is at most e after

t= [C_”; X ln(n/e)-‘

steps. U

Hence we can use the Markov chain for proper colorings to give us an FPAUS
whenever ¢ > 2A.

© Copyright Mitzenmacher and Upfal, 2003-2004

11.6 Path Coupling

326

11.6 Path Coupling

In section 10.3, we showed that if we can obtain an FPAUS for independent sets
for graphs of degree at most A, then we can approximately count the number of
independent sets in such graphs. Here, we present a Markov chain on independent
sets, together with a coupling argument, proving that when A < 4 the chain gives
such an FPAUS. The coupling argument uses a further technique, path coupling. We
demonstrate this technique specifically for the Markov chain sampling independent
sets in a graph, although with appropriate definitions, the approach can be generalized
to other problems.

Interestingly, it is very difficult to prove that the simple Markov chain for sam-
pling independent sets given in section 10.4, which removes or attempts to add a
random vertex to the current independent set at each step, mixes quickly. Instead,
we consider here a different Markov chain that simplifies the analysis. We assume
without loss of generality that the graph consists of a single connected component. At
each step, the Markov chain chooses an edge (u, v) in the graph uniformly at random.
If X, is the independent set at time ¢, then the move proceeds as follows:

e With probability 1/3, set X,y = X; — {u,v}. (This move removes u and v, if
they are in the set.)

e With probability 1/3, let YV = (X; — {u}) U {v}. If Y is an independent set,
then X;,; =Y, otherwise X;;; = X;. (This move tries to remove u if it is in
the set and add v.)

e With probability 1/3, let Y = (X; — {v}) U{u}. If Y is an independent set,
then X;,; =Y, otherwise X;;; = X;. (This move tries to remove v if it is in
the set and add u.)

It is easy to verify that the chain has a stationary distribution that is uniform
on all independent sets. We now use path coupling argument to bound the mixing
time of the chain.

The idea of path coupling is to start with a coupling for pairs of states (X, Y})
that differ in just one vertex. This coupling is then extended to a general coupling
over all pairs of states. When it applies, path coupling is very powerful, because it is
often much easier to analyze the situation where the two states differ in a small way
(here, in just one vertex) rather than analyze all possible pairs of states.

Consider a graph G = (V, E'). We say that a vertex is bad if it is an element of
X; or Yy, but not both; otherwise the vertex is good. Let d; = |X; — Yi| + |Y; — X3, so
that d; counts the number of bad vertices. Assume that X; and Y; differ in exactly
one vertex, i.e. d; = 1. We apply a simple coupling, performing the same move in
both states, and show that under this coupling E[d;;1 | d;] < d; when d; = 1, or
equivalently E[dyy1 — d; | di] <0

© Copyright Mitzenmacher and Upfal, 2003-2004

11.6 Path Coupling

327

Without loss of generality, let X, = I and Y; = I U {z}. A change in d; can
occur only when a move involves a neighbor of x. Thus, in analyzing this coupling,
we can restrict our discussion to moves in which the chosen random edge is adjacent
to a neighbor of z. Let §, = 1 if the vertex z # x goes from good to bad between
step t and step t + 1. Similarly, let 0, = —1 if the vertex x goes from bad to good
between step ¢ and step ¢t + 1. By linearity of expectations,

%:aw | dt] ZE | dy).

As we shall see in the analysis below, in the summation we need only to consider w
that are equal to x, a neighbor of x, or a neighbor of a neighbor of z, as these are
the only vertices that can change from good to bad or bad to good in one step of the
chain. We show below how to balance the moves in such a way so that it is clear that
E[diy1 —d;y | di] <0 aslong as A < 4.

E[dt+1 - dt | dt] - E

Assume that x has k neighbors, and let y be one of these neighbors. For each
vertex y that is a neighbor of x we consider all of the moves that choose an edge
adjacent to y. The analysis below makes use of the restriction that A < 4. There are
three cases (see Figure 11.3).

1. Suppose that y has two or more neighbors in the independent set I = X;. Then
no move that involves y can increase the number of bad vertices, and hence d;
cannot be larger than d; because of any such move.

2. Suppose that y has no neighbors in I. Then d; can increase by 1 if the edge
(y,2;) (where 1 <i < 3) is chosen and an attempt is made to add y and remove
z;. These moves are successful on X; but not on Y;, and hence 6, = 1 with
probability at most 3 - No other move involving y increases d;.

3|E| IEI
The possible gain from ¢, is balanced by moves that decrease d,. Any of the
three possible moves on the edge (x,y) match the vertex z, so that §, = —1,
and no other bad vertices are created. Hence ¢, = —1 with probability at least
|E| We see that the total effect of all of these moves on), E[d,, | d] is
1 L 1 L _ 0
|E] El 7

so that the moves from this case do not increase E[d;1 — d; | dy].

3. Suppose that y has one neighbor in I. If the edge (z,y) is chosen, then two
moves give §, = —1: the move that removes both x and y, or the move that
removes y and adds x. The third move, that tries to add y and remove x, fails
in both chains because y has a neighbor in I. Hence §, = —1 with probability
at least % : |—]{3|
Let z be the neighbor of y in I. Both y and 2z can become bad in one step, if
the edge (y, z) is chosen and an attempt is made to add y and remove z. This

© Copyright Mitzenmacher and Upfal, 2003-2004

11.6 Path Coupling

328

move is successful on X; but not on Y}, causing d; to increase by 2, as J, and
0, both equal 1. No other move increases d;. Hence the probability that the
1

number of bad vertices is increased in this case is 3] and the increase is by 2.

Again, the total effect of all of these moves on), E[d,, | d] is

1 21

2. 1.2 _ =
31| 3|E|

0,
so that the moves from this case do not increase E[d;1 — d; | dy].
The case analysis shows that if we consider moves that involve a specific neighbor vy,

they balance so that every move that increases d;; — d; is matched by corresponding
moves that decrease d;;; — d;. Summing over all vertices, we can conclude that

> 6w | dt] = E[6, | d] <0.

E[dt+1 —d; | dt] =E

(D) @ 3)

a//@a Z
0@ 0—C(—0* 00

4

%

Z z

Figure 11.3: The three cases for the independent set Markov chain. Vertices colored
black are in both independent sets of the coupling. Vertex z is colored gray, to
represent that it is a member of the independent set of one chain in the coupling but
not the other.

We now argue that E[d;;; | d;] < d; for any pair of states (X, Y;), using an
appropriate coupling. If d; > 1, then create a chain of states Zy, Z1, ..., Zg, as follows:
Zy = X;, and each successive Z; is obtained from Z;_; by either removing a vertex
from X; —Y; or adding a vertex from Y; — X;. This can be done, for example, by first
removing all vertices in X; — Y; one by one and then adding vertices from Y; — X,
one by one. Our coupling now arises as follows: when a move is made in X; = Z,
the coupling for the case when d; = 1 gives a corresponding move for the state 7.
This move in Z; can similarly be coupled with a move in state Z5, and so on, until
the move in Z;,_; yields a move for Z;, = Y;. Let Z! be the state after the move is
made from state Z;, and let

AlZi o, Z3) =12 = Zi| + 12 = Zi .

© Copyright Mitzenmacher and Upfal, 2003-2004

11.7 Exercises 329

Note that Z; = X, 41 and Z) = Y;;,. Since we have shown that E[d;1, —d; | d;] <0
in the case where d; = 1, we can conclude that

E[A(Z]_,,Z)] < 1;

that is, since the two state Z;_; and Z; differ in just one vertex, the expected number
of vertices they differ in after one step is at most 1. Using the triangle inequality for
sets
A= B|<|A-C|+|C- B

we have

d¢

[X1 = Yia| + [YVir — Xp| <Z |Ziy = Zi| + | Zi = Zi_1),

i=1

or

de
dip1 = [X1 — Ve | + [V — Xia| < ZA(ZZ(—I’ Zj).
i=1

Hence,

d¢
Eldy [d] < ZA(Zz(—D
- SEsz 2
< dt.

In previous examples we were able to prove a strict inequality, namely

E[dt+l | dt] S Bdt

for some 8 < 1, and we used the strict inequality to bound the mixing time. However,
the weaker condition E[d;,; | d;] < d; that we have here is sufficient for polynomial
mixing times, as we see in exercise 7. Thus, the Markov chain gives an FPAUS for
independent sets in graphs when the maximum degree is at most four, and as we
showed in section 10.3, this can be used to obtain an FPRAS for this problem.

11.7 Exercises

1. Write a program that takes as input two positive integers n; and ns and two real
numbers py, ps with 0 < py,ps < 1, and provides as output the variation dis-
tance between the binomial random variables B(ny,p;) and B(ns, ps), rounded
to the nearest thousandth. Use your program to compute the variation dis-
tance between the following pairs of distributions: B(20,0.5) and B(20,0.49),
B(20,0.5) and B(21,0.5), and B(21,0.5) and B(21,0.49).

© Copyright Mitzenmacher and Upfal, 2003-2004

11.7 Exercises 330

2. Consider the Markov chain for shuffling cards, where at each step a card is
chosen uniformly at random and moved to the top. Suppose that instead of
running the chain for a fixed number of steps, we stop the chain at the first
time step where every card has been moved to the top at least once. Show that
at this stopping time, the state of the chain is uniformly distributed on the n!
possible permutations of the cards.

3. Consider the Markov chain for shuffling cards, where at each step a card is
chosen uniformly at random and moved to the top. Show that if the chain is
run for only (1 — €)nlnn steps for some constant € > 0, the variation distance
is 1 —o(1).

4. (a) Consider the Markov chain given by the transition matrix

/2 0 1/2 0 0
0 1/2 1/2 0 0
P=|1/4 1/4 0 1/4 1/4
0 0 1/2 1/2 0
0 0 1/2 0 1/2

Explain why Theorem 72 is not useful when applied directly to P. Then
apply Theorem 72 to the Markov chain with transition matrix P2, and
explain the implications to the convergence of the original Markov chain
to its stationary distribution.

(b) Consider the Markov chain given by the transition matrix

/2 0 1/2 0 0
0 1/2 1/2 0 0
P=|1/5 1/5 1/5 1/5 1/5
0 0 1/2 1/2 0
0 0 1/2 0 1/2

Apply Theorem 72 to P. Then apply Theorem 72 to the Markov chain with
transition matrix P2, and explain the implications to the convergence of
the original Markov chain to its stationary distribution. Which application
gives better bounds on the variation distance?

5. Suppose I repeatedly roll a standard six-sided die, obtaining a sequence of inde-
pendent random variables X, X5, ..., where X; is the outcome of the i-th roll.
Let

J
Y; =Y X;mod 10
i=1
be the sum of the first j rolls considered modulo 10. The sequence Y; forms a

Markov chain. Determine its stationary distribution, and determine a bound
on 7(€) for this chain. (Hint: one approach is to use the method of exercise 4.)

© Copyright Mitzenmacher and Upfal, 2003-2004

11.7 Exercises

331

6.

8.

10.

