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Abstract

The problems of uniformly sampling and approximately counting contingency tables have been
widely studied, but efficient solutions are only known in special cases. One appealing approach is
the Diaconis and Gangolli Markov chain which updates the entries of a random 2× 2 submatrix.
This chain is known to be rapidly mixing for cell-bounded tables only when the cell bounds are
all 1 and the row and column sums are regular. We demonstrate that the chain can require
exponential time to mix in the cell-bounded case, even if we restrict to instances for which the
state space is connected. Moreover, we show the chain can be slowly mixing even if we restrict to
natural classes of problem instances, including regular instances with cell bounds of either 0 or
1 everywhere, and dense instances where at least a linear number of cells in each row or column
have non-zero cell-bounds.

1 Introduction

We consider a popular approach for sampling standard and cell-bounded contingency tables based
on a local Markov chain. Standard contingency tables are non-negative matrices consistent with
prescribed row and column sums, while cell-bounded contingency tables additionally satisfy given
cell bounds. More precisely, suppose that we are given a list of positive integers r = (r1, . . . , rm)
called the row sums and another list of positive integers c = (c1, . . . , cn) called the column sums
such that

∑m
i=1 ri =

∑n
j=1 cj . The set of standard contingency tables Σr,c is the set of m × n non-

negative integer matrices T that satisfy the given row and column sums. In the more general case
of cell-bounded contingency tables, we are given row sums r, column sums c, and cell-bounds bij with
1 ≤ i ≤ m and 1 ≤ j ≤ n satisfying bij ≤ min(ri, cj), for all i, j. Then the cell-bounded contingency
tables Σr,c,b are the m × n non-negative matrices T such that

∑n
j=1 ti,j = ri,

∑m
i=1 ti,j = cj , and

0 ≤ ti,j ≤ bi,j for all i, j.
The problem of sampling contingency tables almost uniformly at random was first studied for its

applications in statistics [5]. Subsequently, there has been a long line of work focused on sampling
and approximately counting contingency tables (see, e.g., [1, 2, 3, 7, 8, 12, 15]). Despite this extensive
amount of work, these problems have been solved only in special cases. Dyer, Kannan and Mount
[8] and Morris [14] showed that there is an fpras, a fully polynomial randomized approximation
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scheme (see [16]), for approximately counting standard contingency tables when the row and column
sums are all sufficiently large using methods for estimating the volume of a convex body. There are
also a variety of proofs showing there is an fpras for approximately counting standard tables when
there are only a constant number of rows: by Cryan and Dyer [2] using dynamic programming and
volume estimation, by Cryan et al. [3] using a local Markov chain, and by Dyer [7] using dynamic
programming. Cryan, Dyer and Randall [4] extended these results to the more general setting with
cell bounds by showing that there is also an fpras for cell-bounded tables in the same two cases:
when the row and column sums are large or when the number of rows is a constant. Their proofs
used dynamic programming and volume estimation. In addition to generalizing previous results,
this work is significant because cell-bounded tables are self-reducible, the class of problems for which
there is a known polynomial-time reduction between approximate counting and sampling (see [11]),
so the existence of an fpras implies we can efficiently sample cell-bounded tables in these cases as
well. The standard contingency table problem is not known to have this useful property.

Our work here focuses specifically on the Markov chain approach introduced by Diaconis and
Gangolli [6]. In each step of the chain we choose two rows and two columns at random, and then
we modify the entries in this 2 × 2 submatrix by trying to add 1 (or in general a fixed integer)
to two diagonal entries and subtracting the same amount from the other two entries, so long as
the resulting matrix is non-negative (and still satisfies the cell-bounds, if they exist). In the case
of standard contingency tables, the Diaconis-Gangolli chain always connects the state space and is
known to be rapidly mixing when there are a constant number of rows [2]. However, there is no
evidence suggesting that this chain is a poor approach to sampling in other situations.

