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Abstract

We study rectangular dissections of an n × n lattice
region into rectangles of area n, where n = 2k for an
even integer k. We show that there is a natural edge-
flipping Markov chain that connects the state space. A
similar edge-flipping chain is also known to connect the
state space when restricted to dyadic tilings, where each
rectangle is required to have the form R = [s2u, (s +
1)2u]×[t2v, (t+1)2v], where s, t, u and v are nonnegative
integers. The mixing time of these chains is open.

We consider a weighted version of these Markov
chains where, given a parameter λ > 0, we would like to
generate each rectangular dissection (or dyadic tiling) σ
with probability proportional to λ|σ|, where |σ| is the
total edge length. We show there is a phase transition in
the dyadic setting: when λ < 1, the edge-flipping chain
mixes in time O(n2 log n), and when λ > 1, the mixing
time is exp(Ω(n2)). Simulations suggest that the chain
converges quickly when λ = 1, but this case remains
open. The behavior for general rectangular dissections
is more subtle, and even establishing ergodicity of the
chain requires a careful inductive argument. As in the
dyadic case, we show that the edge-flipping Markov
chain for rectangular dissections requires exponential
time when λ > 1. Surprisingly, the chain also requires
exponential time when λ < 1, which we show using a
different argument. Simulations suggest that the chain
converges quickly at the isolated point λ = 1.

1 Introduction

Rectangular dissections arise in the study of VLSI lay-
out [4], mapping graphs for floor layouts [15, 20], and
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routings and placements [23] and have long been of in-
terest to combinatorialists [2, 19]. In each of these ap-
plications, a lattice region needs to be partitioned into
rectangles whose corners lie on lattice points such that
the dissection satisfies some appropriate additional con-
straints. For example, equitable rectangular dissections
require that all rectangles in the partition have the same
area [7] (see Figure 1). We are interested in understand-
ing what random equitable rectangular dissections look
like as well as finding efficient methods for sampling
these dissections.

There has also been interest in the special case of
dyadic tilings, or equitable rectangular dissections into
dyadic rectangles. A dyadic rectangle is a set of the
form

R = [a2s, (a+ 1)2s]× [b2t, (b+ 1)2t]

where a, b, s and t are nonnegative integers with 0 ≤
s, t ≤ k, 0 ≤ a < 2k and 0 ≤ b < 2k. A dyadic tiling of
the 2k×2k square is a set of 2k dyadic rectangles, each of
area 2k, whose union is the full square. See Figure 1(b).
Jansen et al. [8] studied the asymptotics Ak, the
number of dyadic tilings of the 2k × 2k square where
k ∈ Z+. They show that every dyadic tiling must have
a fault line, that is, a line bisecting the square in the
vertical or horizontal direction which avoids non-trivial
intersection with all rectangles in the tilings. This
allows them to derive the recurrence Ak = 2A2

k−1−A4
k−2

and show that asymptotically Ak ∼ φ−1ω2k , where
φ = (1 +

√
5)/2 = 1.6180.... is the golden ratio and

ω = 1.84454757 is a constant.
Although equitable partitions of lattice regions into

rectangles or triangles have been extensively studied,
many fundamental questions remain open. A notable
exception is dissections into rectangles with area 2, com-
monly known as domino tilings or the dimer model from
statistical physics. Researchers have discovered remark-
able properties of these tilings, including striking un-
derlying combinatorial structures [9], statistical proper-
ties of random tilings [10], and analysis showing var-
ious Markov chains for generating them are efficient
[5, 12, 16].

Triangular dissections have been explored exten-



sively as well, both when the vertices are in general
position and when they are vertices of a planar lattice.
On the Cartesian lattice Z2, the problem becomes find-
ing equitable (or unimodular) triangulations of a lattice
region, where each triangle has area 1/2. See [11] for an
extensive history of work on triangulations.

Interestingly, in each of these cases, a certain “edge-
flip” Markov chain has been identified that connects the
state space of allowable dissections. For example, for
domino tilings, the Markov chain iteratively removes
a length 2 edge bordering two dominoes and replaces
it with a length 2 edge in the orthogonal direction,
effectively replacing two vertical dominoes with two
horizontal ones, or vice versa. This chain is known to be
rapidly mixing [12, 17, 22]. In the case of dyadic tilings,
there is again a natural edge-flip chain that connects
the set of possible configurations – if there are two
neighboring rectangles in the tiling that share an edge,
we can remove that edge and retile the larger composite
rectangle with the edge that bisects it in the orthogonal
direction, provided the new tiling is still dyadic (see
Figure 3(c),(d)). The mixing rate of this edge-flip chain
was left open in [8], although the authors argue that a
different, nonlocal, Markov chain containing additional
moves does converge quickly to equilibrium.

Another edge-flip chain also connects the state
space of triangulations by replacing an edge bordering
two triangles with the edge connecting the other two
vertices if the quadrilateral formed by their union is
convex. The edge-flip chain on triangulations of general
point sets has been the subject of much interest in the
computational geometry community (see, e.g., [21]). In
the unweighted case the chain has only been analyzed
when the points are in convex position [13, 14], in which
case the triangulations are enumerated by the Catalan
numbers.

Recently, Caputo et al. [3] introduced a weighted
version of the lattice triangulation dissection problem
and discovered remarkable behavior. Each triangula-
tion σ on a finite region of Z2 is assigned a weight λ|σ|,
where λ > 0 is some input parameter. They conjec-

(a) (b)

Figure 1: (a) An equitable rectangular dissection and
(b) a dyadic tiling of the 16 × 16 square. Shaded
rectangles are not dyadic.

ture there is a phase transition at λ = 1 and that when
λ < 1 there are no long-range correlations of the trian-
gles and Markov chains based on local edge flips con-
verge in polynomial time, while when λ > 1 there will
be large regions of aligned long-thin triangles and lo-
cal Markov chains will require exponential convergence
time. They verify this conjecture when λ > 1 and when
λ < λ0 < 1 for some suitably small constant λ0. Their
conjecture is supported by the intuition that when λ is
large, triangulations with many long-thin triangles will
be favored, and the geometry will force these triangles
to align in the same direction. In contrast, when λ < 1,
triangles with large aspect ratio will be preferred, the
chain will be rapidly mixing, and there will not be any
long-range order.

1.1 Results. In this paper, we study a weighted
version of the equitable rectangular dissection problem
and explore the mixing time of an appropriate edge-
flip Markov chain. Let n = 2k, for k an even integer,
and let Λn be the n × n lattice region. We will be
considering rectangular dissections of Λn into rectangles
of area n in the dyadic and general cases. Let Ωn be
the set of dyadic tilings of Λn and let Ω̂n be the set of
rectangular dissections of Λn into rectangles of area n
that are not necessarily dyadic. In the weighted setting,
we are given an input parameter λ > 0 and the weight
of a dyadic tiling σ ∈ Ωn is π(σ) = λ|σ|/Z, where |σ| is
the total length of edges in σ and Z =

∑
σ∈Ωn

λ|σ| is the
normalizing constant known as the partition function.
Likewise, in the general dissection setting, for α ∈ Ω̂n,
we define π̂(α) = λ|α|/Ẑ, where |α| is the total length

of α and Ẑ is again the normalizing constant.
Let Mn be the edge-flip Markov chain on Ωn

that replaces an edge bordering two rectangles with
the perpendicular bisector of the combined area 2n
rectangle, provided the resulting tiling remains dyadic
(details are given in Section 2.). It is easy to generalize
this chain to the weighted setting by modifying the
transition probabilities so that the chain converges to
distribution π. Likewise, we can define the natural
generalization of the edge-flip chain M̂n on Ω̂n by
connecting two dissections if they differ by the the
removal and addition of one edge. It is not obvious
that this Markov chain M̂n connects the state space
Ω̂n, and establishing this is our first result.

Theorem 1.1. The Markov chain M̂n connects the
state space Ω̂n consisting of all rectangular dissections
of Λn into n rectangles with area n.

The remainder of the paper will be concerned with
the mixing times of Mn and M̂n as we vary the
parameter λ. One might expect the same behavior for



weighted rectangular dissections as in the triangulation
case, namely that when λ is small we favor balanced
rectangles and we might expect the chain to be rapidly
mixing, while for λ large we favor long thin rectangles,
and we should expect they will mostly align vertically
or horizontally. This picture is actually much more
complicated in the general case, but precisely what we
find in the dyadic setting. In addition, in the dyadic
case we have succeeded in closing the gap between the
regimes for fast and slow mixing, and prove that there
is a phase transition at λ = 1. The analogous result was
only conjectured for triangulations in [3]. Specifically,
we prove the following two theorems that establish that
the phase transition occurs at λ = 1 for dyadic tilings.