Theorem 72 is only useful if there exists a non-zero entry in at least one column
of the transition matrix P of the Markov chain. Argue that for any finite,
aperiodic, irreducible Markov chain, there exists a time 7" such that every entry
of PT is non-zero. Explain how this can be used in conjunction with Theorem 72.

A technique we use repeatedly in the chapter is to define a distance function d;
that represent the distance between the two states of our coupling after ¢ steps,
and then show that when d; > 0 there exists a § < 1 such that

E[d; 1 | di] < Bd;.

(a) Under this condition, give an upper bound for 7(¢) in terms of 5 and
max dy, where the maximum is over all possible pairs of initial states for
the coupling.

(b) Suppose that instead we have
Eld,,1 | dJ] < di.

Suppose we have the additional conditions that d;; is one of d;,d; — 1,
or d; + 1, and Pr(d; # di+1) > . Give an upper bound for 7(¢) in terms
of maxdy and 7. Your answer should by polynomial in maxdy and 1/7.
(Hint: think of d; in a manner similar to a random walk on the line.)

(c) Using the above, show that the coloring chain of section 11.5 has mixing
time polynomial in the number of vertices in the graph and In(1/¢) even
when the number of colors is only 2A.

(d) Using the above, show that the Markov chain for independent sets given
in section 11.6 has mixing time polynomial in the number of vertices in
the graph and In(1/e).

Consider the random walk on a non-bipartite, connected graph on n vertices,
where each vertex has the same degree d > n/2. Show that

Inet

" -y

Consider a Markov chain on n points [0, — 1] lying in order on a circle. At
each step, the chain stays at the current point with probability 1/2, and it
moves to the next point in the clockwise direction with probability 1/2. Find
the stationary distribution, and show that for any ¢ > 0, the mixing time 7(¢)

is O(n%1In(1/e)).

In section 11.2.3, we suggested the following coupling Z, = (X;,Y;): first choose
a transition for the chain X;, with v € X; and w € V. If v € Y}, we use the
same vertices v and w for the transition of the chain Y};; otherwise, we choose
uniformly at random a vertex v’ € Y; — X, and perform the transition in the
chain Y; with the pair v' and w. Show that this is a valid coupling that satisfies
Definition 48.

© Copyright Mitzenmacher and Upfal, 2003-2004

11.7 Exercises

332

11. Show that the Markov chain for sampling all independent sets of size exactly k£ <

AT in a graph with n nodes and maximum degree A, defined in section 11.2.3,

has a stationary distribution, and this distribution is uniform on all states.

n

12. We improve the coupling technique used in Section 11.2.3 to obtain a better
bound. The improvement here is similar to the technique used in proving The-
orem 75 in Section 11.5. As in the coupling in Section 11.2.3, if an attempt is
made to move v € X; — Y; to a vertex w, the same attempt is made with the
matched vertex in the other chain. If, however, an attempt is made to move
a vertex v € X; NY; in both chains, we no longer attempt to make the same
move.

(a)

(c)

Assume first that there is a set S; of exactly d;(A + 1) distinct vertices
that are members of or neighbors of vertices in X; — Y}, and similarly there
is a set Sy of exactly di(A + 1) distinct vertices that are members of or
neighbors of vertices in Y; — X;, and that S, and S; are disjoint. Suppose
that we match up the vertices in S; and S, in a one-to-one fashion. Argue
that the moves can be coupled so that when one chain attempts and fails
to move v to a vertex in Sy in one chain, it attempts and fails to move v to
the matching vertex in S in the other chain. Similarly, argue the moves
can be coupled so that when one chain attempts and succeeds in moving
v to a vertex in S; in one chain, it attempts and succeeds in moving v to
the matching vertex in Sy in the other chain. Show that in this case the
coupling gives

k—d; dt(A-i-l)

Pr(di; =d;, +1) <
r(dys1 +1) < 2 -

In the general case, where S} and S5 are not necessarily disjoint or of equal
size, show that by pairing up failing moves as much as possible, the number
of choices for w that can increase d; is max(|Si|, |S2]) < di(A +1). Argue
that we can conclude that

k- dydy(A + 1
Pr(dysy = d+1) < d n+)

holds in all cases.

Use this coupling to obtain a polynomial bound on 7(€) that holds for any

kS s

13. For a Markov chain with state space S and any non-negative integer t, let

A _ t ot
A(t) = max |lp, —p,|

Assume also that the Markov chain has a stationary distribution.

(a)

Prove A(s +t) < A(s)A(t). for any positive integers s, t.

© Copyright Mitzenmacher and Upfal, 2003-2004

11.7 Exercises

333

14.

15.

16.

(b) Prove A(s +1t) < A(s)A(t) for any positive integers s, t.
(c) Prove)
At) < A(t) < 2A(1)

for any positive integer t.

Consider the following variation on shuffling for a deck of n cards. At each
step, two specific cards are chosen uniformly at random from the deck, and
their positions are exchanged. (It is possible both choices give the same card,
in which case no change occurs.)

(a) Argue that the following is an equivalent process: at each step, a specific
card is chosen uniformly at random from the deck, and a position from
[1,n] is chosen uniformly at random. The card at position i exchanges
positions with the specific card chosen.

(b) Consider the coupling where the two choices of card and position are the
same for both copies of the chain. Let X; be the number of cards whose
positions are different in the two copies of the chain. Show that X; is
non-increasing over time.

(c) Show that
X\
PI'(Xt+1§Xt—]_|Xt>0)Z ? .

(d) Argue that the expected time until X; is 0 is O(n?), regardless of the
starting state of the two chains.

Modify the arguments of Lemmas 45 and 46 to show that if we have an FPAUS
for proper colorings for any ¢ > A + 2, then we also have an FPRAS for this
value of c.

Consider the following simple Markov chain whose states are independent sets
in a graph G = (V, E).

To compute X;,; from X;:

e Choose a vertex v uniformly at random from V', and flip a fair coin.
e If the flip is heads and v € X, then X; 1, = X; \ {v}.
e If the flip is heads and v € X, then X;,; = X;.

e If the flip is tails, v € X;, and adding v to X still gives an independent
set, then Xi+1 = Xz U {U}

e If the flip is tails and v € X;,then X;,; = Xj.

(a) Show that the stationary distribution of this chain is uniform over all
independent sets.

© Copyright Mitzenmacher and Upfal, 2003-2004

11.7 Exercises 334

(b) We consider this Markov chain specifically on cycles and line graphs. For
a line graph with n vertices, the vertices are labeled 1 to n, and there is
an edge from 1 to 2, 2 to 3, etc., up to n — 1 to n. A cycle graph on n
vertices is the same with the addition of an edge from n to 1.

Devise a coupling (X;,Y;) for this Markov chain such that on line graphs
and cycle graphs, if d; = |X; — Y| + |Y; — X is the number of vertices
the two independent sets disagree on, then at each step the coupling is at
least as likely to reduce d; as to increase d;.

(c) Using this coupling, argue that you can use this chain to obtain an FPAUS
for independent sets on a cycle graph or line graph. You may want to use
exercise 7.

(d) For the special cases of line graphs and cycle graphs, we can derive exact
formulas for the number of independent sets. Derive exact formulas for
the cases and prove your formulas are correct. (Hint: you may want to
express your results in terms of Fibonacci numbers.)

17. For integers a and b, an a by b grid is a graph whose vertices are all ordered pairs
of integers (z,y) with 0 < x < a and 0 < y < b. The edges of the graph connect
all pairs of distinct vertices (z,y) and (2',y') such that |z — 2’| + |y — ¢'| = 1.
That is, every vertex is connected to the neighbors up, down, left, and right
from it, with vertices on the boundary being connected to only the relevant
points. Consider the following problems on the graph given by the 10 by 10
grid:

a) Implement an o generate an e-uniform proper 10-coloring of the
Impl t an FPAUS to g t ify 10-coloring of th
graph, where € is given as an input. Discuss how many steps your Markov
chain runs for, what your starting state is, and any other relevant details.

(b) Using your FPAUS as a subroutine, implement an FPRAS to generate
an (e, 0)-approximation to the number of proper 10-colorings of the graph.
Test your code by running it to obtain a (0.1, 0.001)-approximation. (Note:
this may take a significant amount of time to run.) Discuss the ordering
you choose on the edges, how many samples are required at each step,
how many steps of the Markov chain you perform in total throughout the
process, and any other relevant details.

18. In section 11.2.3, we considered the following Markov chain on independent
sets: a move is made from the independent set X; by choosing a vertex v € X,
uniformly at random and picking a vertex w uniformly at random from the
graph. If X; — {v} + {w} is an independent set, then X, = X; — {v} + {w};
otherwise, X;,; = X;. We have shown that the chain converges quickly to its
stationary distribution by bounding 7(€) by an expression that is polynomial in

n and In(1/€) whenever k < starn- Use the idea of path coupling to simplify

the proof and obtain the same bounds.

© Copyright Mitzenmacher and Upfal, 2003-2004

11.7 Exercises 335

19. In section 11.5, we considered a simple Markov chain for coloring. Suppose that
we can apply the path coupling technique. (You do not need to show this.) In
this case, we can just consider the case where d, = 1. Give a simpler argument
that when d;, = 1 and ¢ > 2A, E[dy;; | di] < pd; for some < 1. Also show
that when d; = 1 and ¢ = 2A, E[d;y, | di] < d,.

© Copyright Mitzenmacher and Upfal, 2003-2004

Chapter 12

Martingales

Martingales are sequences of random variables satisfying certain conditions that arise
in numerous applications, such as random walks and gambling problems. We focus
here on three useful analysis tools related to martingales: the martingale stopping
theorem, Wald’s inequality, and the Azuma-Hoeffding inequality. The martingale
stopping theorem and Wald’s equation are important tools for computing the ex-
pectation of compound stochastic processes. The Azuma-Hoeffding inequality is a
powerful technique for deriving Chernoff-like tail bounds on the values of functions
of dependent random variables. We conclude this chapter with applications of the
Azuma-Hoeffding inequality to problems in pattern matchings, balls and bins, and
random graphs.

12.1 Martingales

Definition 49. A sequence of random variables Zy, Z1, . . . s a martingale with respect
to the sequence Xy, X1, ... if for all n > 0 the following conditions hold:

e Z, is a function of Xy, Xy,...X,;
 E[|Z,]] < oo;
[] E[Zn+1 | X(), ce ;Xn] = Zn
A sequence of random variables Zy, Z1, ... is called martingale when it is a

martingale with respect to itself. That is, E[|Z,]] < oo, and E[Zy1 | Zy,..., Z,] =
Ln.

A martingale can have finite or countably infinite number of elements. The
indexing of the martingale sequence does not need to start at 0. In fact, in many

applications it is more convenient to start it at 1. When we say that Zy, Z;,... is

© Copyright Mitzenmacher and Upfal, 2003-2004

12.1 Martingales

337

a martingale with respect to X, Xs,..., then we may consider X, to be a constant
that is omitted.

For example, consider a gambler who plays a sequence of fair games. Let X; be
the amount the gambler wins on the i-th game (X; is negative if the gambler loses),
and let Z; be the gambler’s total winnings at the end of the i-th game. Since each
game is fair E[X;] = 0, and

ElZin | X1,Xe,...,Xi]| =Z,+ E[X, 41| = Z,.