Even less is known for cell-bounded tables. Kannan, Tetali and Vempala [12] showed that the
Diaconis-Gangolli chain is rapidly mixing when the cell bounds are all 1 and the row and column
sums are regular. However, if the cell bounds are restricted to being either 0 or 1, the chain might not
even connect the state space. Consider, for example, the 3× 3 case where r = (1, 1, 1), c = (1, 1, 1)
and b1,1 = b2,2 = b3,3 = 0; note that it is not possible to move between the two valid tables with
moves of the Markov chain.

It is natural to ask whether the Diaconis-Gangolli chain is always rapidly mixing when restricted
to instances Σr,c,b where the state space is connected. We show that in the cell-bounded setting,
even when the chain connects the space, it can require exponential time to converge. While not so
surprising, no such evidence exists for standard tables. This may help explain why there has been
such limited success showing the chain is fast for large classes of graphs.

Further, we give additional evidence that this chain can be a bad approach to sampling cell-
bounded contingency tables by considering two natural special cases of inputs. We show that the
chain can require exponential time even in the dense case (the number of cells with positive cell-
bounds in each row and column is linear) and the regular case (when all the ri and cj are equal).
Our proofs of slow mixing are based on demonstrating a bottleneck in the state space that implies
that the conductance of the Markov chain is very small.

2 Preliminaries

Let m,n ∈ N and let r = (r1, r2, . . . , rm) ∈ Nm and c = (c1, c2, . . . , cn) ∈ Nn be vectors with∑m
i=1 ri =

∑n
j=1 cj . Let b = bi,j ∈ N for every i ∈ [m], j ∈ [n] with bi,j ≤ min(ri, cj). A non-negative

integer matrix (ti,j)m×n is a cell-bounded contingency table with row sums r, column sums c, and
cell-bounds b, if it satisfies:
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(i) for every i ∈ [m], we have
∑n

j=1 ti,j = ri,

(ii) for every j ∈ [n], we have
∑m

i=1 ti,j = cj , and

(iii) for every i ∈ [m], j ∈ [n], we have 0 ≤ ti,j ≤ bi,j .

The row and column sums are also called the marginals. Denote the set of all such tables by Σr,c,b.
Note that the lower bounds on ti,j of 0 could be generalized but this does not change the model,
since any lower bound 0 < ai,j ≤ bi,j can be eliminated by replacing the cell-bound by bi,j −ai,j , and
making the corresponding row and column sums ri − ai,j and cj − ai,j , respectively.

The cell-bounded contingency table problem is to generate a (uniformly) random table in Σr,c,b.
We describe below a well-known Markov chain which performs a random walk on the space of cell-
bounded tables.

The Diaconis-Gangolli (DG) Markov chain.
Given T ∈ Σr,c,b, the Markov chain performs a step as follows:

1. With probability 1/2 do nothing, i. e., let T ′ = T .

2. Otherwise, choose i1 < i2 uniformly at random from [m] and j1 < j2 uniformly at random from
[n].

3. With probability 1/2 let d = 1; else let d = −1.

4. Let D = (di,j)m×n be a matrix with only four non-zero entries: di1,j1 = di2,j2 = d and di1,j2 =
di2,j1 = −d. If T + D satisfies the cell bounds bi,j and is non-negative, then let T ′ = T + D.

5. Return T ′ as the new contingency table.

Since this Markov chain is symmetric, if the chain is connected, its stationary distribution π
is uniform over Σr,c,b. However, it is possible that for certain cell-bounds the Markov chain is not
irreducible. In this work we focus on input instances for which the Markov chain is irreducible (and
therefore also ergodic).

It is fairly standard to use the mixing time to bound the convergence time of a Markov chain.
Let P denote the transition matrix of a Markov chain M with state space Ω. Thus, P t(x, ·) denotes
the distribution after t steps of the chain, with starting state x. The mixing time τx(ε) of M starting
at state x ∈ Ω is

τx(ε) = min{t ≥ 0 | dtv(P t(x, ·), π) ≤ ε},
where dtv(µ, ν) = 1

2

∑

x∈Ω

|µ(x) − ν(x)| is the total variation distance. The mixing time of M is

τ(ε) = maxx∈Ω τx(ε).
The conductance ΦM of an ergodic Markov chain M = (Ω, P ) with stationary distribution π is

defined as follows:

ΦM = min
S⊆Ω,π(S)≤1/2

∑
s1∈S,s2∈Ω\S π(s1)P (s1, s2)

π(S)
.