Theorem 1.2. For any constant λ < 1, the edge-flip
chain Mn on Ωn converges in time O(n2 log n).

Theorem 1.3. For any constant λ > 1, the edge-flip
chain Mn on Ωn requires time exp(Ω(n2)).

Simulations suggest that the chainMn is also fast when
λ = 1. See the left column of Figure 2 for samples
generated with various values of λ for M64.

In the general setting the picture is more surprising.
When λ is large, we get the expected results confirming
that the Markov chain M̂n requires exponential time.
However, we show that the chain also requires exponen-
tial time to converge to equilibrium when λ is small, as
the following two theorems state.

Theorem 1.4. For any constant λ > 1, the edge-flip
chain M̂n on Ω̂n requires time exp(Ω(n2)).

Theorem 1.5. For any constant λ < 1, the edge-flip
chain M̂n on Ω̂n requires time exp(Ω(n log n)).

Even though together these results seem to suggest
that the chain will always be slow, the proofs in these
two regimes (i.e., λ < 1 and λ > 1) show that the rea-
sons underlying the slow mixing results are quite dif-
ferent. When λ > 1 long thin rectangles are favored,
and it will take exponential time to move from a con-
figuration that is predominantly horizontal to one that
is vertical. When λ < 1 “balanced” rectangles that are
close to square are favored. This is enough to dramati-
cally speed up the mixing time in the dyadic case, but
in the general setting it causes an obstacle because long
thin rectangles that are well separated by many squares
(or near squares) will take exponential time to disap-
pear since their removal requires the creation of more
long-thin rectangles, and their creation is exponentially
unlikely. Both slow mixing proofs when λ > 1 show
that there is a bad cut in an equitable partition of the

Dyadic: General:

λ =
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λ =

1.00

λ =

1.03

Figure 2: M64 and M̂64 after 1,000,000 simulated
steps for various values of λ, starting with all vertical
rectangles of width 1 and height 64.

state space into two equal sized pieces, but the proof
in the general setting when λ < 1 relies critically on a
careful choice of the starting configuration. It may in-
deed be the case that the chain is fast if we start from
the most favorable configuration consisting entirely of
squares. As before, the convergence time is unknown
when λ = 1, but based on simulations we conjecture
that the chain M̂n converges quickly to equilibrium at
this isolated point (see the right column of Figure 2).

We note that these results for dyadic tilings are
complementary to other phase transitions discovered in
the unweighted setting. Angel et al. [1] affirmatively
answered a question of Joel Spencer regarding the
probability that there is a dyadic tiling if each dyadic
rectangle is present with probability p, independent of
the others. They show that there is a phase transition
for some p < 1, at which point the likelihood of there
not being such a tiling becomes exponentially small.

3



1.2 Techniques. Dyadic tilings have rich combinato-
rial properties that allow us to establish the presence of
a phase transition in the convergence times. The proof
of fast mixing of Mn on dyadic tilings when λ < 1 is
based on the method of exponential metrics for path
coupling. Similar techniques have been used by Green-
berg et al. [6] for lattice paths and Caputo et al. [3] for
weighted triangulations, but both of these proofs rely
on analysis of lattice paths. Here our proof uses a more
traditional analysis based on path coupling by directly
analyzing configurations of rectangles. It is worth not-
ing that the analysis is self-contained and does not rely
on computational tools to optimize the weights used in
the calculations. We show thatMn will be rapidly mix-
ing for all λ < 3−1/

√
n, which is sufficient to prove fast

mixing for any λ < 1, when n is sufficiently large.
To show slow mixing of the Markov chains Mn

and M̂n in the dyadic and general cases when λ > 1, we
apply a standard Peierls argument. Here, a straightfor-
ward analysis suffices to show that configurations with-
out horizontal or vertical long thin rectangles must have
exponentially small weight, even after summing over all
such configurations. Since we must pass through these
very unlikely configurations to move from a mostly hor-
izontal configuration to a mostly vertical one, we can
conclude that the mixing time is exponential using a
basic flow argument.

The proof of slow mixing for general rectangular
dissections when λ < 1 is considerably more delicate.
In this regime, rectangles that are close to square
are preferred. We show that it will take exponential
time to move from a configuration that has two well-
separated long thin rectangles to one that does not have
any long thin rectangles by very carefully analyzing
required features of these tilings. If the total width
of the region being filled with rectangles is n = 2k,
and there are at least two rectangles with width 1,
then there must be many other thin rectangles in
the rectangular dissection. We define the cut set to
consist of rectangular dissections that are forced to have
significantly more thin rectangles in order to show that
there is a bad cut in the state space.

2 Preliminaries

We start by formalizing the problems. In the remainder
of this paper, we will refer to equitable rectangular
dissections instead as tilings in analogy to the widely
used designation dyadic tilings to provide a uniformity
of language.

Let n = 2k for some even integer k. An n-tiling is
a tiling of the [0, n]× [0, n] lattice Λn by n axis-aligned
rectangles, each of area n; see Figure 1. We assume
all rectangles are the Cartesian product of two closed

intervals, R = [x1, x2] × [y1, y2], and are of dimension
2a×2b, where a, b ∈ {0, 1, 2, ..., k} and a+b = k. That k
is even implies n is a perfect square and there exists a
“ground state” tiling consisting entirely of

√
n ×

√
n

squares; this is critical to the proof of Theorem 1.2.
A tiling is dyadic if all rectangles are of the form
[s2u, (s + 1)2u] × [t2v, (t + 1)2v] for some nonnegative
integers s, t, u, v. We will use the following lemma.

Lemma 2.1. For any a ∈ {0, ..., n − 1} and b ∈
{1, ..., k − 2}, at most one of [a, a + 2 · 2b] and [a +
2b, a+ 3 · 2b] can be written in the form [s2u, (s+ 1)2u]
for some nonnegative integers s and u.

Proof. Suppose [a, a + 2 · 2b] = [s2u, (s + 1)2u] and
[a+ 2b, a+ 3 · 2b] = [t2v, (t+ 1)2v] for some nonnegative
integers s, t, u, v. Looking at the first equation, u = b+1
and a = s2u = s2b+1. From the second equation,
v = b + 1 and a + 2b = t2v = t2b+1. It then follows
that

2b = (a+ 2b)− a = t2b+1 − s2b+1 = (t− s)2b+1.

This is impossible as t− s is integer.

2.1 The Markov Chains Mn and M̂n. We study
two related Markov chains Mn and M̂n whose state
spaces Ωn and Ω̂n, respectively, are all dyadic n-tilings
and all n-tilings. Moves in these Markov chains consist
of edge flips, which we now define. By an edge, we mean
a boundary between two adjacent rectangles in a tiling.
Two tilings σ1, σ2 differ by exactly one edge flip if it is
possible to remove an edge in σ1 that bisects a rectangle
of area 2n and replace it with the bisecting edge in the
perpendicular orientation to form σ2. For example, in
Figure 3, tilings (a) and (b) differ by a single edge flip,
as do tilings (c) and (d). We say an edge e is flippable
if it bisects a rectangle of area 2n.

We consider biased Markov chains with a bias
λ ∈ (0,∞), analogous to [3]. For a tiling σ, let |σ|
denote the sum of the lengths of all the edges in σ. First,
we define the Markov chain M̂n with bias λ. Note all
logarithms are assumed to be base 2. Starting at any
tiling σ0, iterate:

• Choose, uniformly at random, (x, y, d, o, p) ∈{
1

2
,

3

2
,

5

2
, ...,

2n− 1

2

}
×
{

1

2
,

3

2
,

5

2
, ...,

2n− 1

2

}
×{t, l, b, r} × {0, 1} × (0, 1).

Let R be the rectangle in σt containing (x, y). If
d = t, let e be the top boundary of R; if d = l, b,
or r, let e be the left, bottom, or right boundary
of R, respectively.



(d)(c)

(b)(a)

Figure 3: Some tilings for n = 16. Tilings (a) and (b)
differ by an edge flip. Dyadic tilings (c) and (d) differ
by an edge flip.

• If e is a flippable edge and log |e| ≡ o(mod 2), let σ′

be the tiling obtained by flipping e to new edge e′.
If p < λ|σ

′|−|σt| = λ|e
′|−|e|, then σt+1 = σ′.

• Else, σt+1 = σt.

The Markov chain Mn for dyadic tilings is defined
in the same way, interpreting “flippable” to mean
flippable into another dyadic tiling; Figure 3 (c) and (d)
shows an edge flip between two dyadic tilings that are
adjacent in Ωn.