Thus, Zy,Z,,...,7Z, is a martingale with respect to the sequence X, Xo,..., X,.
Interestingly, the sequence is a martingale regardless of the amount bet on each game,
even if these amounts are dependent upon previous results.

A Doob martingale refers to a martingale constructed using the following general
approach. Let Xy, Xi,..., X, be a sequence of random variables, and let Y be a
random variable with E[|Y|] < co. Then

ZZ:E[Y|X0,,X1], 7::0,]_,...,’/1,

gives a martingale with respect to Xg, X1,..., X, since
E[Zi-i—l | X(), e 7Xz] - E[E[Y | X(), e ;Xi—i—l] | X(), e 7Xz]
= E[Y | X,,...X]]
= 7,
where we have used the fact that E[Y | Xy, ..., X;1] is itself a random variable and

that Definition 11 for conditional expectation yields

E[V | W|=E[E[V |U W] | W].

In most applications we start the Doob martingale with Zy = E[Y], which
corresponds to Xy being a trivial random variable independent of Y. To understand
the concept of the Doob martingale, assume that we want to predict the value of the
random variable Y, and that the value of Y is a function of the values of the random
variables Xi,..., X,,. The sequence Zy, 71, ..., Z, represents a sequence of refined
estimates of the value of Y, gradually using more information on the values of the
random variables X1, X5,...X,. The first element, Z;, is just the expectation of Y.
Z; is the expected value of Y when the values of Xy,...X; are known, and if Y is
fully determined by Xi,..., X, then Z, =Y.

Let us consider two examples of Doob martingales that arise in evaluating the
properties of random graphs. Let G be a random graph from G, ,. Label the m = (g)
possible edge slots in some arbitrary order, and let

1 if there is an edge in the j-th edge slot,
Xj - .
0 otherwise.

© Copyright Mitzenmacher and Upfal, 2003-2004

12.2 Stopping Times 338

Consider any finite-valued function F defined over graphs; for example, let F'(G)
be the size of the largest independent set in G. Now let Zy = E[F(G)], and

ZZ:E[F(G)|X1,,XZ], Z:]_,,m

The sequence Zy, Zy,...,Z, is a Doob martingale that represents the condi-
tional expectations of F(G) as we reveal whether each edge is in the graph, one
edge at a time. This revealing process gives a martingale, commonly called the edge
exposure martingale.

Similarly, instead of revealing edges one at a time, we could reveal the set of
edges connected to a given vertex, one vertex at a time. Fix an arbitrary numbering
of the vertices 1 through n, and let GG; be the subgraph of G induced by the first ¢
vertices. Then again setting Z, = E[F(G)] and

ZZ:E[F(G)|G1,,GZ], izl,...,n

gives a Doob martingale, commonly called the vertex exposure martingale.

12.2 Stopping Times

Returning to the gambler who participates in a sequence of fair gambling rounds, we
saw in the previous section that Z;, Z,, ... is a martingale, where Z; is the gambler’s
winnings after the i-th game. If the player decides before starting to play to quit
after exactly k games, what are the gambler’s expected winnings?

Lemma 52. If the sequence Zy, Z1, . . ., Z, is a martingale with respect to Xo, X1, ..., X,,
then for all 0 <1 < n,
E[Z,] = E[Z].

Proof. Since Z,, 7y, ... is a martingale with respect to Xy, Xi,..., X,,
Z; = E[Zi+1 | X07 SR Xz]

Taking the expectation of both sides and using the definition of conditional expecta-
tion, we have

E[Z] =E[E[Z1, | Xo,..., Xi]] = E[Z;14].
Repeating this argument, we obtain

© Copyright Mitzenmacher and Upfal, 2003-2004

12.2 Stopping Times

339

Thus, if the number of games played is initially fixed, the expected gain from
the game is still zero. Suppose now that the number of games played is not fixed.
For example, the gambler could choose to play a random number of games. An even
more complex situation is that the gambler’s decision to quit playing could be based
on the outcome of the results of the games already played. For example, the gambler
could decide to keep playing until his winnings total at least one hundred dollars.
The following notion proves quite powerful.

Definition 50. A non-negative, integer-valued random variable T is a stopping time
for the sequence {Z,,n > 0}, if the event T = n depends only on the value of the
random variables Zy, Z1, . .., Zy,.

A stopping time corresponds to a strategy for determining when to stop a se-
quence based only on the outcomes seen so far. For example, the first time the
gambler wins five games in a row is a stopping time, since this can be determined by
looking at the outcomes of the games played. Similarly, the first time the gambler
has won at least one hundred dollars is also a stopping time. Letting 7" be the last
time the gambler wins five games in a row, however, would not be a stopping time,
since determining if 7' = n cannot be done without Z,, 1, Z, 9,

To fully utilize the martingale property we need to characterize conditions on
the stopping time 7" that maintain the property E[Z7] = E[Z;] = 0. It would seem
that if the game is fair that E[Z7] = 0 should always hold. But consider the case
where the gambler’s stopping time is the first 7" such that Zr > B, where B is a
fixed constant greater than 0. In this case, the expected gain when the gambler
quits playing is greater than (0. The subtle problem with this stopping time is that it
might not be finite, so the gambler may never finish playing. The martingale stopping
theorem shows that under certain conditions, in particular when the stopping time
is bounded or has bounded expectation, the expected value of the martingale at the
stopping time is equal to E[Z;]. We state a version of the martingale stopping theorem
(sometimes called the optional stopping theorem) without proof:

Theorem 76. Martingale Stopping Theorem If 7y, Z;, ... is a martingale with
respect to X1, Xo, ..., and T is a stopping time for X1, Xs,..., then

E[ZT] = E[Zo]

whenever one of the following holds:

e the Z; are bounded, so that is there is a constant ¢ such that for all i, |Z;| < ¢;
e T is bounded;

e E[T] < 00, and there is a constant ¢ such that B[|Z;s1 — Z;| | X41,...,Xi] <ec.

We use the martingale stopping theorem to derive a simple solution to the
gambler’s ruin problem which we introduced in Section 7.2.1. Consider a sequence

© Copyright Mitzenmacher and Upfal, 2003-2004

12.2 Stopping Times

340

of independent, fair gambling games. In each round, a player wins a dollar with
probability 1/2 or loses a dollar with probability 1/2. Let Zy = 0, X; be the amount
won on the i-th game, and Z; be the total won the player after ¢ games, where X;
and Z; are negative if the player loses money. Assume that the player quits the game
when she either loses ¢; or wins /5 dollars. What is the probability that the player
wins ¢y dollars before losing ¢, dollars?

Let the time 7" be the first time the player has either won /5 or lost ¢;. Then T
is a stopping time for Xy, Xs,.... The sequence Zy, Z1,... is a martingale, and since
the values of the Z;’s are clearly bounded, we can apply the martingale stopping

theorem. We therefore have
E[Zr] = 0.

Let ¢ be the probability that the gambler quits playing after winning /5 dollars. Then
E[Zr] =lg—6L(1-q) = 0,
giving
b
b+ 0y’

matching the result found in Section 7.2.1.

q _=

12.2.1 Application: A Ballot Theorem

The following ballot theorem is another application of the stopping time theorem.

Suppose that two candidates run for an election. Candidate A obtains a votes, and

candidate B obtains b < a votes. The votes are counted in a random order, chosen

uniformly at random from all permutations on the a + b votes. We show that the
a—b

probability that candidate A is always ahead in the count is $—. While this can be

determined combinatorially, we provide an elegant martingale argument.
Let n = a + b be the total number of votes and S, be the number of votes

candidate A is leading by after k votes are counted (S can be negative). Then
Sp=a—0b. For 0 <k <n—1, define

Snfk
X, = .
Pk
We first show that the sequence Xy, X, ..., X, ; forms a martingale. Note that the
sequence Xy, Xq,..., X, relates to the counting process in a backward order; Xj is a

function of S,,, X,,_; is a function of S7, and so on. Consider
E[X; | Xo, ..., Xk_1]-

Conditioning on X, ..., X} ; is equivalent to conditioning on S,,, S, _1,...,5, ki1,
which is in turn equivalent to conditioning on the values of the count when counting
the last & — 1 votes.

© Copyright Mitzenmacher and Upfal, 2003-2004

12.2 Stopping Times

341

Conditioning on S,, 1, the number of votes that candidate A had after count-
ing the first n — k + 1 votes is

n—k+1+sn_k+1
9)

and the number of votes that candidate B had is

’I’L—k'+].—sn_k+1
5 :
The (n—k+1)-th vote in the count is a random vote from among these first n —k +1

votes. Also, S, is equal to S, _x11 + 1 if the (n — k + 1)-st vote was for candidate
B and equal to S, .1 — 1 if the vote was for candidate A. Thus, for & > 1,

’I’L—k'+].—Sn_k+1 ’I’L—k+1+sn_k+1

E[S,—k | Sne = (Sh- 1 Sn—ks1 — 1
[Snt | Sn-pa (Sn—rer1 +1) 2(n — k + 1) F (S = 1) 2(n — k +1)
n—k
= Sy p1———.
ok +1
Thus,
Snfk
E[Xk | XO;---an—l] = E | Sna---asn—k—l—l
n—=k
_ Sn—k-i—l
n—k+1
- kala
showing that the sequence Xy, Xy,..., X, | is a martingale.

Define T to be the minimum £ such that X = 0 if such a k exists, and n — 1
otherwise. Then 7T is a bounded stopping time, satisfying the requirements of the
martingale stopping theorem, and

E[S,] _ a—>b

B[X7] = BIX,] = =2 = S

We now consider two cases.

Case 1: Candidate A leads throughout the count. In this case all S,,_; and therefore all

X}, are positive for 0 < k<n—1,T =n—1, and
XT:Xn—l :Sl ==]_

That S; = 1 follows because candidate A must receive the first vote in the count
to be ahead throughout the count.

© Copyright Mitzenmacher and Upfal, 2003-2004

12.3 Wald’s Equation 342

Case 2: Candidate A does not lead throughout the count. In that case we claim that
for some k < n — 1, Xy = 0. Candidate A clearly has more votes at the end.
If candidate B ever leads, then there must be some intermediate point £ where
Sk, and therefore Xy, are 0. In this case, T'=k <n —1 and X = 0.

Now ;
E[X7] = Z—T—b =1-Pr(Case 1) 4+ 0 - Pr(Case 2),
and thus the probability of Case 1, in which candidate A leads throughout the count,
is a=b
a+b

12.3 Wald’s Equation

An important corollary of the martingale stopping theorem is known as Wald’s equa-
tion. Wald’s equation deals with the expectation of the sum of random variables,
in the case where the number of random variables being summed is itself a random
variable.

Theorem 77. Wald’s equation Let X1, X», ... be non-negative, independent, iden-
tically distributed random variables with distribution X. Let T be a stopping time for
this sequence. If T and X have bounded expectation, then

T

>

=1

E = E[T]- E[X].