The following theorem relates conductance to the mixing time.

Theorem 1 ([9, 13]). Let M be a Markov chain on Ω such that M(u, u) ≥ 1
2 for every u ∈ Ω and

let πmin = minx∈Ω π(x). Then,

1
2

(
1

2ΦM
− 1

)
log

(
1
2ε

)
≤ τ(ε) ≤ 2

Φ2
M

log
(

1
πminε

)
.
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3 Slow Mixing of the Diaconis-Gangolli Chain

Our main theorems demonstrate that the Diaconis-Gangolli chain can have exponentially large mix-
ing time in the cell-bounded case. Before stating our results, it will be useful to present a graph
interpretation of cell-bounded tables when all the cell bounds bi,j are 0 or 1. Let G = (V1, V2, E) be a
bipartite graph with partition sizes m, n and adjacency matrix B = {bi,j}, i. e., V1 = {v1,1, . . . , vm,1},
V2 = {v1,2, . . . , vn,2}, and E = {(vi,1, vj,2) | bi,j > 0}. Then a cell-bounded contingency table T
satisfying row sums ri, column sums cj and bounds bi,j can be interpreted as a subgraph of G with
degree requirements degT (vi,1) = ri for every i ∈ [m] and degT (vj,2) = cj for every j ∈ [n].

3.1 Dense Instances

We show there is a family of dense instances, i.e., where at least a linear number of cell bounds in
each row and column are non-zero, for which the Diaconis-Gangolli chain connects the space but
mixes exponentially slowly. Dense instances are significant because they are close to the graphical
case with all bi,j = 1.

Theorem 2. There exists a family of n× n instances of the cell-bounded contingency table problem
such that

(i) the upper-bound on each cell is either 0 or 1,

(ii) the Diaconis-Gangolli chain connects the state space,

(iii) the number of cells with non-zero upper-bound is at least n/4 in each row and each column, and

(iv) the mixing time of the chain is greater than an exponential in n.

Proof. Since all the upper-bounds for all cells are at most 1, we can use the graph representation of
the problem. Before we describe the family of n× n instances, we introduce an important building
block for each instance, a complete bipartite graph on k + k vertices: Hk = (Wk,1,Wk,2, Fk) where
Wk,` = {w1,`, w2,`, . . . , wk,`} for ` ∈ {1, 2}, and Fk = Wk,1 ×Wk,2.

An n× n instance Gn is a bipartite graph consisting of four copies of Hk, let us call them H
(1)
k ,

H
(2)
k , H

(3)
k , and H

(4)
k , where all the vertices are distinct except for w

(j)
1,2 = w

(j+1)
1,1 for j ∈ [3] and

w
(4)
1,2 = w

(1)
1,1 (and the vertices w

(j)
1,1, j ∈ [4], are four distinct vertices), see Figure 1. We also need to

specify the row and column sums, or, alternatively for the graph representation, the required degrees
(see Figure 1): for ` ∈ [2] and j ∈ [4],

deg(w(j)
i,` ) =

{
i− 1 for i > 1,
1 for i = 1.

Notice that part (i) of the theorem follows from the construction and since n = 4k− 2, part (iii)
is also immediate. Before we prove the remaining two parts, let us show the following claim:

Claim 3. Any subgraph G′ of Gn that satisfies the required degree sequence is exactly one of the
following two types:

a) both w
(1)
1,1 and w

(1)
1,2 are connected to vertices in H

(1)
k in G′ and both w

(3)
1,1 and w

(3)
1,2 are connected

to vertices in H
(3)
k in G′, or
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Figure 1: The graph representation of the input instances from Theorem 2.

b) both w
(2)
1,1 and w

(2)
1,2 are connected to vertices in H

(2)
k in G′ and both w

(4)
1,1 and w

(4)
1,2 are connected

to vertices in H
(4)
k in G′.