We note that each rectangle R of any tiling σ
is of area n and so contains exactly n points
in { 1

2 ,
3
2 ,

5
2 , ...,

2n−1
2 } × {

1
2 ,

3
2 ,

5
2 , ...,

2n−1
2 }. A given flip-

pable edge e in σ is thus selected by 2n different val-
ues of (x, y, d, o), specifically, the 2n points (x, y) in
the two rectangles e separates, each with the appro-
priate value of d and o. Consequently, a given flip-
pable edge e is selected by (x, y, d, o) with probability
2n · 1

n2 · 1
4 ·

1
2 = 1

4n =: q. This flip then occurs with

probability min{1, λ|σ′|−|σ| = λ|e
′|−|e|}, according to the

random value of p. These transition probabilities favor
long, thin rectangles when λ > 1 and favor squares or
rectangles close to square when λ < 1.

At most one of (x, y, d, 0, p) and (x, y, d, 1, p) results
in an edge flip; (x, y, d) selects a potentially flippable
edge e in σt, and then an edge flip can only occur if
the length of e satisfies log |e| = o(mod 2). This implies

both Mn and M̂n are lazy and thus aperiodic.
In Section 2.2, below, we demonstrate that M̂n

and Mn are irreducible and thus ergodic, so they
converge to unique stationary distributions π̂ and π,
respectively. By detailed balance, the distribution π̂ can

be given by π̂(σ) = λ|σ|/Ẑ, where Ẑ is the normalizing
constant. Similarly, π(σ) = λ|σ|/Z, where Z is the
normalizing constant.

The time a Markov chain M takes to converge to
its stationary distribution π is measured in terms of the
distance between π and Pt, the distribution at time t.
Let Pt(x, y) be the t-step transition probability and Ω
be the state space. The mixing time of M is

τ(ε) = min{t : ‖Pt
′
, π‖tv ≤ ε, ∀ t′ ≥ t},

where ‖Pt, π‖tv = maxx∈Ω
1
2

∑
y∈Ω |Pt(x, y) − π(y)| is

the total variation distance at time t. As is standard
practice, for our theorems in Section 1.1 we assume
ε = 1/4 and consider mixing time τ = τ(1/4). We
say M is rapidly mixing if τ is bounded above by a
polynomial in n and slowly mixing if it is bounded below
by an exponential in n.

2.2 Ergodicity of Mn and M̂n. It remains to be
shown that the moves described above connect state
spaces Ωn and Ω̂n. Connectivity for Ωn follows from
work on dyadic tilings in [8], specifically from their tree
representation of a dyadic tiling. Dyadic constraints
ensure rectangles exist in pairs; an edge flip is always
possible for every rectangle. In particular, all 1 × n
and n × 1 rectangles are adjacent to at least one other
rectangle of the same dimensions, so can be eliminated
with a single edge flip.

However, connectivity of Ω̂n is much less straight-
forward, and an interesting result in its own right. In-
tuitively, issues arise because rectangles in a general n-
tiling do not exist in pairs and there may be many rect-
angles for which no edge flip is possible; it is not even
immediately evident that there is a single valid edge
flip. Rectangles of height n, or alternately, rectangles of
height h where there are no rectangles of larger height,
may be well separated by complicated arrangements of
tiles. It is not clear how to introduce another rectangle
of height h next to an existing rectangle of height h so
that both may be eliminated, a necessary step for ob-
taining a tiling with no rectangles of height h or larger,
for instance.

To prove ergodicity of M̂n, we use a double induc-
tion on h-regions, which are certain subsets of rectan-
gles from an n-tiling in which all rectangles have height
at most h. We prove there exists a sequence of edge
flips leading to a tiling of h-region P by rectangles of
height h. One can repeatedly find within P an h/2-
region or an h-region of strictly smaller area than P , in-
ductively apply a sequence of edge flips to obtain tilings
with all height h/2 or h rectangles, respectively, and ap-
ply a final sequence of edge flips yielding a tiling of P
by rectangles of height h. As an n-tiling is an h-region

5



(b)(a)

Figure 4: For n = 16, the bold lines in (a) define an 8-
region that is not linked, while in (b) they give a linked
4-region. Slicing lines intersecting the interior of each
region are dashed.

for h = n, there is a sequence of edge flips connecting
any two n-tilings, going through the tiling consisting
entirely of 1× n rectangles.

Formally, an h-region is a simply-connected subset
of rectangles from an n-tiling in which (A) all rectangles
have height at most h, and (B) for all vertical segments
on the boundary of the region there is a c ∈ Z+

such that the segment has length ch. Note (B) is
equivalent to all horizontal segments on the boundary
of P being separated by some multiple of h. For n = 16,
Figure 4 (a) depicts an 8-region while (b) depicts a 4-
region. By the interior int(P ) of an h-region P we
mean the area occupied by the rectangles of P minus
its boundary.

The collection of all vertical edges on the boundary
of an h-region P for which the interior of P is to the
right is the left boundary of P , and the right boundary
of P is defined similarly.

For any h-region P , let h0 denote the vertical
coordinate of the bottommost boundary edge of P . Call
the horizontal lines at heights h0, h0 + h, h0 + 2h,...,
h0 +kh,... the slicing lines of P . By (B) in the definition
of an h-region, all horizontal segments on the boundary
of P are contained in some slicing line. An h-region is
linked if every connected component of the intersection
of a slicing line with int(P ) also intersects the interior
of some rectangle in P . That is, there are no segments
of slicing lines that separate int(P ) into two disjoint h-
regions. Figure 4 (a) is not linked as the 8-region is
separated by the slicing line at height 8, while (b) is
linked.

Call the connected regions of int(P ) separated by
the slicing lines of P slices of P ; note that one rectangle
might span two slices. Slices are shaded different colors
in Figure 5. Call two slices adjacent if they are both
incident on a common segment of a slicing line. If P
is linked, then for any two adjacent slices there exists a
rectangle spanning both.

For any linked h-region P , let w0 denote the hori-

Q

Figure 5: A linked h-region P with four slices; leftmost
slice Q is white, slices at distance 1 from Q are light
gray, and slices at distance 2 from Q are dark gray.

zontal coordinate of the leftmost boundary edge of P ,
and let w := n/h denote the minimum width of a rect-
angle in P . Note every rectangle in P has width 2iw,
for some integer i ≥ 0, and width exactly w if and only
if its height is h.

Lemma 2.2. Let P be a linked h-region. For any
rectangle [x1, x2] × [y1, y2] in P , both x1 and x2 can be
written in the form w0 + dw, d ∈ Z+.

Proof. Let Q be a slice of P adjacent to a leftmost
boundary edge of P . All rectangles whose interior
intersects Q satisfy the necessary property because all
rectangles in P have width a multiple of w. We proceed
by induction on the distance between some slice Qi
and Q, where two adjacent slices are at distance one;
see Figure 5.

Suppose that Qi is adjacent to some Qi−1 at dis-
tance i − 1 from Q, and that the statement holds for
all rectangles whose interior has a nontrivial intersec-
tion with Qi−1. At least one of those rectangles R
in Qi−1 must also have a nontrival intersection with Qi
because P is linked. Traveling leftwards in Qi from R,
all rectangles crossed must also satisfy the desired prop-
erty, as they are separated horizontally from R by some
collection of rectangles, each of width a multiple of w.
It follows that the left boundary edge of Qi satisfies the
desired property, and thus all rectangles in slice Qi do.

For any (linked) h-region P , let S be the set of
aligned rectangles in P , that is, all rectangles [x1, x2]×
[y1, y2] in P of height h for which y1 − h0 is an integer
multiple of h. Aligned rectangles are precisely those
whose top and bottom boundaries are both contained
in some slicing line and whose interior doesn’t intersect
a slicing line. All other rectangles of height h are
unaligned.



Lemma 2.3. Let P be an h-region. Any connected
component of the intersection of a slicing line with the
interior of P intersects the interior of an even number
(possibly 0) of rectangles of height h.

Proof. We will prove the stronger statement that for
any connected component of the intersection of int(P )
with the slicing line l at vertical coordinate yl, for every
y ∈ {yl − h+ 1, yl − h+ 2, ..., yl − 1}, there are an even
number (possibly 0) of rectangles R = [x1, x2]× [y1, y2]
of height h satisfying y1 = y that cross l.