In fact Wald’s equation holds more generally; there are different proofs of the
equality that do not require the random variables X, X5, ... to be non-negative.

Proof. For ¢ > 1, let

i

Zi=) (X, — E[X]).

j=1
The sequence Zy, Zs, ... is a martingale with respect to X, X, ..., and E[Z;] = 0.
Now, E[T] < oo and

E[|Z;1 — Zi| | X4,...,X;] = E[|X;11 — E[X]|]] < 2E[X].
Hence we can apply the martingale stopping theorem to compute

© Copyright Mitzenmacher and Upfal, 2003-2004

12.3 Wald’s Equation

343

We now find
T
E[Z;] = E|) (X; -E[X])
Li=1
T
= E|Y X;-TE[X]
Lj=1
T
= E|>_X;| —E[T]-E[X]
Lj=1
= 0,
which gives the result. O

As a simple example, consider a gambling game in which a player first rolls one
standard die. If the outcome of the roll is X then she rolls X new standard dice and
her gain Z is the sum of the outcomes of the X dice. What is the expected gain of
this game?

For 1 < < X, let Y; be the outcome of the i-th die in the second round. Then

X
> Vi
=1

E[Z]=E

Applying Wald’s equality we obtain

B[Z] = B[X] - E[Y]] = (;) =

Wald’s equation can arise in the analysis of Las Vegas algorithms, which always
give the right answer but have variable running times, as we saw for the randomized
algorithm for the median described in Section 3.4. Often, in a Las Vegas algorithm, we
repeatedly perform some randomized subroutine that may or may not return the right
answer. We then use some deterministic checking subroutine to determine whether
or not the answer is correct; if it is correct, then the Las Vegas algorithm terminates
with the correct answer, and otherwise, the randomized subroutine is run again. If
N is the number of trials until a correct answer is found, and X, is the running time
for the two subroutines on the i-th trial, then as long as the X; are independent and
identically distributed with distribution X, Wald’s equation gives that the expected
running time for the algorithm is

N

>

=1

E = E[N]- E[X].

An example of this approach is given in exercise 12.

© Copyright Mitzenmacher and Upfal, 2003-2004

12.4 Tail Inequalities for Martingales

344

As another example, consider a set of n servers communicating through a shared
channel. Time is divided into discrete slots. At each time slot, any server that needs
to send a packet can transmit it through the channel. If exactly one packet is sent
at that time, the transmission is successfully completed. If more than one packet
is sent, then none are successful (and the senders detect the failure). Packets are
stored in the server’s buffer until they are successfully transmitted. Servers follow
the following simple protocol: at each time slot, if the server’s buffer is not empty,
then with probability % it attempts to send the first packet in its buffer. Assume that
servers have an infinite sequence of packets in their buffers. What is the expected
number of time slots until each server successfully sends at least one packet?

Let N be the number of packets sent until each server successfully sends at least
one packet. Let t; be the time slot in which the i-th packet is successfully transmitted,
starting from time ¢ty = 0, and let ; = ¢; — ¢;,_;. Then T', the number of time slots
until each server successfully sends at least one packet, is given by

T:ZTZ'.

=1

The probability that a packet is successfully sent in a given time slot is given

OO

The r;’s each have a geometric distribution with parameter p, so E[r;| = 5

by

=~ e.

Given that a packet was successfully sent at a given time slot, the sender of
that packet is uniformly distributed among the n servers, independent of previous
steps. Using our analysis of the expectation of the coupon collector’s problem from
Chapter 2, we deduce that E[N] = nH(n) = nlnn + O(n). We now use the Wald’s
equality to compute

E[T] = E

>
= E[N]- El[ri]
nH(n)

p Y

which is about en Inn.

12.4 Tail Inequalities for Martingales

Perhaps the most useful property of martingales for the analysis of algorithms is that
Chernoft-like tail inequalities can apply, even when the underlying random variables

© Copyright Mitzenmacher and Upfal, 2003-2004

12.4 Tail Inequalities for Martingales 345

are not independent. The main results in this area are Azuma’s inequality and Ho-
effding’s inequality. They are quite similar, so they are often together referred to as
the Azuma-Hoeffding inequality.

Theorem 78. Azuma-Hoeffding inequality Let X,..., X, be a martingale such
that
| Xk — Xp—i| < .

Then for all t > 0 and any X\ > 0,

Pr(|X, — Xo| > \) < 2 /X h),

Proof. The proof follows the same format as that for Chernoff bounds (section 4.2).
We first derive an upper bound for E[e®Xt=X0)]. To that end we define

)/i:Xi_Xi—la 1=]_,...,t.
Note that |Y;| < ¢;, and since X, X1, ... is a martingale,

E[Y; [Xo, X1, ..., Xin] = E[X;—Xi1 [Xo, Xi, .., Xin] = B[XG | Xo, X, ., X=X = 0.

Now consider
E[ani

X07X17 s 7Xi71]-
Writing

1—3/1/61 —|—Czl +2Y;/Cl,

we have that

Yi=—c¢

and using the convexity of e®¥i

ani < 1 - Yvi/cie—aci + 1+ Y;/Cieaci

- 2 2
eaci _|_ efocci Y'Z

_ v ac; _ —QcC;
S — + 2, (e e).

Since E[Y; | Xo, X1, ..., X;_1] = 0, we have

ac; —Qc; Y:
E[e™ | X0, X1, Xit] € BT o (0 o) X, Xy, X
2 2¢;
eaci+e—a0i

2
S e(aci)z/Q'

Here we have used the Taylor series expansion of e” to find

ac; —ac;
S N Y
5 <

© Copyright Mitzenmacher and Upfal, 2003-2004

12.4 Tail Inequalities for Martingales 346

in a manner similar to that of Theorem 22. It follows that

-1
E[eo‘(Xt’XO)] = E Heo‘Yi
Li=1

-
= E|[]e™ | Ble™[Xo, X1, ..., X, o]
Li=1 d

H. :
< E H i | glact)?/2
Li=1 J
< ea2 EE:I Ci2/2‘
Hence,

Pr(X, — Xo>\) = Pr(edXt=X0) > o)
E[ea(Xt*Xo)]

e
ea2 Yioici/2-an

)\2

e_ 2t e} e—)\2/(2 Sh_ied)

b b

IN N

IN

where the last inequality comes from choosing o = A/ 3¢, ¢;. A similar argument
gives the bound for Pr(X;, — Xy < —\), as can be seen by for example replacing X;
everywhere by —X;, giving the theorem. O

The following corollary is often easier to apply.

Corollary 12. Let Xy, X1,... be a martingale such that for all k > 1,
| Xy — Xpa| <
Then for allt > 1 and A > 0,

Pr(| X, — Xo| > Aevt) < 27V /2.

We now present a more general form of the Azuma-Hoeffding inequality which
yields slightly tighter bounds in our applications.

Theorem 79. Azuma-Hoeffding inequality Let X, ..., X, be a martingale such
that
By < X — Xi1 < By + dy

for some random variables By that may be functions of Xo, X1,..., Xr_1, and some
constants di. Then for all t > 0 and any A > 0,

A2

Pr(|X; — Xo| >) < 2e *Timi &,

© Copyright Mitzenmacher and Upfal, 2003-2004

12.5 Applications of the Azuma-Hoeffding Inequality

347

This version of the inequality generalizes the requirement of a bound on | X} —
Xk_1|- The key is the gap dj between the lower and upper bounds for X — Xj_;.
Notice that in the case where we have the bound |X; — Xj_1| < ¢, this result is
equivalent to Theorem 78, using By = —c; with a gap dp = 2¢;. The proof is similar
to that of Theorem 78 above, and is left as exercise 6.

12.5 Applications of the Azuma-Hoeffding Inequal-
ity

12.5.1 General Formalization

Before giving several applications of the Azuma-Hoeffding inequality, we describe a
useful general technique. Let us say that a function

f(X) :f(X17X27"'7Xn)

satisfies the Lipschitz condition with bound ¢ if for any 4, and any set of values
T1,...,T, and y;,

|f(.'L'1,l‘2, ey Lj 1y Ljy L1y - - - ,l‘n) — f(fL'l,fL'Q, ey Li— 15 Yiy Tt 15 - - - ,l‘n)| S C.

That is, changing the value of any single coordinate can change the function value by
at most c.

Let
Zy = E[f(X1, Xy, ..., X,)]
and
Z =E[f(X1, X, ..., X)) | X1, Xo,..., Xil.
The sequence Zy, Z1, ... is a Doob martingale, and if the X}’s are independent ran-

dom variables, we claim that there exist random variables By, dependent only on
2oy oy L1, with By < Zy — Zx 1 < By 4+ c. The gap between the lower and up-
per bounds on 7, — Z;_; is then at most ¢, and the Azuma-Hoeffding inequality of
Theorem 79 therefore applies.

We prove this for the case of discrete random variables (although the result
holds more generally). To ease the notation, let us write S as a shorthand for
Xy, Xo, ..., X, so that we write

E[f(X) | Sk]

for B
E[f(X) | X17X27' - 7Xk]

© Copyright Mitzenmacher and Upfal, 2003-2004

12.5 Applications of the Azuma-Hoeffding Inequality 348

Also, let us abuse notation and define
f(X,l') = f(X17 - '7Xk—17x7Xk+17' .- 7Xn)
That is, f(X,z) is f(X,r) with the value x in the k-th coordinate. We will also write

f(Za 1‘) = f(zla s Zk—1,T5 Bt 1, - - -azn)-

Then
Zy — Zr—y = E[f(X) | Si] - E[f(X) | Skl
Hence Z, — Z;_1 is bounded above by

sng[f(X) | Sk-1, Xi = 2] = B[f(X) | S

and bounded below by

ing[f(X) | Sk—1, X = y] = E[f(X) | Sei].

(If we are dealing with random variables that can take on only a finite number of
values, we could use max and min in place of sup and inf.) Therefore, if we let

By = inle[f(X) | Sk—1, Xk = y] — E[f(X) | Sg—1],

then if we can bound

sup E[f(X) | Sk_1, Xi = 7] —il;fE[f(X) | Sk—1, Xk, = y] <,

then we will have appropriately bounded the gap Z, — Zy_;. Now
sup B[f(X) | Sy1, Xi = 2] — ifyle[f(X) | Sk—1, Xi = y]
= sup (E[f(X) | Sp-1, Xi = 2] = E[f(X) | Sk-1, Xi = y])

T,y

= supE[f(X,2) - f(X,y) | Sp1]-

m’y

Because the X; are independent, the probability of any specific set of values for Xy,
through X,, does not depend on the values of Xi,..., X;. Hence, for any values
Z1,...,2_1 we have that

sup E[f(X,z) — f(X,y) | X1 =21,..., X1 = 2 4]

I7y
is equal to
sup > Pr((Xpn = z00) NN (X = 2)) - (f(2,2) = £(2,9))-
Ty Zl+415-9%n

© Copyright Mitzenmacher and Upfal, 2003-2004

12.5 Applications of the Azuma-Hoeffding Inequality

349

But
f(z.@) = f(z,y) <c,
and hence so is
E[f(X,2) = f(X,y) | Sk-il,
giving the required bound.