Proof. We know that w
(1)
1,1 = w

(4)
1,2 has exactly one neighbor in G′ and by the definition of Gn, this

neighbor is either in H
(1)
k or H

(4)
k . Suppose first that the neighbor is in H

(1)
k . Then we claim that the

(only) neighbor of w
(1)
1,2 must also be in H

(1)
k . Suppose for contradiction that w

(1)
1,2 is connected to a

vertex outside of H
(1)
k (i. e., it is connected to a vertex in H

(2)
k ). Let us consider the part G′(1) of G′

that is a subgraph of H
(1)
k . Then the degrees (in G′(1)) of the vertices in W

(1)
k,1 are (1, 1, 2, . . . , k − 1)

whereas the degrees of the vertices in W
(1)
k,2 are (0, 1, 2, . . . , k− 1). However, this is not possible since

the sum of the degrees of the vertices in W
(1)
k,1 must be equal to the sum of the degrees of the vertices

in W
(1)
k,2 (and it equals the number of edges of G′(1)). Thus, w

(1)
1,1 is connected to a vertex in H

(1)
k if

and only if w
(1)
1,2 is connected to a vertex in H

(1)
k . The statement of the claim follows by symmetry

of H
(1)
k , . . . , H

(4)
k .

Part (ii) of the theorem follows from a proof by Kannan et al. [12] who show that the Diaconis-
Gangolli chain connects the state space for every input instance consisting of the complete graph
and all cell-bounds equal to 1. In our case the graph is not the complete graph; however, the Hk’s
are complete graphs. Now suppose we want to move from a graph G′

1 to a graph G′
2 using Diaconis-

Gangolli (DG) moves. Without loss of generality assume that the vertex w
(1)
1,1 is connected to a vertex

in H
(1)
k . Then, by the above claim, G′

1 satisfies a) while G′
2 satisfies either a), or b). We will consider

both cases: if G′
2 satisfies b), then we will use DG moves to perform the following modifications:

1. Consider the part G′′
1 of G′

1 that is a subset of H
(1)
k and the part G′′

2 of G′
2 that is a subset of H

(1)
k :
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notice that the vertices w
(1)
1,1 and w

(1)
1,2 have degree 0 in G′′

2 but all the other degrees are equal. Let

G∗
2 be identical to G′′

2 with the edge (w(1)
1,1, w

(1)
1,2) included. We use Kannan et al. to modify G′′

1

into G∗
2.

2. Analogously, modify the part of G′
1 that is a subset of H

(3)
k into the part of G′

2 that is a subset of
H

(3)
k , with edge (w(3)

1,1, w
(3)
1,2) included.

3. Using a single DG move, swap edges (w(1)
1,1, w

(1)
1,2) and (w(3)

1,1, w
(3)
1,2) for (w(2)

1,1, w
(2)
1,2) and (w(4)

1,1, w
(4)
1,2).

4. Modify the part of G′
1 that is a subset of H

(2)
k , with edge (w(2)

1,1, w
(2)
1,2) included, into the part of

G′
2 that is a subset of H

(2)
k .

5. Finally, modify the part of G′
1 that is a subset of H

(4)
k , with edge (w(4)

1,1, w
(4)
1,2) included, into the

part of G′
2 that is a subset of H

(4)
k .

If G′
2 satisfies a), then the situation is even easier:

1. Using the result of Kannan et al., modify the part of G′
1 that is a subset of H

(1)
k into the part of

G′
2 that is subset of H

(1)
k .

2. Similarly, modify parts of G′
1, G′

2 that are subsets of H
(3)
k .