Suppose for the sake of contradiction that the
stronger statement above does not hold. We define
a dual graph F on slices of P , where each vertex
represents a slice of P . Two slices (vertices) are
connected by an edge in F if there is a common
segment l of a slicing line between them and this
segment doesn’t satisfy the above statement; that is,
if there is some y ∈ {yl − h + 1, ..., yl − 1} such that
there are an odd number of rectangles of height h with
y1 = y that cross l. As P is simply connected F is a
forest, with at least one edge by assumption. Pick some
slice Q of P that corresponds to a degree one vertex
of F . Let Q′ be the unique adjacent slice such that
segment l separating Q from Q′ crosses an odd number
of rectangles of height h with some common value for y1.
Let yl denote the vertical coordinate of this slicing line l,
and suppose without loss of generality Q lies below l
and Q′ lies above it.

Consider the collection of rectangles R = [x1, x2]×
[y1, y2] of height h crossing l, which each have y1 ∈
{yl − h + 1, ...., yl − 1}. Let y∗ be the smallest among
yl − h + 1, ..., yl − 1 such that an odd number of rect-
angles of height h crossing l have y1 = y∗. We note for
each coordinate y ∈ {y − h+ 1, ...., y − 1} (particularly,
for y = y∗) there are an even number of unaligned rect-
angles of height h non-trivially intersecting Q satisfying
y2 = y, as these rectangles cross the lower boundary of
slice Q into some slice Q′′ not adjacent to Q in the sense
defined above. There are also an even number of rect-
angles of height h non-trivially intersecting Q satisfying
y1 = y∗ and extending upward into some slice that is
not Q′ and thus not adjacent to Q in the sense defined
above.

Examine the horizontal lines l1 and l2 at heights
y∗ + ε and y∗ − ε, respectively; for each consider
the connected component of its intersection with the
interior of Q. Both must be of the same length dw,
d ∈ Z+; cross the same number number r of aligned
rectangles of height h in Q; and cross the same number u
of unaligned rectangles of height h that don’t have y1

or y2 equal to y∗. Note l1 crosses an odd number of
rectangles of height h with y1 = y∗, an odd number
extending into Q′ and an even number extending into

p

p′

Rh0 + h

h0 + 2h

w0

h0

w0 + 6w w0 + 12w

lp

p′

x = w0 x′ = w0 + 5w
o(p) = 0 o(p′) = 1
r(p) = 1 r(p′) = 0
u(p) = 3 u(p′) = 1
u∗(p) = 1 u∗(p′) = 1

Figure 6: An h-region P and a rectangle R crossing a
slicing line illustrating the definitions r(p), o(p), u(p),
and u∗(p).

all other slices. At the same time, l2 crosses an even
number of rectangles of height h with y2 = y∗ extending
into other slices below Q. By looking at l1 we conclude d
is odd and by looking at l2 we conclude d is even, a
contradiction.

Recall S denotes the set of aligned rectangles in a
linked h-region P . Define a binary coloring of all points
in P \ S. For p = (x, y) ∈ P \ S, let p = (x, y) be the
rightmost point on the left boundary of P that is left
of p. By Lemma 2.2, write x = w0 + dw, d ≥ 0 an
integer. Define o(p) = 0 if d is even and o(p) = 1 if d
is odd. Let r(p) be the number of (aligned, height h)
rectangles in S that cross the segment between p and p.
Let E be the set of all points in P \ S with r(p) + o(p)
even, and let O be the set of all points in P\S with
r(p) + o(p) odd.

Lemma 2.4. For linked h-region P containing rectangle
R = [x1, x2]× [y1, y2] ⊆ P \S, for all p ∈ R, r(p) + o(p)
is the same modulo 2.

Proof. If R does not cross a slicing line, this is trivially
true as o(p) and r(p) are constant on the intersection of
any rectangle with any slice. If R crosses slicing line l,
let p = (x, y) be on the left boundary of R just above l
and p′ = (x′, y′) be on the left boundary of R just
below l; see Figure 6. By Lemma 2.2, x = w0 + dw
for some d ∈ Z; we now analyze the parity of d.
The value of o(p) as well as all rectangles of height h
between p and p affect this parity, whether aligned or
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not, while shorter rectangles have width at least 2w and
do not. Let u(p) be the number of unaligned rectangles
of height h that cross the segment between p and p,
and let u∗(p) be the number of these rectangles that
also cross the component of l∩ int(P ) that intersects R.
We note that u(p) = u∗(p)(mod 2) by Lemma 2.3, and
that u∗(p) = u∗(p′), provided p and p′ were placed
sufficiently close together. Thus u(p) = u(p′)(mod 2).

One can see that x = w0 + dw, where d = o(p) +
r(p)+u(p)(mod 2). Similarly, x′ = w0+d′w, where d′ =
o(p′)+r(p′)+u(p′). As x = x′ and u(p) = u(p′)(mod 2),
it follows that r(p) + o(p) = r(p′) + o(p′)(mod 2).

Thus E and O form a well-defined partition of
the rectangles in P \ S. We now consider h/2-regions
within P as well as h-regions within P of strictly smaller
area of two types: - ‘interior’ and ‘boundary’. Interior
h/2-regions or h-regions have both their left and right
boundaries adjacent to rectangles of height h in S.
Boundary h/2-regions contain part of the boundary of P
for a portion of their left or right boundary.

A h-region P has even width if every connected
component of the intersection of any horizontal line with
int(P ) is of length that is an even multiple of w.

Lemma 2.5. Let P be a linked h-region, where no two
rectangles of height h are horizontally adjacent such that
there exists a valid edge flip between them. Then at least
one of the following holds:

• all connected components of E and O are boundary
h/2-regions

• there exists an interior h/2-region

• there exists an interior h-region of strictly smaller
area than P and even width

Proof. Suppose there is at least one connected compo-
nent of E or of O that is not a boundary h/2-region; we
now proceed to find an interior h/2-region or an interior
h-region with strictly smaller area.

Consider all connected components of E and O that
are not boundary h/2-regions; that is, all components
that are not simply connected, contain rectangles of
height h, or are not adjacent to the boundary of P .
Define a partial order on these components where
G ≤ H if and only if G is contained within a hole
in component H. Consider any minimal element G in
this partial order, and suppose without loss of generality
that it is a connected component of E. Any holes in G
consist entirely of aligned rectangles of height h that
are in S, and by hypothesis no two of these aligned
rectangles are horizontally adjacent. Consider rectangle
R = [x1, x2]× [y1, y2] that is part of such a hole. Choose

any vertical height y∗ such that the horizontal line at
height y∗ intersects the interior of R, as well as the
interior of some rectangle R− immediately left of R and
some rectangle R+ immediately right of R. Let p− be on
the horizontal line at height y∗ inside R−, and let p+ be
on the same horizontal line inside R+. Both R− and R+

must be in E, implying that r(p−)+o(p−) has the same
parity as r(p+) + o(p+); but this is a contradiction as
r(p+) = r(p−) + 1 while o(p+) = o(p−). Thus G is in
fact simply connected.

Suppose G is an h/2-region. Because G is a
maximal connected component of E, any rectangles
in P \ S horizontally adjacent to G would also by
definition be in E. Thus the left and right boundaries
of G can only be adjacent to rectangles in S because,
by assumption, G is not a boundary h/2-region. G is
an interior h/2-region, and we are done.

If G is not an h/2-region, then it contains rectangles
of height h; recall that as G ⊆ E ⊆ P \ S, it contains
no aligned rectangles of height h. Pick any leftmost
rectangle R′ of height h in G, and let S′ ⊆ G be the
set of all rectangles of height h in G for which bottom
coordinate y1 is an integer multiple of h different from
the bottom of R′; call all rectangles in S′ realigned. For
all points in G \S′, let r′(p) be the number of realigned
rectangles left of p.

In analogy to Lemma 2.4, we show r′(p)(mod 2)
is constant on any given rectangle R ∈ G \ S′. First,
note r′(p) is constant on any rectangle entirely con-
tained in a realigned slice of G (a slice determined by
horizontal lines at vertical interval ch, c ∈ Z, from the
bottom of R′). Suppose rectangle R crosses some line
separating two realigned slices. Examine p = (x, y) and
p̄ = (x̄, ȳ) on the left boundary of R just above and
just below the realigned slicing line. By Lemma 2.2,
x = x̄ = x0 + dw, d ∈ Z+; consider the parity of d.
Using the same notation as above, o(p) = o(p̄) because
realigned slicing lines are offset from the alignment of
vertical boundary edges of G. If u(p) denotes the num-
ber of rectangles of height h not in S′ between p and the
first boundary edge left of p, u(p) = u(p̄) for the same
reason. As d = o(p) + u(p) + r′(p)(mod 2) and also d =
o(p̄)+u(p̄)+r′(p̄)(mod 2), then r(p) = r(p̄)(mod 2) and
r′(p)(mod 2) is constant across all rectangles in G \ S′.