The requirement that the X;’s be independent random variables is essential to
applying this general framework. Finding a counterexample when the X;’s are not
independent is left as exercise 20.

12.5.2 Application: Pattern Matching

In many scenarios, including examining DNA structure, a goal is to find interesting
patterns in a sequence of characters. In this context, the phrase “interesting patterns”
often refers to strings that occur more often that one would expect if the characters
were simply generated randomly. This notion of interesting is reasonable if the number
of occurrences of a string is concentrated around its expectation in the random model.
We show concentration using the Azuma-Hoeffding inequality for a simple random
model.

Let X = (Xi,...,X,) be a sequence of characters chosen independently and
uniformly at random from an alphabet X, where s = |3|. Let B = (by,...,b;) be a
fixed string of k characters from . Let F' be the number of occurrences of the fixed
string B in the random string X. Clearly

BF| = (n—k+1) <1>k

S

We use a Doob martingale and the Azuma-Hoeffding inequality to show that if
k is relatively small with respect to n, then the number of occurrences of B in X is
highly concentrated around its mean.

Let
Zy = E[F],

and for 1 <i <n, let
Z; =E[F | Xy,...,X]].

The sequence Zy, ..., Z, is a Doob martingale, and

Z, = F.

Since each character in the string X can participate in no more than k possible
matches, for any 0 < ¢ < n,
| Ziv1 — Zi| < k.

© Copyright Mitzenmacher and Upfal, 2003-2004

12.5 Applications of the Azuma-Hoeffding Inequality 350

In other words, the value of X;,; can only affect the value of F' by at most £ in either
direction, since X;,; participates in no more than £k possible matches. Hence the
difference
E[F | Xy,....,X;n] —E[F | Xy,....X}]| = |Zi1 — Zi
must be at most k. Applying Theorem 78 we have
Pr(|F — E[F]| > €) < 2e /%",

or from Corollary 12

Pr(|F — E[F]| > Mkv/n) < 2¢ /2.

We can obtain slightly better bounds by applying our general framework for
Theorem 79. Letting F' = (X, Xy, ..., X,,), our argument above says that changing
the value of any single X; can change the value of F' by at most k, and hence the
function satisfies the Lipschitz condition with bound k. Theorem 79 then applies,
giving

Pr(|F — E[F]| > ¢) < 2 2°/",

improving the value in the exponent by a factor of 4.

12.5.3 Application: Balls and Bins

Suppose that we are throwing m balls independently and uniformly at random into n
bins. Let X; be the random variable representing the bin that the ith ball falls into.

Let F' be the number of empty bins after the m balls are thrown. Then the

sequence
Z;=E[F | X1,...,X]]
is a Doob martingale. We claim that F = f(X;, Xy, ..., X,) satisfies the Lipschitz
condition with bound 1. Consider how F' changes from the placement of the i-th ball.
If the ¢-th ball lands in a bin on its own, then changing X; so that the ¢-th lands in a
bin with some other ball will increase F' by 1. Similarly, if the -th ball lands in a bin
with other balls, then changing X; so that the i-th ball lands in an otherwise empty
bin decreases F' by 1. In all other cases changing X; leaves F' the same. We therefore
obtain
Pr(|F — E[F]| > ¢) < 2¢2/m

by the Azuma-Hoeffding inequality of Theorem 79. We could also apply Theorem 78
with |Z;11 — Z;] <1, but this gives a slightly weaker result. Here

qu:n<1—%>m,

but we could obtain the concentration result without knowing E[F].

This result can be improved by taking more care in bounding the gap between
the bounds on Z;;; — Z;. This is considered in exercise 19.

© Copyright Mitzenmacher and Upfal, 2003-2004

12.6 Exercises

351

12.5.4 Application: Chromatic Number

Given a random graph G in G,, ,, the chromatic number x(G) is the minimum number
of colors needed in order to color all vertices of the graph so that no adjacent vertices
have the same color. We use the vertex exposure martingale defined in section 12.1 to
obtain a concentration result for x(G). Let G; be the random subgraph of G induced
by the set of vertices 1,...,1, let Zy = E[x(G)], and let

Z; = E[x(G) | Gi,...,Gi].

Since a vertex uses no more than one new color, again we have that the gap between Z;
and Z;_; is at most 1, and we can apply general framework for the Azuma-Hoeffding
inequality of Theorem 79. We conclude

Pr([x(G) — EX(G)]] > A\n) < 2¢7,

This result holds even without knowing E[x(G)].

12.6 Exercises

1. Show that if Zy, Zy,...Z, is a martingale with respect to Xy, Xy,...X,, then
it is a martingale with respect to itself.

2. Let Xy = 0 and for j > 0 let X, be chosen uniformly over the real interval
[X;,1]. Show that for £ > 0 the sequence

Ve = 28(1 — X3)
is a martingale.

3. Let X1, X5, ... beindependent and identically distributed random variables with
expectation 0 and variance 02 < co. Let

n 2
Ly = (;Xl) — no?.

Show that 7y, Z5,... is a martingale.

4. Consider the gambler’s ruin problem, where a player plays a sequence of in-
dependent games, either winning one dollar with probability 1/2 or losing one
dollar with probability 1/2. The player continues until either losing ¢; dollars
ore winning /5 dollars. Let X, be 1 if the player wins the n-th game and —1
otherwise. Let Z, = (30, X;)° — n.

(a) Show that Z;, Z,, ... is a martingale.

© Copyright Mitzenmacher and Upfal, 2003-2004

12.6 Exercises 352

(b) Let T be the stopping time when the player finishes playing. Determine
E[Z7].

(c) Calculate E[T]. (Hint: you can use what you already know about the
probability that the player wins.)

5. Consider the gambler’s ruin problem, where a player plays a sequence of inde-
pendent games, either winning one dollar with probability p < 1/2 or losing one
dollar with probability 1 — p. The player continues until either losing ¢; dollars
ore winning /5 dollars. Let X, be 1 if the player wins the n-th game and —1
otherwise, and let Z,, be the player’s total winnings after n games.

Zn
A, = <1;p>
p

(b) Determine the probability that the player wins ¢; dollars before losing ¢;
dollars.

(c) Show that

(a) Show that

is martingale with mean 1.

B,=27Z,—2p—1)n
is a martingale with mean 0.

(d) Let T be the stopping time when the player finishes playing. Determine
E[Zr], and use it to determine E[T]. (Hint: you can use what you already
know about the probability that the player wins.)

6. Prove Theorem 79.

7. In the bin packing problem, we are given items with sizes ay,as,...,a, with
0<a; <1forl<i<mn. The goal is to pack them into the minimum number
of bins, with each bin being able to hold any collection of items whose total
sizes sum to at most 1. Suppose that each of the a; are chosen independently
according to some distribution (which might be different for each 7). Let P be
the number of bins required in the best packing of the resulting items. Prove
that

Pr(|P — E[P]| > \) < e™2¥/",

8. Consider an n-cube with N = 2" nodes. Let S be a non-empty set of vertices
on the cube, and let # be a random vertex chosen uniformly at random among
all vertices of the cube. Let D(z,S) be the minimum number of coordinates
that x and y differ in over all points y € S. Give a bound on

Pr(|D(x, S) — E[D(x, S)]| > \).

© Copyright Mitzenmacher and Upfal, 2003-2004

12.6 Exercises

353

9.

10.

11.

12.

13.

In Chapter 4 we developed a tail bound for the sum of {0, 1} random variables.
We can use martingales to generalize this result for the sum of any random
variables whose range lies in [0, 1]. Let X, Xy, ..., X,, be independent random
variables such that Pr(0 < X; <1)=1. If 5, =Y " | X;, show that

Pr(|S, — E[S,]| > A) < 2e 2V,

A parking lot attendant has mixed up n keys for n cars. The n car owners arrive
together. The attendant gives each owner a key according to a permutation
chosen uniformly at random from all permutations. If a person receives the
key of his car, he takes it and leaves. Otherwise, he returns the key to the
attendant. The attendant now repeats the process with the remaining keys and
car owners. This continues until all owners receive the keys to their cars. Let
R be the number of rounds until all car owners receive the keys to their cars.
We want to compute E[R]. Let X; be the number of owners who receive their
car keys in the i-th round. Prove that

Y=Y (X;—E[X; | Xy,..., X;])

=1
is a martingale. Use the martingale stopping theorem to compute E[R].

Alice and Bob play each other in a checkers tournament, where the first player
to win four games wins the match. The players are evenly matched, so the
probability that each player wins each game is 1/2, independent of all other
games. The number of minutes for each game is uniformly distributed over the
integers in the range [30,60], again independent of other games. What is the
expected time they spend playing the match?

Consider the following extremely inefficient algorithm for sorting n numbers in
increasing order. Start by choosing one of the n numbers uniformly at random,
and placing it first. Then choose one of the remaining n — 1 numbers uniformly
at random, and place it second. If the second number is smaller than the
first, start over again from the beginning. Otherwise, next choose one of the
remaining n — 2 numbers uniformly at random, place it third, and so on. The
algorithm always starts over from the beginning if it ever finds when placing
the k-th number that it is smaller than the (k — 1)-st. Determine the expected
number of times the algorithm tries to place a number, assuming that the input
consists of n distinct numbers.

Suppose that you are arranging a chain of n dominos so that once you are done,
you can have them all fall sequentially in a pleasing manner by knocking down
the lead domino. Each time you try to carefully place a domino in the chain,
there is some chance that it falls, taking down all of the other dominos you have
already carefully placed. In that case, you have to start all over again from the
very first domino. That is, you have to place n dominos in a row successfully
before your arrangement is ready.

© Copyright Mitzenmacher and Upfal, 2003-2004

12.6 Exercises

354

(a) Let us call each time you try to place a domino a trial. Each trial succeeds
with probability p. Using Wald’s equation, find the expected number of
trials necessary before your arrangement is ready. Calculate this number
of trials for n = 100 and p = 0.1.

(b) Suppose instead that you can break your arrangement into & components,
each of size n/k, in such a way so that once a component is complete, it
will not fall when you place further dominos. For example, if you have 10
components of size 10, once the first component of 10 dominos are placed
successfully, they will not fall; if you misplace a domino later, it might
take down another component, but the first will remain ready. Find the
expected number of trials necessary before your arrangement is ready in
this case. Calculate the number of trials for n = 100, £ = 10, and p = 0.1,
and compare with your answer from the first part of the exercise.

14. (a) Let Xy, Xs,..., be a sequence of independent exponential random vari-
ables, each with mean 1. Given a positive real number k, let N be defined

by
N:min{n:ZXi>k}.
i=1
That is, N is the smallest number for which the sum of the first N of the
X is larger than k. Use Wald’s inequality to determine E[V].

(b) Let X, Xs,..., be a sequence of independent uniform random variables
on the interval (0,1). Given a positive real number k, with 0 < k£ < 1, let

N be defined by
N:min{n:HXi<k}.

i=1
That is, N is the smallest number for which the product of the first N of

the X, is smaller than k. Determine E[N]. (Hint: you may find exercise 9
helpful.)