3. Notice that the part of G′
1 that is a subset of H

(2)
k \ {w(2)

1,1, w
(2)
1,2} is uniquely given (its degree

sequence is (1, 2, . . . , k − 1), (1, 2, . . . , k − 1) and there is a single graph satisfying this degree
sequence); the same holds for the corresponding part of G′

2. Thus, they are identical and no
modification is necessary.

4. Again, no modification is necessary for the parts of G′
1, G′

2 that are subsets of H
(4)
k \ {w(4)

1,1, w
(4)
1,2}.

It remains to prove part (iv) of the theorem which will follow from an upper bound on the
conductance of the chain. Define the set S to be the set of graphs satisfying part a) of the above
claim. We can define a bijection between S and Σr,c,b \ S by symmetry, so π(S) = 1/2. We need to
compute

∑
s1∈S,s2∈Σr,c,b\S π(s1)P (s1, s2). Suppose that s1 ∈ S and there exists s2 ∈ Σr,c,b \ S such

that P (s1, s2) > 0. Then, s1 is a graph containing the edges (w(1)
1,1, w

(1)
1,2) and (w(3)

1,1, w
(3)
1,2). Notice

there is a single graph satisfying this condition; moreover, there is a single s2 ∈ Σr,c,b \ S such that
P (s1, s2) > 0 (more precisely, P (s1, s2) = 1

(n(n−1))2
). The last quantity to bound is π(s1).

Since π(s1) = 1/|Σr,c,b|, we need to estimate |Σr,c,b|. Let T (k) be the number of subgraphs of
Hk with the degree sequence (1, 1, 2, . . . , k − 1), (1, 1, 2, . . . , k − 1). It is not difficult to see that
T (k) ≥ 4T (k − 2) and T (2) = 2, T (1) = 1. (The inequality T (k) ≥ 4T (k − 2) follows from the fact
that the vertices with required degree k− 1 are connected to all but one of their neighbors. Suppose
that the omitted neighbors would be the vertices of required degree 1. Without loss of generality,
let the omitted vertices be w1,1 and w1,2. After updating the required degree, we get that the new
required degree sequence is (0, 1, 1, 2, 3, . . . , k − 3), (0, 1, 1, 2, 3, . . . , k − 3). Thus, since we have two
choices for the vertex of degree 1 for both W1 and W2, we get that T (k) ≥ 22T (k − 2).) Therefore,
T (k) ≥ 2k−1.

Now we can estimate |Σr,c,b|: if a G′ ∈ Σr,c,b satisfies part a) of the above claim, then the intersec-
tion of G′ and H

(2)
k is fixed, similarly the intersection of G′ and H

(4)
k . The intersection of G′ with H

(1)
k
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is simply any subgraph of H
(1)
k satisfying the degree sequence (1, 1, 2, . . . , k − 1), (1, 1, 2, . . . , k − 1);

similarly for the intersection of G′ with H
(3)
k . Thus, the graphs satisfying part a) of the above claim

contribute at least (2k−1)2 = 2n/2−1 to |Σr,c,b|. We get the same estimate for graphs satisfying part
b), therefore |Σr,c,b| ≥ 2n/2.

Finally, we bound the conductance as follows:

ΦM ≤
∑

s∈S,t/∈S π(s)P (s, t)
π(S)

=
1

|Σr,c,b| ·
1

n2(n−1)2

1
2

=
2

2n/2 · n2(n− 1)2
≤ 1

2n/2
.

Therefore, part (iv) of the theorem follows from Theorem 1.

3.2 Regular Instances

Kannan, et al. [12] showed that if the cell-bounds are all 1, then the Diaconis-Gangolli chain mixes
rapidly for all regular instances, i. e., the ri’s and the cj ’s are all identical. What happens if the
instance is regular but there are cell bounds? It is not difficult to find instances for which the
Diaconis-Gangolli chain does not connect the state space. However, even in those cases when the
state space is connected, is it always rapidly mixing? We answer this question negatively.

Theorem 4. There exists a family of n× n instances of the cell-bounded contingency table problem
such that

(i) the upper-bound on each cell is either 0 or 1,

(ii) the Diaconis-Gangolli chain connects the state space,

(iii) the marginals are regular with ri = 1 and cj = 1 for every i, j ∈ [n], and

(iv) the mixing time of the chain is at least exponential.