Partition G \ S′ into E′, rectangles for which r′(p)
is even, and O′, the rectangles for which r′(p) is odd.
Let G′ be the largest connected component of O′, joined
with all of its holes; see Figure 7. O′ has at least
one nontrivial component as any rectangles immediately
to the right of R′ are not in S′ by hypothesis, so
satisfy r′ = 1.

The left and right boundaries of G′ must be adja-
cent to rectangles in S′ ⊆ G, so G \ G′ is nonempty



Figure 7: A simply connected h-region G that is not an
h/2-region. Rectangles in S′ are white, while region E′

is shaded dark gray and region O′ is light gray. The
dashed line encloses h-region G′ with strictly smaller
area.

and G′ has strictly less area than G ⊆ P . The lengths
of the vertical boundary segments of G′ are integer mul-
tiples of h, and G′ is simply connected as it is the union
of a connected region with all of its holes. As G′ ⊆ P , it
contains no rectangles of height more than h. Thus G′

is a h-region of strictly smaller area than P . We can
also observe that G′ has even width, as otherwise we
quickly find a contradiction within E′ and O′ in a man-
ner analogous to Lemma 2.3.

Theorem 2.1. For any h-region P , there exists a se-
quence of edge flips within P that yields a tiling of P
entirely with rectangles of height h.

Proof. We proceed by a double induction, on h and on
the area of P . We first note any 1-region is simply an
n×a box consisting of a horizontal n×1 rectangles, that
is, it is tiled with rectangles of height 1. Additionally,
the smallest area h-regions consist of a single rectangle
of height h, and are clearly tiled with rectangles of
height h. These two examples serve as the base cases
for our double induction.

Let h = 2a, a ≤ k, be some height larger than one,
and let P be any h-region. Suppose by induction that
(1) for any h/2-region, there exists a sequence of edge
flips leading to a tiling of the h/2-region entirely by
rectangles of height h/2, and (2) for all h-regions with
strictly smaller area than P , there exists a sequence
of edge flips yielding a tiling consisting entirely of
rectangles of height h.

If P is not linked, then we can separate P into at
least two h-regions of smaller area and apply (2), so
assume P is linked. We an also assume that P never
contains two horizontally-adjacent rectangles of height h
with a valid edge flip between them; any such pairs

⇒ ⇒

⇒ ⇒ ⇒

Figure 8: The edge flip sequence used to reduce the
number of rectangles of height h given an interior h/2-
region tiled entirely by height h/2 rectangles.

can easily be eliminated with single edge flip, creating
instead two rectangles of height h/2, in a preprocessing
step.

We now apply Lemma 2.5, to show that unless
all connected components of E and O are boundary
h/2-regions, then we can always reduce the number of
rectangles of height h in P .

If there exists an interior h/2 region, by (1), flip
so that all rectangles are of height h/2. Recall that
its boundary must consist of rectangles of height h
by the definition of an interior region. For each left
boundary height h rectangle R, ‘move’ it to the right
via a sequence of edge flips. Specifically, flip the
horizontal edge separating the two height h/2 rectangles
immediately to R’s right to create two more rectangles
of height h at the same alignment as R; then, flip R’s
right edge. Repeat until there is a rectangle of hight h
adjacent to a right boundary rectangle of height h, at
which point one final flip eliminates both; see Figure 8.
After each such sequence of flips, there are two fewer
rectangles of height h in P .

If there exists an interior h-region G of strictly
smaller area and even width, by (2), flip edges such
that the region is tiled exclusively by rectangles of
height h. Because of the even width condition, at each
y-coordinate, there are an even number of rectangles
of height h in G; including the rectangles of height h
necessarily adjacent to the left and right boundary of G,
there are still an even number of rectangles. These
can be paired horizontally and edges can be flipped
such that the region occupied by G and the height h
rectangles adjacent to its left and right boundary is
tiled with rectangles of height h/2. There are now
fewer rectangles of height h because, at the least, the
rectangles adjacent to the boundary of G have been
eliminated.
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⇒

⇒

Figure 9: An h-region P in which all connected compo-
nents of E (dark gray) and O (light gray) are boundary
h/2-regions; the tiling of P after applying (1) to each;
and the tiling of P by rectangles of height h resulting
from edge flips between vertically-adjacent rectangles of
height h/2.

After a finite number of steps, all connected compo-
nents of E and O are boundary h/2-regions. By (1), flip
edges such that each h/2-region is tiled by rectangles of
height h/2. As in fact all vertical boundary edges of
these regions are of height h, it is possible to pair all
of these height h/2 rectangles vertically, and flip edges
such that each connected component of E and O is tiled
by rectangles of height h, as demonstrated in Figure 9.
This yields a tiling of P exclusively by rectangles of
height h.

Corollary 2.1. ( Theorem 1.1) The state space Ω̂n
is connected.

Proof. Note that any tilings σ1 and σ2 of the n × n
square are n-regions. By Theorem 2.1, there exists a
sequence s1 of edge flips for σ1 leading to the tiling of
the n× n square by rectangles of height n and width 1,
and similarly there exists s2 for σ2. Applying the edge
flips of s1 and then the reverse of s2 yields a sequence
of edge flips connecting σ1 and σ2.

3 Fast Mixing for Dyadic Tilings when λ < 1.

We proveMn is rapidly mixing for all λ < 3−1/
√
n. This

bound approaches 1 as n grows, so for any λ < 1 there
is sufficiently large n such that the Markov chainMn is
rapidly mixing. To give some perspective, we note that
for all n ≥ 4, we have fast mixing for all λ < 0.577, a
much better constant than obtained in [3]. Already for
n ≥ 1024 we have fast mixing for all λ < 0.966.

We use a path coupling argument and an exponen-
tial metric, as in [6], to prove Theorem 1.2. A coupling
of a Markov chainM is a joint Markov process on Ω×Ω
such that the marginals each agree with M and, once

the two coordinates coalesce, they move in unison. Path
coupling arguments are a convenient way of bounding
the mixing time of a Markov chain by considering only
a subset U of the joint state space Ω×Ω of a coupling.
By considering an appropriate metric φ on Ω, proving
that the two marginal chains, if in a joint configuration
in subset U , get no farther away in expectation after one
iteration is sufficient to show thatM is rapidly mixing.
The following theorem from [6] bounds the mixing time
of a Markov chain by considering a path coupling.

Theorem 3.1. ([6]) Let φ : Ω × Ω → R+ ∪ {0} be a
metric that takes on finitely many values in {0}∪ [1, B].
Let U ⊆ Ω × Ω be such that for all (Xt, Yt) ∈ Ω × Ω,
there exists a path Xt = Z0, Z1, ..., Zr = Yt such that
(Zi, Zi+1) ∈ U for 0 ≤ i < r and

∑r−1
i=0 φ(Zi, Zi+1) =

φ(Xt, Yt).
LetM be a lazy Markov chain on Ω and let (Xt, Yt)

be a coupling ofM, with φt := φ(Xt, Yt). Suppose there
exists a β < 1 such that, for all (Xt, Yt) ∈ U ,

E[φt+1] ≤ βφt.

Then the mixing time satisfies

τ(ε) ≤ ln(Bε−1)

1− β
.

This theorem is particularly useful because the
values taken by φ can be exponential in n. As long as the
distance between two chains in a coupling decreases by
some constant multiplicative factor with each move of
the joint Markov process, the Markov chain is provably
rapidly mixing.

We now apply this exponential metric theorem.
Intuitively, we consider the subset U of the joint state
space Ωn×Ωn of tilings that differ by one edge flip. The
main result we need to show is that for any coupling
whose joint state is two configurations in U , after one
iteration of the Markov chain, the expected distance
between the two coupled chains decreases by a constant
factor of their original distance. It is crucial to define the
appropriate notion of “distance” between two tilings.

Suppose λ < 3−1/
√
n. Consider any dyadic

tilings σ1 and σ2 that differ by one flip between edge e
and edge f , both bisecting a common area 2n rectan-
gle S. Without loss of generality, suppose that |e| ≥ |f |.
We define the distance between σ1 and σ2 to be

φ(σ1, σ2) = φ(σ2, σ1) := λ|f |−|e| ≥ 1,

and similarly for all other adjacent tilings in Ωn. We
note that the distance between any two adjacent pairs
is at least one. For any two tilings σ and σ′ that are
not adjacent in Ωn, the distance between them is the
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Figure 10: Rectangle S of area 2n in marginal tilings At
and Bt.

minimum over all paths in Ωn from σ to σ′ of the sum
of the distances between adjacent tilings along the path,
also at least one.