15. A subsequence of a string s is any string that can that can be obtained by
deleting characters from s. Consider two strings x and y of length n, where
each character in each string is independently a 0 with probability 1/2 and a 1
with probability 1/2. We consider the longest common subsequence of the two
strings.

(a) Show that the expected length of the longest common subsequence is
greater than ¢;n and less than con for constants ¢; > 1/2 and ¢ < 1
when n is sufficiently large. (Any constants ¢; and ¢, are sufficient; as a
challenge, you may attempt to find the best constants ¢; and ¢, that you
can.)

(b) Use a martingale inequality to show that the length of the longest common
subsequence is highly concentrated around its mean.

© Copyright Mitzenmacher and Upfal, 2003-2004

12.6 Exercises

355

16. Given a bag with r red balls and g green balls, suppose that we uniformly sample
n balls from the bin without replacement. Set up an appropriate martingale and
use it to show that the number of red balls in the sample is tightly concentrated
around %.

17. We have shown in Chapter 5 that the fraction of entries that are 0 in a Bloom
filter is concentrated around
, (1) km
p = 1——)
n

where m is the number of data items, &k is the number of hash functions, and
n is the size of the Bloom filter in bits. Derive a similar concentration result
using a martingale inequality.

18. Consider a random graph from G,, n, where N = c¢n for some constant ¢ > 0.
Let X be the expected number of isolated vertices, that is, vertices of degree 0.

(a) Determine E[X].

(b) Show that
Pr(|X — E[X]| > 2\V/en) < 2¢77%,

(Hint: use a martingale that reveals the locations of the edges that are in
the graph, one at a time.)

19. We improve our bound from the Azuma-Hoeffding inequality for the problem
where m balls are thrown into n bins. We let F' be the number of empty bins
after the m balls are thrown, and we let X; be the bin in which the i-th ball
lands. We define Z, = E[F], and Z; = E[F | X4,..., X;].

(a) Suppose that the number of bins that are empty after the i-th ball is
thrown is A;. Show that in this case

1 m—i+1
Zi = A (1 - —) :
n

(b) Show that if the i-th ball lands in a bin that is empty when it is thrown,

then _

n

(c) Show that if the i-th ball lands in a bin that is not empty when it is thrown,

then _
1 m—1
Zi - Ai,1 (1 - —) .
n

(d) Show that the Azuma-Hoeffding inequality in Theorem 79 applies with
di - (]_ - %)m—z.

© Copyright Mitzenmacher and Upfal, 2003-2004

12.6 Exercises 356

(e) Using the above, prove that
Pr(|F — E[F]| > \) < 2¢ \n-1/(*~(BIF)?)

20. Let f(X1, Xs,...,X,,) satisfy the Lipschitz condition, so that for any i and any

values x1,...,x, and y;,
|f(l'1,l'2, w15 Ljy L1y - - - 71‘71,) - f(l'l,l'Q, ces =15 Yis Lig 1y - - - ,l‘n)| S C.
We set,
Zy = E[f(X1, Xo,..., X,)]
and

Zi — E[f(Xl,XQ, e ;Xn) | XI,XQ, e 7Xz]

Give an example to show that if the X; are not independent, then it is possible
that |Zz — Zi—1| > c.

© Copyright Mitzenmacher and Upfal, 2003-2004

Chapter 13

Pairwise Independence and
Universal Hash Functions

In this chapter we introduce and apply a limited notion of independence, known as
k-wise independence, focusing in particular on the important case of pairwise indepen-
dence. Limited dependence reduces the amount of randomness used by a randomized
algorithm, and in some cases allows for converting a randomized algorithm to an ef-
ficient deterministic one. Limited dependence is also used in the design of universal
and strongly universal families of hash functions, giving space- and time-efficient data
structures. We consider why universal hash functions are effective in practice, and
show how they lead to simple perfect hash schemes. Finally, we apply these ideas
to design effective, practical approximation algorithms for finding frequent objects in
data streams, by generalizing the Bloom filter data structure introduced in Chapter 5.

13.1 Pairwise Independence

Recall that in chapter 2 we defined a set of events Ei, F,,... FE, to be mutually
independent if for any subset I C [1,n],

Pr (ﬂ E) = []Pr(E).

Similarly we defined a set of random variables X, X5,..., X, to be mutually inde-
pendent if for any subset I C [1,n], and any values z;, i € I,

iel icl
Mutual independence is often too much to ask for. Here, we examine a more

© Copyright Mitzenmacher and Upfal, 2003-2004

13.1 Pairwise Independence

358

limited notion of independence that proves useful in many contexts: k-wise indepen-
dence.

Definition 51.

1. A set of events Ey, Es, ... E, is k-wise independent if for any subset I C [1,n]
with |1 < k,

Pr (ﬂ E) = []Pr(&).

2. A set of random variables X1, Xs, ... X, is k-wise independent if for any subset
I C[1,n] with |I| <k, and any values z;, i € 1,

i€l el

3. The random variables X1, Xo, ... X,, are said to be pairwise independent if they
are 2-wise independent. That is, for any pair i, and any values a, b,

Pr((X;=a)N(X; =0)) =Pr(X; =a) Pr(X; =0).

13.1.1 Example: A Construction of Pairwise Independent
Bits

A random bit is uniform if it assumes the values 0 and 1 with equal probabilities.
Here we show how to derive m = 2° — 1 uniform pairwise independent bits from b
independent, uniform random bits, Xi,..., X,.

Enumerate the 2° — 1 non-empty subsets of {1,2,...,b} in some order, and let
S; be the j-th subset in this ordering. Set

Y = ®ies, X,
where @ is the exclusive-or operation. Equivalently, we could write this as

Y; =) X;mod2.

iESj
Lemma 53. The Y are pairwise independent uniform bits.
Proof. We first show that for any non-empty set .S;, the random bit
Y = ®ies; X

© Copyright Mitzenmacher and Upfal, 2003-2004

13.1 Pairwise Independence

359

is uniform. This follows easily using the principle of deferred decisions. Let z be the
largest element of S. Then

Y]' = (@iESj—{z}Xi) ® X,.

Suppose we reveal the values for X; for all i € S; — {z}. Then it is clear that the
value of X, determines the value of Y}, and that Y; will take on the values 0 and 1
with equal probability.

Now consider any two variables Y, and Y; with their corresponding sets S; and
Sy. Let z be an element of S, that is not in S, and consider for any values ¢, d € {0, 1}

Pr(Y,=d | Yy = ¢).

We claim, again by the principle of deferred decisions, that this probability is 1/2.
For suppose that we reveal the values for X; for all 7 in (S, U Sy) — {z}. Even though
this determines the value of Y}, the value of X, will determine Y,. The conditioning
on the value of Y} therefore does not change that Y, is equally likely to be 0 or 1.
Hence

Pr(Yi =) N (Yo =d)) = Pr(Y,=d| Y =c)-Pr(¥y=0)
= 1/4.

Since this holds for any values of ¢,d € {0.1}, we have proven pairwise independence.

O

13.1.2 Application: Derandomizing an Algorithm for Large
Cuts

In Chapter 6, we examined a simple randomized algorithm for finding a large cut
in an undirected graph G = (V| E): the algorithm places each vertex on one side of
the cut independently with probability 1/2. The expected value of a cut generated
this way is m/2, where m is the number of edges in the graph. We also showed in
Section 6.3 that this algorithm could be derandomized effectively using conditional
expectations.

Here we present another way to derandomize this algorithm, using pairwise
independence. This argument exemplifies the approach of derandomization using
k-wise independence.

Suppose that we have a collection Y1, Y5,...,Y, of pairwise independent bits,
where n = |V is the number of vertices in the graph. We define our cut by putting
all vertices ¢ with X; = 0 on one side of the cut, and all vertices 2 with X; = 1 on the
other side of the cut. We show that in this case, the expected number of edges that
crosses the cut remains m/2. That is, we do not require complete independence to
analyze the expectation; pairwise independence suffices.

© Copyright Mitzenmacher and Upfal, 2003-2004

13.1 Pairwise Independence 360

Recall the argument of Section 6.2.1: number the edges from 1 to m, and let
Z; = 1 if the i-th edge crosses the cut, and Z; = 0 otherwise. Then Z = 27;1 Z; 18
the number of edges crossing the cut, and

m

E[Z]=E

i=1
Let a and b be the two vertices adjacent to the i-th edge. Then

1
Pr(Z;=1)=Pr(Y, #Y;) = 3
where we have used the pairwise independence of Y, and Y},. Hence E[Z;] = 1/2, and

it follows that E[Z] = m/2.

Now let our n pairwise independent bits Y;,...,Y, be generated from b =
[log,(n + 1)] independent, uniform random bits Xy, X5, ..., X}, in the manner of
Lemma 53. Then E[Z] = m/2 for the resulting cut, where the sample space is just
all the possible choices for the initial b random bits. By the probabilistic method,
there is some setting of the b bits that gives a cut with value at least m/2. We can
try all possible 2° settings for the bits to find such a cut. As 2°is O(n), and for each
cut the number of crossing edges can easily be calculated in O(m) time, we can find
a cut with at least m/2 crossing edges in O(mn) time.

Although this approach does not appear as efficient as the derandomization of
Section 6.3, one redeeming feature of the scheme is that it is trivial to parallelize. If
we have sufficiently many processors available, each of the Q(n) possibilities for the
random bits X, X, ..., X} can be assigned to a single processor, with each possibility
giving a cut. The parallelization can reduces the running time by a factor of Q(n)
using O(n) processors. In fact, using O(mn) processors, we can assign a processor
for each combination of a specific edge with a specific sequence of random bits, and
determine in constant time whether the edge crosses the cut for that setting of the
random bits. After that, only O(logn) time is necessary to collect the results and
find the maximum cut.

13.1.3 Example: Constructing Pairwise Independent Values
Modulo a Prime

We consider another construction that provides pairwise independent values Yy, Y7,...,Y,
that are uniform over the values {0, 1,...,p — 1} for a prime p. Our construction re-
quires only two independent, uniform values X; and X, over {0,1,...,p — 1}, from
which we derive

Y; = X +1X5 mod p; fort=0,...,p—1.

Lemma 54. The variables Yy, Y1,...,Y, 1 are pairwise independent uniform random
variables over {0,1,...,p—1}.

© Copyright Mitzenmacher and Upfal, 2003-2004

13.2 Chebyshev’s Inequality for Pairwise Independent Variables

361

Proof. 1t is clear that each Y; is uniform over {0, 1,...,p— 1}, again by applying the
principle of deferred decisions. Given X, the p distinct possible values for X, give p
distinct possible values for Y; modulo p, each of which is equally likely.

Now consider any two variables ¥; and Y;. We wish to show that for any
a,b € {0,1,...,p—1},
1
Pr((Yi = a) N1 () =) = —;
which implies pairwise independence. Now the event Y; = a and Y; = b is equivalent
to:
X1 +1:Xy =amod p; and X; 4+ jX5 = bmod p.