Formally, let (A,B) denote a coupling of Mn,
where At and Bt are the states of the two chains,
respectively, after t iterations. Let φt = φt(At, Bt) be
the distance between the two chains in the coupling
(A,B) after t iterations. Suppose, without loss of
generality, At and Bt differ by a single flip between
edge e and edge f , where |e| ≥ |f |, e is horizontal in At
of length 2a, f is vertical in Bt of length 2b, and both
bisect a rectangle S of area 2n; see Figure 10.

We wish to bound E[φt+1− φt] in terms of φt. Any
potential moves (x, y, d, o, p) that select an edge not in S
or on the boundary of S have the same effect on both At
and Bt and thus, in these cases, φt+1 = φt, as At+1

and Bt+1 still differ by the same single edge flip. We
next note there is a rectangle in valid dyadic tiling At
of dimension 2a× b, implying that 2ab = n = 2k. As a
and b are powers of 2, a ≥ b by assumption, and k is
even, then a = 2ib where i is odd. We now consider two
cases, a ≥ 8b and a = 2b.

Case a ≥ 8b. We first examine the moves that decrease
the distance between the two coupled chains. There are
exactly two edge flips decrease the distance between the
coupled chains, namely flipping e to f in At or flipping f
to e in Bt. There are 2n values of (x, y, d, o) that select
edge e in At. Precisely, these are each of the 2n points
(x, y) in S together with the appropriate direction from
among t, b that selects e and the appropriate parity o
such that log |e| = o(mod 2). Invoking Lemma 2.1
and examining the parity o shows these same choices
do not yield a flippable edge in Bt; this is where the
value of o plays a critical role, as no edges within or on
the boundary of S in Bt = σ2 are of the same length
as e. As each such selection occurs with probability
1/(8n2), potential edge flip e is selected with probability
q = 1/(4n). In this case the condition for flipping edge e
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Figure 11: An area 2n rectangle S bisected by horizontal
edge e in At and vertical edge f in Bt. Four “bad” edge
flips g, h, i, j exist only if At and Bt are tiled in the
neighborhood of S as shown.

is p < λ2b−2a, which always occurs as 2b−2a ≤ 0. After
such a flip, At+1 = Bt while Bt+1 = Bt. Thus φt+1 = 0
and the change in distance between the two chains is
−φt = −λ2b−2a. The total contribution to the expected
change in φ(A,B) from this move is −q · λ2b−2a.

Similarly, the probability (x, y, d, o) selects edge f
in Bt is also q = 1/(4n), and these values do not yield
a flippable edge in At. Edge f flips only if p < λ2a−2b,
which occurs with probability λ2a−2b < 1. If this move
occurs, then Bt+1 = At = At+1, and the change in
distance between A and B is again −λ2b−2a. The total
contribution to the expected change in φ(A,B) from this
move is

−q · λ2a−2b · λ2b−2a = −q.

While the two potential moves above decrease the
distance between the chains according to metric φ, there
are also moves that increase it. For At, the top and
bottom edges of S are not flippable by Lemma 2.1.
At first glance there are four other potential edge
flips for At involving S, specifically flips of the top
and bottom halves of S’s left and right boundaries.
However, again by Lemma 2.1, at most one of the left
boundary and the right boundary of S contains flippable
edges. Without loss of generality, assume it is the right
boundary of S, and label the two potentially flippable
edges as g and h. Similarly, for Bt, at first glance
there exist four other potential edge flips involving S,
specifically the left and right halves of S’s top and
bottom boundaries. By Lemma 2.1, we assume without
loss of generality that only portions of S’s bottom
boundary are potentially flippable, and label the two
potentially flippable edges as i and j.

Such potential flips only occur if At and Bt are
tiled in the neighborhood of S as in Figure 11. We
suppose this worse case neighborhood tiling exists.
Edges g and h are each selected by values (x, y, d, o)
in At with probability q; both are then flipped with
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probability λ4a−b. The tiling At+1 resulting from this
flip is at distance λb−4a from configuration At. The
same selection (x, y, d, o) does not result in any flip
in Bt, so Bt+1 = Bt. The change in distance between A
and B for these two moves is at most λb−4a. In all, the
contribution by these moves to the expected change in
distance between the coupled chains is at most

2 · qλ4a−b · λb−4a = 2q.

Similarly, edges i and j are selected to be flipped
in Bt by values (x, y, d, o) with probability q, and once
selected, these edge flips occur if p < λ4b−a, a bound
which is at least 1 for a ≥ 8b. The tiling Bt+1

resulting from either flip is at distance at most λ4b−a

from configuration Bt. These same values mean that
At+1 = At. Thus the change in distance between A
and B for these two moves is at most λ4b−a. In all, the
contribution by these moves to the expected change in
distance between the two chains in the coupling is at
most 2 · q · λ4b−a.

In total, we have shown

E[φt+1 − φt] ≤ −q − qλ2b−2a + 2q + 2qλ4b−a

= −qλ2b−2a(λ2a−2b + 1− 2λ2a−2b − 2λ2b+a)

= −qφt(1− λ2a−2b − 2λ2b+a)

We first note that as a ≥ 8b, and in particular, as
a ≥
√
n,

2a− 2b ≥ 2(a− 1

8
a) ≥ a ≥

√
n.

Additionally, 2b+ a ≥ a ≥
√
n. Thus,

λ2a−2b + 2λ2b+a ≤ λ
√
n + 2λ

√
n = 3λ

√
n

Provided λ < 3−1/
√
n, as we assumed at the start of this

section, we have that

λ2a−2b + 2λ2b+a ≤ 3λ
√
n < 1

Then,

E[φt+1] ≤ (1− qc)φt,

where c is some positive constant, depending on how
close λ is to the bound given above. This satisfies the
requirement to apply the exponential metric theorem
for the case a ≥ 8b.

Case a = 2b. The analysis of potential good moves
and bad moves remains the same as the first case above,
though certain probabilities and distances change. Ini-
tially, φ(At, Bt) = λ2b−2a = λ−2b, as in the previous
case. We note that the contribution to the expected

change in distance from good moves flipping edges e
and f is still −q(1+λ2b−2a) = −q(1+λ−2b). The contri-
butions to the expected change in distance from flipping
edges g and h is still 2q. We note now, however, that for
the edges i and j, once selected by (x, y, d, o), flips now
occur with probability qλ4b−a = qλ2b rather than prob-
ability q. Such a move results in a change in distance be-
tween the chains in the coupling of λa−4b = λ−2b. The
expected contribution to the change in distance from
these moves is now 2qλ2bλ−2b = 2q.

In total, we see that in this case,

E[φt+1 − φt] ≤ −q(1 + λ−2b) + 4q

= −qλ−2b(λ2b + 1− 4λ2b)

= −qφt(1− 3λ−2b).

We note that in this case, 2ab = n so a = 2b =
√
n.

Provided λ < 3−1/
√
n, it follows that 3λ

√
n < 1, the

required condition holds and we get the same bound on
E[φt+1] as in the previous case, though with a different
constant c, also depending on λ.

Theorem 3.2. The mixing time of Markov chain Mn

is O(n2 log n) for all λ < 3−1/
√
n.

Proof. We apply the exponential metric theorem
from [6] (Theorem 3.1), using the coupling (A,B) and
metric φ defined above.

We first must find an exponential upper bound B
on the values φ may take. If we let σ∗ denote the
ground state tiling, tiling the n×n square with n smaller
squares of dimension

√
n ×

√
n, careful consideration

shows that the two dyadic tilings at farthest distance φ
from σ∗ are the tiling consisting of all n× 1 horizontal
rectangles σh and the tiling consisting of all 1×n vertical
rectangles σv. We note that one path in Ωn from σh
to σ∗ consists of (log n)/2 = k/2 stages, where in each
stage n/2 edge flips are performed, reducing the length
of each of the n rectangles by half; see Figure 12.

The contribution to φ(σh, σ
∗) from each of these

edge flips is at most λ−n, and there are nk/4 such
moves in this particular path in Ωn from σh to σ∗,
giving φ(σh, σ

∗) ≤ (nk/4)λ−n. The same holds for σv.
There is thus a path between any two tilings, through
the ground state σ∗, yielding the bound

φ(σ1, σ2) ≤ (nk/2)λ−n ≤ n log(n)λ−n.

Thus φ takes on values in the range

{0} ∪ [1, n log(n)λ−n].

We now apply Theorem 3.1 with metric φ as defined
above. We note that φ satisfies the path requirement



⇒

⇒...⇒

σh

σ∗

Figure 12: A sequence of edge flips from σh to σ∗.

with U being the set of all pairs of tilings that are
adjacent in Ωn, and that φ takes on values in {0}∪[1, B]
for B = n log(n)λ−n. Additionally Mn is lazy, as
discussed in Section 2. For the coupling above, we
have demonstrated that E[φt+1] ≤ (1− qc)φt whenever
λ < 3−1/

√
n. Finally, by Theorem 3.1, we conclude that

τ(ε) ≤ ln(n log nλ−nε−1)

qc

≤ 4n2

c
ln(n log nλ−1ε−1) = O(n2 log(n/ε)).

When we assume ε = 1/4, as is standard practice, we
see τ = τ(1/4) = O(n2 log(n)).

This implies for all λ < 1, Mn mixes in time
O(n2 log n), as claimed in Theorem 1.2, where the con-
stant in the O(·) notation depends on λ.

4 Slow Mixing for General and Dyadic Tilings

In this section, we prove that for certain values of λ
both chains can require exponential time to converge.
We begin by proving that in both the dyadic and
general settings, the Markov chains Mn and M̂n mix
slowly when λ > 1. Next, we show that for general
tilings, unlike in the dyadic case, when λ < 1, the
Markov chain M̂n mixes slowly. In each of these cases
we prove that the Markov chain requires exponential
time by demonstrating that the state space contains a
bottleneck that requires exponential expected time to
cross. We use the bottleneck to bound the conductance
of the Markov chain. The conductance of an ergodic
Markov chain M with stationary distribution π is

ΦM = min
S⊆Ω

π(S)≤1/2

1

π(S)

∑
s1∈S,s2∈S

π(s1)P(s1, s2).

We then use the bound on conductance to bound the
mixing time using the following theorem that relates
conductance and mixing time (see, e.g., [18]).

Theorem 4.1. For any Markov chain with conduc-
tance ΦM, ∀ε > 0 we have

τ(ε) ≥
(

1

4ΦM
− 1

2

)
log

(
1

2ε

)
.

A change in terminology will be convenient for
the remainder of this section whereby we let |σ| be
the sum of the perimeters of the rectangles in the
dissection (or tiling) σ, rather than the total edge
length. This will simplify the analysis. Using detailed
balance, we reformulate stationary distributions π and π̂
for Mn and M̂n as follows. Let w(R) be the width of
rectangle R and l(R) be the length (height) of R. For
convenience, we now let |σ| denote the total perimeter
of σ, that is, |σ| =

∑
R∈σ 2w(R) + 2l(R). We note

this total perimeter divided by 2 differs from the total
edge length of σ by exactly 2n. By detailed balance,
we rewrite π(σ) = λ|σ|/2/Z =

(∏
R∈σ λ

w(R)+l(R)
)
/Z

and π̂(σ/2) =
(∏

R∈σ λ
w(R)+l(R)

)
/Ẑ; here Ẑ and Z

are new normalizing constants, differing from those in
Section 2.2 by a multiplicative factor of λ2n.

First, we prove the following lemma bounding the
number of n-tilings in the general setting which we use
in both slow mixing proofs.

Lemma 4.1. The number of general tilings of Λn satis-
fies |Ω̂n| ≤ (log n)n.

Proof. Consider any rectangle R in an n-tiling. By
assumption R has dimensions 2w×2h for integers w, h ∈
{0, 1, . . . , k = log n} and thus has log n possible heights.
Given the height of R, the width is uniquely determined
since R has area n. To bound the total number of tilings,
there are log n choices for the height of the rectangle
that covers the lowest leftmost unit square of Λn. Next,
consider the rectangle that covers the lowest leftmost
unit square not yet tiled. Given the height of all
rectangles ordered in this way the rectangle tiling is
uniquely determined. There are n different rectangles
with log n possible heights therefore |Ω̂n| ≤ (log n)n.

4.1 Slow Mixing when λ > 1. We start by showing
that for both dyadic and general rectangle tilings when
λ > 1, the Markov chains Mn and M̂n both take
exponential time to converge. Informally, consider the
tilings with at least one n×1 rectangle and those with at
least one 1× n rectangle. In order to go between these
sets we must go through a tiling where all rectangles
have width and length at least 2 and thus perimeter at
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most n + 4. We show these tilings are exponentially
unlikely and thus our state space forms a bottleneck.

Proof of Theorem 1.3 and Theorem 1.4. We note that
the proofs are identical for Mn and M̂n; here we show
for M̂n. We first partition the state space into two
sets, B, the set of tilings with no rectangles of dimension
1×n, and B, the remainder. Notice that B contains the
tiling σh where all rectangles are n× 1 and B contains
the tiling σv where all rectangles are 1 × n. Both of
these tilings have weight π(σh) = π(σv) = Ẑ−1λn(1+n).
Therefore,

π(B) ≥ π(σh) ≥ Ẑ−1λn(1+n),

π(B) ≥ π(σv) ≥ Ẑ−1λn(1+n).

Let Bc ⊂ B be the set of tilings containing no (1×n) or
(n× 1) rectangles. Every rectangle in every tiling in Bc
has perimeter at most n+4 and thus has weight at most
Ẑ−1λn(n+4)/2. By Lemma 4.1, |Bc| ≤ |Ω̂n| ≤ (log n)n;
we briefly note this is true in the dyadic case as well
although tighter bounds exist. Combining these, we see

π(Bc) ≤ (log n)nẐ−1λn(n+4)/2,

which is exponentially smaller than the weight of B
and B.

Using these bounds, we next bound the conductance
of the Markov chain and then the mixing time using
Theorem 4.1. If π(B) ≤ 1/2, then combining the
definition of conductance with the bounds on π(B) and
π(Bc) yields

ΦM̂n
≤ 1

π(B)

∑
b1∈B,b2∈B

π(b1)P(b1, b2)

=
1

π(B)

∑
b1∈Bc,b2∈B

π(b1)P(b1, b2)

≤ 1

π(B)

∑
b1∈Bc

π(b1) =
π(Bc)

π(B)

≤ (log n)nZ−1λn(n+4)/2

Z−1λn(1+n)
=

(log n)n

λn2/2−n = λ−c1n
2

,

for constant c1 and n sufficiently large when λ is a
constant greater than 1. Alternately, if π(B) > 1/2
then π(B) ≤ 1/2 and so by detailed balance and the
bounds on π(B) and π(Bc),

ΦM̂n
≤ 1

π(B)

∑
b1∈B,b2∈B

π(b2)P(b2, b1)

=
1

π(B)

∑
b1∈B,b2∈B

π(b1)P(b1, b2)

=
1

π(B)

∑
b1∈Bc,b2∈B

π(b1)P(b1, b2) ≤ π(Bc)

π(B)

≤ (log n)nZ−1λn(n+4)/2

Z−1λn(1+n)
=

(log n)n

λn2/2−n = λ−c1n
2

,

for constant c1 defined above and n sufficiently large,
whenever λ is a constant greater than 1.

In both cases, ΦM̂n
≤ λ−c1n

2

. Applying Theo-
rem 4.1 proves that for all ε > 0, the mixing time of
M̂n satisfies

τ(ε) ≥
(
λc1n

2

/4− 1

2

)
log

(
1

2ε

)
= Ω(λc1n

2

ln ε−1).

Letting ε = 1/4 we have that τ = Ω(λc1n
2

), as desired.

4.2 Slow Mixing for General Tilings, λ < 1.
Next, we consider general tilings when λ < 1 and
show that in this setting M̂n takes exponential time
to converge by again demonstrating a bottleneck in the
state space. In this case however the bottleneck is much
more complex. Define a bar to be a rectangle of width 1
and length (height) n. The bottleneck in Ω̂n is based on
the separation of a tiling which measures the distance
between the bars in the tiling. More formally, define the
distance between two bars to be the difference in their
x-coordinates plus one. For example, two adjacent bars
are at distance 2 and two bars separated by a rectangle
of size 2×n/2 are at distance 4. Given an n-tiling, pair
the bars in order from left to right (there must be an
even number of bars since n = 2k). The separation of a
tiling is the sum of the distances between each pair of
bars. Let S be the set of tilings with separation greater
than or equal to n/2+2 and S be the remaining tilings,
namely those with separation less than n/2+2. We show
all moves from S to S involve a tiling with at least 4
bars and separation n/2+2, and the total weight of this
set of tilings is exponentially smaller than the weight of
both S and S.