This is a system of two equations and two unknowns with just one solution:

b— (b —
Xy = = C?modp; and X| = a — Z(, a) mod p.
j—i j—i
Since X; and X are independent and uniform over {0, 1,...,p—1}, the result follows.

O

This proof can be extended to the following useful result: given 2n independent,
uniform random bits, one can construct up to 2" pairwise independent and uniform
strings of n bits. The extension requires knowledge of finite fields, so we only sketch
the result here. The setup and proof are exactly the same as above, except that
instead of working modulo p, we perform all arithmetic in a fixed finite field with
2" elements (such as the field GF(2") of all polynomials with coefficients in GF'(2)
modulo some irreducible polynomial of degree n). That is, we assume a fixed one-
to-one mapping f from strings of n bits, which can also be thought of as numbers in
{0,1,...,2" — 1}, to field elements. We let

Y; = (X)) + f) - f(X2)),

where X; and X, are chosen independently and uniformly over {0,1,...,2" — 1}, i
runs over the values {0,1,...,2" — 1}, and the addition and multiplication are done
over the field. The Y; are then pairwise independent.

13.2 Chebyshev’s Inequality for Pairwise Indepen-
dent Variables

Pairwise independence is much weaker than mutual independence. For example, we
can use Chernoff bound to evaluate the tail distribution of a sum of independent
random variables, but we cannot directly apply a Chernoff bound if the X; are only
pairwise independent. Pairwise independence is strong enough, however, to allow
for easy calculation of the variance of the sum and a useful application Chebyshev’s
inequality.

© Copyright Mitzenmacher and Upfal, 2003-2004

13.2 Chebyshev’s Inequality for Pairwise Independent Variables

362

Theorem 80. Let X = > X;, where the X; are pairwise independent random
variables. Then

Var[X] = Z Var[X

Proof. We saw in Chapter 3 that
Var[} " X;| =) Var[X;]+2) Cov(X;, X)),
= i=1 i<j
where

Cov(X;, X;) = E[(X; — E[Xi])(X; — E[X;])] = E[X;X|] — E[X;]E[X;].

Since X;, Xo,..., X, are pairwise independent, for any i # j
E[X;X;] - E[X;]E[X;] =0
Thus,
Var[X] = Z Var[X

O
Applying the Chebyshev’s inequality to the sum of pairwise independent vari-
ables we get,

Corollary 13. Let X = > X, where the X; are pairwise independent random
variables. Then

Var[X] _ S Var[Xi].

a? a?

Pr([X —E[X]| > a) <

13.2.1 Application: Sampling Using Fewer Random Bits

We apply the Chebyshev’s inequality for pairwise independent random variables to
obtain a good approximation through sampling using less randomness than the nat-
ural approach based on Chernoff bounds.

Suppose that we have a function f : {0,1}" — [0,1] mapping n bit vectors
into real numbers. Let f = o vef0,1}m f(z) be the average value of f. We want

to compute a 1 — 4 confidence interval for f. That is, we want to find an interval
[f — €, f + €] such that

Pr(fe[f—ef+e)>1—0

© Copyright Mitzenmacher and Upfal, 2003-2004

13.2 Chebyshev’s Inequality for Pairwise Independent Variables

363

As a concrete example, suppose that we have an integrable function ¢ : [0, 1] —
[0,1], and assume that the derivative of g exists with |¢'(z)| < C for some fixed
constant C' over the entire interval (0,1). We are interested in fwlzog(x)dx. If the
integral of ¢ is difficult to compute with directly, there may be no direct way to
compute this integral exactly, but through sampling we can obtain a good estimate.
If X is a uniform random variable on [0, 1], then E[g(X)] = fxlzog(x)dx, by the
definition of the expectation of a continuous random variable. By taking the average
of multiple independent samples, we can approximate the integral. If we do not have
a source of randomness that generates random real numbers, but only random bits,
we might approximate the integral as follows. For a string of bits = € {0,1}", we
may interpret x as real number & € [0, 1] by considering it as a decimal in binary; for
example, 11001 would correspond to 0.11001 = 25/32. If f(z) denotes the value of
the function g at the decimal value Z, then for any integer ¢ with 0 < ¢ < 2" — 1, we
have for y € [i/2", (i +1)/2"),

F/2) — o < glu) < F/27) + 5
It follows that
1 ! 1
> X U@ [gwir< o Y ().
ze{0,1}n z=0 ze{0,1}n

By taking n sufficiently large, we can guarantee that f = - > zefo,)n f(z) differs
from the integral of g by at most a constant . In this case, a confidence interval
[f —€, f+e] for f would yield a confidence interval [§—e— 1, g+e+fy] for the integral
of g.

We could handle the problem of finding a confidence interval for the average
value f by using independent samples and applying a Chernoff bound. That is, sup-
pose that we sample uniformly with replacement random points in {0, 1}", evaluate
f at all of these points, and take the average of our samples. This is similar to the
parameter estimation of section 4.2.3. Using an appropriate Chernoff bound, such as
the bound from exercise 13, we have the following theorem:

Theorem 81. Let f : {0,1}" — [0,1], and f = 5 vefoyn f(@). Let Xl,.. X be

chosen independently and uniformly at random from {0,1}". When m > n(2/9) , then

(o)

While the exact choice of m depends on the Chernoff bound used, in general this

straightforward approach requires €2 (ln Y 5)> samples to achieve the desired bounds.

A possible problem with this approach is that it requires a large number of
random bits to be available. Each sample of f requires n independent bits, so applying

© Copyright Mitzenmacher and Upfal, 2003-2004

13.3 Families of Universal Hash Functions

364

n 1n(21/5)

Theorem 81 means that we need at least €2 () independent, uniform random

bits to obtain an approximation with additive error at most ¢ with probability at
least 1 — 4.

A related problem arises when we need to record how the samples were obtained,
so that the work can be reproduced and verified at a later time. In this case, we
need not only for these random bits to be available, but we need to store them for
archival purposes. In this case, using fewer random bits would lessen the recording
requirements.

We can use pairwise independent samples to obtain a similar approximation
using less randomness. Let Xy, ..., X,, be pairwise independent vectors chosen from
{0,1}", and let Y = L 3" f(X;). Then E[Y] = f, and we can apply Chebyshev’s
inequality to obtain

_ VarlY
Pr(|Y—f|26) < 62[]
Var [% D ie Xi]
_ Z:’; Var[X;]
N m2e2
m 1
< -

-)
m2e2 me?

since Var[X;] < E[(X;)?] < 1. We therefore find Pr (|Y — f| > €) < 6 when m = 5.
(In fact, one can prove that Var[X;] < 1/4, giving a slightly better bound; this is left
as exercise 4.)

Using pairwise independent samples, we require more samples: © (ﬁ) samples

instead of the © (%) samples when the samples are independent. But recall from

section 13.1.3 that we can obtain up to 2" pairwise independent samples with just
2n uniform independent bits. Hence, as long as ﬁ < 2™, just 2n random bits suffice,
which is much less than the number required when using completely independent
samples. Usually ¢ and ¢ are fixed constants independent of n, and this type of
estimation is quite efficient in terms of both the number of random bits used and the
computation cost.

13.3 Families of Universal Hash Functions

Up to this point, when we studied hash functions, we modeled them as being com-
pletely random, in the sense that for any collection of items z1, x5, ..., x, the hash
values h(z1), h(zs),. .., h(zy) were considered uniform and independent over the range
of the hash function. This was the framework we used to analyze hashing as balls and
bins problems of Chapter 5. The assumption of a completely random hash function

© Copyright Mitzenmacher and Upfal, 2003-2004

13.3 Families of Universal Hash Functions

365

simplifies the analysis for a theoretical study of hashing. In practice, however, com-
pletely random hash functions are too expensive to compute and store, so the model
is not a good reflection of reality.

Two approaches are commonly used in practice to implement hash functions.
In many cases, heuristic or ad hoc functions designed to appear random are used.
While these functions may work suitably for some applications, they generally do not
have any associated provable guarantees, making their use potentially risky. Another
approach is to use hash functions for which there are some provable guarantees.
We trade away the strong statements one can make about completely random hash
functions for weaker statements with hash functions that are efficient to store and
compute.

We consider one of the computationally simplest classes of hash functions that
provide useful provable performance guarantees, universal families of hash functions.
These functions are widely used in practice.

Definition 52. Let U be a universe with |U| > n and V = {0,1,...,n —1}. A
famaly of hash functions H from U to V is said to be k-universal if, for any elements

1, T2, ..., Tk, when a hash function h is chosen uniformly at random from H,
1
Pr(h(xl) = h(.ﬁUg) =...= h(.’L‘k)) S nk—l'

A family of hash functions H from U to V' is said to be strongly k-universal if, for
any elements xq, %o, ...,z and any values yy,ys, ...,y € {0,1,...,n — 1}, when a
hash function h is chosen uniformly at random from H,

1

Pr((h(z1) = 1) N (hlz2) = yo) ... 0 (hlaw) = we)) = .

We will primarily be interested in 2-universal and strongly 2-universal families
of hash functions. When we choose a hash function from a family of 2-universal hash
function, the probability that any two elements z; and x5 have the same hash value
is at most 1/n. In this respect, a hash function chosen from a 2-universal family acts
like a random hash function. It does not follow, however, that for 2-universal families
the probability that any three values xq, x5, and x3 have the same hash value is at
most 1/n?%, as would be the case if the hash values of xy, 7o, and z3 were mutually
independent.

When a family is strongly 2-universal, and we choose a hash function from that
family, the values h(z;) and h(z;) are pairwise independent, since the probability that
they take on any specific pair of values is 1/n%. Because of this, hash functions chosen
from a strongly 2-universal family are also sometimes called pairwise independent hash
functions. More generally, when a family is strongly k-universal, and we choose a hash
function from that family, the values h(x;), h(xs),...,h(xy) are k-wise independent.
Notice that a strongly k-universal hash function is also k-universal.

© Copyright Mitzenmacher and Upfal, 2003-2004

13.3 Families of Universal Hash Functions 366

To gain some insight into the behavior of universal families of hash functions,
let us revisit a problem we considered in the balls and bins framework of Chapter 5.
We saw in Section 5.2 that when n items are hashed into n bins by a complete random
hash function, the maximum load is ©(logn/loglogn) with high probability. We now
consider what bounds we can obtain on the maximum load when n items are hashed
into n bins using a hash function chosen from a 2-universal family.

First, consider the more general case where we have m items, labeled x1, xo, ..., .
For 1 < i < j < m,let X;; = 1 if items x; and z; land in the same bin. Let
X =3 cicjem Xij be the total number of collisions between pairs of items. By the
linearity of expectations,

EX]=E

1<i<j<m 1<i<j<m

Since our hash function is chosen from a 2-universal family,

1
E[X;] = Pr(h(zi) = h(z;)) < —,
and hence
m\1l m?
E[X] < - < —. 13.1
X] < <2) n < 2n ()
Markov’s inequality yields
1
Pr(X > m?/n) < Pr(X > 2E[X]) < 3"

Now suppose the maximum number of items in a bin is Y. The number of collisions
X must be at least ()2/) Hence

() <

Pr(Y > m+/2/n) <

which implies

DN =

In particular, in the case where m = n, the maximum load is at most v/2n with
probability at least 1/2.