Proof of Theorem 1.5. We begin by proving a lower
bound on π(S) and π(S̄). Let gn be the “ground state”
tiling consisting entirely of rectangles of size

√
n×
√
n.

This tiling has perimeter |gn| = 4n
√
n. Since gn ∈ S

because gn has no bars and thus separation 0, this
implies that π(S) > π(gn) = Ẑ−1λ2n

√
n. Next we

will define a special tiling sn ∈ S. Let sn have one
bar on the far left side of Λn and one bar on the far
right side of Λn. Next to the leftmost bar there is a
column with two rectangles of width 2 followed by a
column with four rectangles of width 4 and so forth until
there is a column with only rectangles of width 2k/2−1.
The remainder of the tiling is filled with rectangles of
size
√
n ×
√
n. Note that the combined width of these



Figure 13: The tiling s64.

columns is 2 +
∑k/2−1
i=1 2i =

√
n so the remainder of

the tiling has width n −
√
n and can be tiled with

n−
√
n rectangles of size

√
n×
√
n. Figure 13 shows s64.

Configuration sn has perimeter

|sn| = 4(1 + 2k) +

k/2−1∑
i=1

(2i2(2i + 2k−i)) + (n−
√
n)4
√
n

= 4n3/2 + n log n− (4/3)n+ (4/3).

As sn ∈ S because it has separation n, this implies
π(S) > π(sn) = Ẑ−1λ|sn|/2.

Let SC be the set of tilings in S from which it is
possible to transition to S. We will prove that every
tiling in SC has at least four bars and separation exactly
n/2 + 2. We use the following lemma.

Lemma 4.2. One move of the chain M̂n changes the
separation of a tiling by 0, +2 or -2.

Proof. The only moves of the Markov chain that change
the separation are when two bars are added or removed.
Let’s consider adding two bars first. Let P be the
pairing of the bars in the configuration before the two
bars are added. There are two cases; either the two bars
are added between two bars that were paired in P , or
between two pairs of bars. If they are added between
two pairs, then they will be paired up in the new pairing
and add 2 to the separation. If they are added between
two bars bl and br paired in P with distance d, then
the new bars will be paired with bl and br. The sum of
the distances will remain unchanged. Next, consider the
case where two bars are removed. Again, there are two
cases. If the two bars are paired, then the separation
decreases by two however if the two bars are paired with
two other bars the distance remains unchanged.

Configuration gn has separation 0. Since all tilings
are connected by the Markov chain M̂n which by

Lemma 4.2 changes the separation by an even number at
each step, this implies that the separation of all tilings
is even. Additionally, to go from S to S we must go
through a tiling with separation exactly n/2 + 2. Given
a tiling with two bars and separation n/2 + 2 there is
no way to decrease the separation and thus no way to
transition to S. Thus, every tiling in SC has separation
n/2 + 2 and at least four bars. Next, we will upper
bound the weight of each tiling σ in SC . To do this,
we lower bound the perimeter of any tiling of a lattice
region of size (n/2 − 2) × n and then show that every
tiling in SC has two such regions.

Lemma 4.3. Any tiling σ′ of an (n/2 − 2) × n region
has perimeter |σ′| ≥ 2n3/2 + n log n− (16/3)n− (8/3).

Proof. We will assign each unit square in the lattice
region a weight based on the perimeter of the rectan-
gle the square is contained in so that the combined
weight of all n squares within a rectangle is equal to
the perimeter of the rectangle. Assume the unit square
at location (i, j) is contained in a rectangle of size
2a × 2k−a then the weight wi,j = 2(2a + 2k−a)/2k.
Since each rectangle has area 2k, the sum of all weights∑n/2−2
j=1

∑n
i=1 wi,j = |σ′|. Consider the binary represen-

tation of the width n/2 − 2 of the region, 011 . . . 110.
Since each rectangle has width 2a for some integer a this
implies that in each row, for each integer ` = 1 to k/2−1
there must be either a rectangle of width 2` or multi-
ple rectangles of width smaller than 2` whose widths
add up to 2`. If there is a single rectangle of width 2`

then the 2` unit squares in this row contained in this
rectangle each have weight 2(2` + 2k−`)/2k. If there is
instead multiple smaller rectangles then they will have
larger perimeter and thus larger weight. Thus, the com-
bined weight of these unit squares in each row is at least∑k/2−1
`=1 2`(2(2` + 2k−`)/2k) = log n − (4/3) − 8/(3n).

Since the minimum perimeter rectangle is the 2k/2×2k/2

square, wi,j ≥ 4/2k/2. Thus the remaining 2k−1 − 2k/2

unit squares in each row have combined weight at least
4(2k−1 − 2k/2)/2k/2 = 2

√
n − 4. This implies that the

total perimeter satisfies

|σ′| =

n∑
i=1

n/2−2∑
j=1

wi,j

≥
n∑
i=1

(
log n− (4/3)− 8/(3n) + 2

√
n− 4)

)
= 2n3/2 + n log n− (16/3)n− 8/3.

This is the desired result.

Consider any tiling σ with separation n/2 + 2 and
at least four bars. Label the bars b1, b2, . . . bB from
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left to right. Next, label the regions between the pairs
of bars p1, p2, . . . pB/2 and the gaps between the pairs
g0, g1, g2, . . . gB/2, as shown in Figure 14. Let w(pi),
w(gi) denote the widths of the regions between the bars.

Now, since σ has separation n/2 + 2,

this implies that
∑B/2
i=1 (w(pi) + 2) =

n/2 + 2. Reorder the tiling so it is ordered
g0, . . . , gB/2, b1, b2, b3, . . . , bB−1, p1, p2, . . . , pB/2bB .
Notice that the region b4 ∪ . . . ∪ bB−1 ∪ p1 ∪ . . . ∪ pB/2
has width n/2−2 as does the region g0∪g1∪ . . .∪gB/2.
Thus we can apply Lemma 4.3 to show that the total
perimeter of tiling σ must be at least

|σ| ≥ 4(2 + 2k+1) + 2

(
2n3/2 + n log n− 16

3
n− 8

3

)
= 4n3/2 + 2n log n− (8/3)n+ 8/3.

Combining this bound with the bound on the num-
ber of tilings from Lemma 4.1 gives π(SC) ≤
Ẑ−1(log n)nλ2n3/2+n logn−(4/3)n+(4/3), which is expo-
nentially smaller than the above bound on π(S), as de-
sired. Using these bounds we bound the conductance of
the Markov chain and then the mixing time using Theo-
rem 4.1. If π(S) ≤ 1/2, then combining the definition of
conductance with the bounds on π(S) and π(SC) yields

ΦM̂n
≤ 1

π(S)

∑
s1∈S,s2∈S

π(s1)P(s1, s2)

=
1

π(S)

∑
s1∈SC ,s2∈S

π(s1)P(s1, s2)

≤ 1

π(S)

∑
s1∈SC

π(s1) =
π(SC)

π(S)

≤ (log n)nλ2n3/2+n logn−(4/3)n+(4/3)

λ2n3/2+(n logn)/2−(2/3)n+(2/3)

= (log n)nλ(n logn−(4/3)n+(4/3))/2

= 2n log lognλ(n logn−(4/3)n+(4/3))/2 = λc2n logn,

for constant c2 and n sufficiently large when λ < 1 is a
constant.

If π(S) > 1/2, then π(S) ≤ 1/2, and by detailed
balance and bounds on π(S), π(S) and π(SC),

ΦM̂n
≤ 1

π(S)

∑
s1∈S,s2∈S

π(s1)P(s1, s2)

=
1

π(S)

∑
s1∈S,s2∈S

π(s2)P(s2, s1)

=
1

π(S)

∑
s1∈SC ,s2∈S

π(s1)P(s1, s2) ≤ π(SC)

π(S)

≤ (log n)nλ4n3/2+2n logn−2n

λ4n3/2+n logn−n = λc2n logn,

g0 p1 g1 p2 g2

⇒
g0 g1 g2 p1 p2

Figure 14: An example labeling of the bars and regions
surrounding bars.

for constant c2 defined above and n sufficiently large
when λ < 1 is a constant. In both cases,

ΦM̂n
≤ λc2n logn.

Applying Theorem 4.1 proves that the mixing time of
M̂n satisfies

τ(ε) ≥
(
λ−c2n logn/4− 1

2

)
log

(
1

2ε

)
= Ω(λ−c2n logn ln ε−1).

Letting ε = 1/4, we have that τ = Ω(λ−c2n logn).
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