While this result is much weaker than what we have for perfectly random hash
functions, it is extremely general, in that it holds for any 2-universal family of hash
functions. The result will prove useful for designing perfect hash functions, as we
describe in section 13.3.3.

© Copyright Mitzenmacher and Upfal, 2003-2004

13.3 Families of Universal Hash Functions 367
13.3.1 Example: A 2-Universal Family of Hash Functions

Let the universe U be the set {0,1,2,...,m — 1}, and the range of our hash function
be V= {0,1,2,...,n — 1}, with m > n. Consider the family of hash functions
obtained by choosing a prime p > m, letting

hap(x) = ((ax + b) mod p) mod n,
and taking the family
H="{hap | 1<a<p—-1,0<b<p}
Notice that in the above a cannot take on the value 0.
Lemma 55. H is 2-universal.
Proof. We count the number of functions in H for which two distinct elements z; and
9 from U collide.
First, note that for any x; # x9,
ari + b # ary + b mod p,

since axy + b = ary + b mod p implies that a(x; — z3) = 0 mod p, but here both a
and (z; — x3) are non-zero modulo p.

In fact, for every pair of values (u, v) such that « # v and 0 < u,v < p—1, there
is exactly one pair of values (a,b) with az; +b = v mod p and axs + b = v mod p.
This pair of equations has two unknowns, and a unique solution given by

V—U

a = mod p,

To — T
and
b =wu — ax, mod p.
Since there is exactly one hash function for each pair (a,b), we have that there is
exactly one hash function in A for which

ar; + b =wu mod p, and axy + b = v mod p.

It follows that to bound the probability that h,p(z1) = hep(r2) when hgy is
chosen uniformly at random from H, it suffices to count the number of pairs (u,v),
0 <u,v <p-—1, for which v # v but v = v mod n. For each choice of u there are
at most [p/n] — 1 possible appropriate values for v, giving at most p([p/n]| — 1) <
p(p — 1)/n pairs. Each pair corresponds to one of p(p — 1) hash functions, so

Pr(fhap(11) = hap(22)) < plp—1)/n _ l,

~ plp—1) n

proving that # is 2-universal. O

© Copyright Mitzenmacher and Upfal, 2003-2004

13.3 Families of Universal Hash Functions

368

13.3.2 Example: A Strongly 2-Universal Family of Hash Func-
tions

We can apply ideas similar to those we used to construct the 2-universal family of hash
functions of Lemma 55 to construct strongly 2-universal families of hash functions.
To start, suppose that both our universe U and the range V' of the hash function are
{0,1,2,...,p — 1} for some prime p. Now let

hep(x) = (azx + b) mod p,
and consider the family
,H:{ha,b | Oga,bgp—l}

Notice that here a can take on the value 0, in contrast with the family of hash
functions used in Lemma 55.

Lemma 56. H s strongly 2-universal.

Proof. This is entirely similar to Lemma 54. For any two elements x; and x5 in U
and any two values y; and y, in V', we need to show that

1
Pr((hop(z1) = 31) N (hap(z2) = 32)) = P
The condition hg,p(x1) = y1 and hep(x2) = Yo gives two equations modulo p with two
unknowns, the values for a¢ and b: ax; + b = y; mod p and axy + b = yo, mod p. This
system of two equations and two unknowns has just one solution:

Y2 — U1
a =
To — T

mod p

and
b =1y, — ax; mod p.

Hence only 1 choice of the pair (a,b) out of the p? possibilities results in z; and z
hashing to y; and y,, proving

Pr((hop(z1) = y1) N (hap(2) = 12)) =]%

as required. O

Although this gives a strongly 2-universal hash family, the restriction that the
universe U and the range V' be the same makes the result almost useless; usually
we want to hash a large universe into a much smaller range. We can extend the
construction above in a natural way that allows much larger universes. Let V =
{0,1,2,...,p—1}, but now let U = {0, 1,2,...,p"* — 1} for some integer k¥ and prime

© Copyright Mitzenmacher and Upfal, 2003-2004

13.3 Families of Universal Hash Functions

369

p. We can interpret an element u in the universe U as a vector 4 = (ug, uy, ..., U 1),
where 0 < u; < p—1for 0 <i <k —1, and Ziﬁ:ol u;p* = w. In fact this gives a
one-to-one mapping between vectors of this form and elements of U.

For any vector @ = (ag,ay,...,a5_1) with0<a; <p—1for0<i<k—1, and
any value b with 0 < b <p—1, let

k-1
hap(u) = (Z a;u; + b) mod p,
i=0
and consider the family
H={hap|0<a;,b<p—1forall0<i<Fk-—1}.

Lemma 57. H is strongly 2-universal.

Proof. We follow Lemma 56. For any two elements u; and uy, with corresponding
vectors w; = (u;0, Ui, - - -, Uik—1) and and any two values y; and y, in V, we need to

show that .

Pr((hap(u1) = y1) N (hap(uz) = y2)) = ek
Since u; and ug are different, they must differ in at least one coordinate. With-
out loss of generality let u,o # usp. For any given values of ai,as,...,a,_1, the
condition hzp(u1) = y1 and hgp(us) = yo is equivalent to:

k—1 k—1
apuio+b= (yl — Z ajul,]) mod p ; and agugg + b = (y1 — Z ajuz,j> mod p.

j=1 J=1
For any given values of aq, as, . .., ap_1, this gives a system with two equations and two
unknowns, namely ag and b, which as in Lemma 57 has exactly one solution. Hence
for every ay, as, . ..,ax_1 only one choice of the pair (ag, b) out of the p? possibilities
results in u; and uy hashing to y; and y,, proving

1

Pr((hap(u1) = y1) N (hap(uz) = 32)) = e

as required. O

Although we have described both the 2-universal hash family and the strongly
2-universal hash families in terms of arithmetic modulo a prime number, we could
extend these techniques to work over general finite fields, and in particular, fields with
2" elements represented by sequences of n bits. The extension requires knowledge of
finite fields, so we simply sketch the result here. The setup and proof are exactly the
same as above, except that instead of working modulo p, we perform all arithmetic in
a fixed finite field with 2" elements. We assume a fixed one-to-one mapping f from

© Copyright Mitzenmacher and Upfal, 2003-2004

13.3 Families of Universal Hash Functions

370

strings of n bits, which can also be thought of as numbers in {0,1,...,2" — 1}, to
field elements. We let

hap(u) = (Z flag) - fug) + f(b)> ,

the a; and b are chosen independently and uniformly over {0,1,...,2" — 1}, and
the addition and multiplication are performed over the field. This gives a strongly
2-universal hash function with a range of size 2.

13.3.3 Application: Perfect Hashing

Perfect hashing is an efficient data structures for storing a static dictionary. In a
static dictionary, items are permanently stored in a table. Once the items are stored,
the table is used only for search operations: a search for an item gives the location of
the item in the table or returns that the item is not in the table.

Suppose that a set S of m items is hashed into a table of n bins, using a hash
function from a 2-universal family and chain hashing. As we discussed in Section 5.5.1,
in chain hashing items hashed to the same bin are kept in a linked list. The number
of operations for looking up an item z is proportional to the number of items in z’s
bin. We have the following simple bound:

Lemma 58. Assume that m elements are hashed into an n bin chain hashing table,
using a hash function h chosen uniformly at random from a 2-universal family. For
an arbitrary element x, let X be the number of items at the bin h(x).

m if 145
E[X]§{1+m71 if v€8.

Proof. Let X; = 1 if the i-th element of S (under some arbitrary ordering) is in the
same bin as x and 0 otherwise. Because the hash function is chosen from a 2-universal
family, it follows that

Pr(X;=1)=1/n.

Then the first result follows from

E[X]=E

ZX] = ZE[Xi] < m/n,

where we have used the universality of the hash function to conclude that E[X;] < 1/n.
Similarly, if z is an element of S, without loss of generality let it be the first element
of S. Then X; =1, and again

Pr(X; =1) = 1/n

© Copyright Mitzenmacher and Upfal, 2003-2004

13.3 Families of Universal Hash Functions

371

when ¢ # 1. Hence

E[X]=E Em:Xi = 1+§:E[XZ-] <1+ (m—1)/n

O

Lemma 58 shows that the average performance of hashing using a hash function
from a 2-universal family is good, in that the time to look through a bin of any item
is bounded by a small number. When m = n, for instance, when searching the hash
table for x, the expected number of items other than z that must be examined is at
most 1. However, this does not give us a bound on the worst-case time of a lookup.
Some bin may contain y/n elements, and when a search is done for one of these
elements, the lookup time is large.

This motivates the idea of perfect hashing. Given a set S, we would like to
construct a hash table that gives excellent worst-case performance. Specifically, by
perfect hashing we mean that only a constant number of operations are required to
find an item in a hash table (or determine it is not there).

We first show that perfect hashing is easy if we are given large enough space for
the hash table and a suitable 2-universal family of hash functions.

Lemma 59. If h € H is chosen uniformly at random from a 2-universal family of
hash functions mapping the universe U to [0,n — 1|, then for any set S C U of size
m, the probability of h being perfect is at least 1/2 when n > m?.

Proof. Let s1,5,..., Sy be the m items of S. Let X;; be 1 if the h(s;) = h(s;) and
0 otherwise. Let X = 7 _, ., Xi;. Then, as we saw earlier in equation (13.1), the
expected number of collisions is

Y X,-j] = Y ElXy < @)% < ZL—;

1<i<j<n 1<i<j<m

EX]=E

using the 2-universality of the hash function. Markov’s inequality yields

Pr(X > m?/n) < Pr(X > 2E[X]) <

DN | —

Hence when n > m?, we find X < 1 with probability at least 1/2. This implies that
a randomly chosen hash function is perfect with probability at least 1/2. O

To find a perfect hash function when n > m?, we may simply try hash functions
chosen uniformly at random from the 2-universal family, until we find one with no
collisions. This gives a Las Vegas algorithm. On average we need to try at most two
hash functions.

© Copyright Mitzenmacher and Upfal, 2003-2004

13.3 Families of Universal Hash Functions

372

We would like to have perfect hashing without requiring space for Q(m?) bins
to store the set of m items. We can use a two-level scheme that accomplishes perfect
hashing using a only O(m) bins. First, we hash the set into a hash table with m
bins using a hash function from a 2-universal family. Some of these bins will have
collisions. For each such bin, we provide a second hash function from an appropriate
2-universal family and an entirely separate second hash table. If the bin has k£ > 1
items in it, we use k2 bins in the secondary hash table. We have already argued from
Lemma 59 that with &% bins we can find a hash function from a 2-universal family
that will give no collisions. It remains to show that by carefully choosing the first
hash function we can guarantee that the total space used by the algorithm is only

O(m).

Theorem 82. The two-level approach gives a perfect hashing scheme for m items
us