Proof. Similarly to the instances from Theorem 2, the instances here consist of four identical building
blocks. Each building block Hk = (Wk,1,Wk,2, Fk) is a bipartite graph on (2k+2)+(2k+2) vertices,
where Wk,` = {w1,`, w2,`, . . . , w2k+2,`} for ` ∈ {1, 2}, and Fk is defined as follows, see also Figure 2:

Fk = {(w1,1, w1,2), (w1,1, w2k+2,2), (w2k+2,1, w1,2), (w2,1, w2k+2,2)} ∪
{(w1,1, w2i+1,2) | i ∈ [k]} ∪ {(w2(i+1),1, w2i+1,2) | i ∈ [k])} ∪
{(w2i,1, w2i,2), (w2i,1, w2i+1,2), (w2i+1,1, w2i+1,2), (w2i+1,1, w2i,2) | i ∈ [k]}.

As before, the graph Gn consists of four copies of Hk, let’s call them H
(j)
k , j ∈ [4], where all

the vertices are distinct except for w
(j)
1,2 = w

(j+1)
1,1 for j ∈ [3] and w

(4)
1,2 = w

(1)
1,1. The construction is

depicted on Figure 3.
Parts (i) and (iii) of the theorem follow immediately from the construction. We will now prove

part (ii). First let us observe that Claim 3 from Theorem 2 holds for the graph Gn from this proof.
We will prove (ii) by first showing that it is possible to use DG moves to move between any two
subgraphs of Gn satisfying part a) of the claim (and, analogously, the same holds for two subgraphs
satisfying part b)), and then we show that there is a subgraph satisfying part a) and a subgraph
satisfying part b) such that it is possible to move between them.

We make one more observation: if G′ is a subgraph of Gn satisfying part a) of the claim, then the
intersection of G′ with both H

(2)
k and H

(4)
k is uniquely defined. This follows from the fact that there

7
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Figure 2: The graph Hk from Theorem 4.
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Figure 3: The graph representation of the input instances from Theorem 4.
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Figure 4: A possible subgraph of the graph Hk with all-one degree sequence.

is a unique subgraph of Hk such that the vertices w1,1 and w1,2 have degree 0 while all other vertices
have degree 1. (This subgraph contains exactly the edges (w2i+1,1, w2i,2) and (w2i+2,1, w2i+1,2) for
every i ∈ [k], and the edge (w2,1, w2k+2,2).)

Now we construct a subgraph G′ satisfying part a) and a subgraph G′′ satisfying part b) such that
we can move from G′ to G′′ in a single DG move: let G′ contain the edges (w(1)

1,1, w
(1)
1,2) and (w(3)

1,1, w
(3)
1,2)

(notice that by the above argument all the other edges of G′ are uniquely defined); similarly, let G′′

contain the edges (w(2)
1,1, w

(2)
1,2) and (w(4)

1,1, w
(4)
1,2). It follows immediately that G′ and G′′ are connected

by a single DG move.
Suppose we have two subgraphs G′ and G′′ both satisfying part a) of the claim. To show we can

move from G′ to G′′ using DG moves, we first show we can move from G′ to the subgraph of Hk with
all-one degree sequence that includes the edge (w1,1, w1,2). Let us call this graph G̃′. Suppose G′

does not include this edge (or we are done). Therefore, it must connect w1,1 to some other vertex,
let it be w2i+1,2 where i ∈ [k] (if w1,1 is connected to w2k+2,2, analogous arguments hold). Then, the
part of G′ involving vertices wj,` for j ∈ [2i + 1] ∪ {2k + 2} and ` ∈ [2] is uniquely determined, and
the rest can be chosen from exactly 2k−i possibilities (see Figure 4). We can do the following DG
moves:

1. For j going from i + 1 to k do:

2. If the graph G′ contains the edges (w2j,1, w2j,2) and (w2j+1,1, w2j+1,2), swap them for (w2j,1, w2j+1,2)
and (w2j+1,1, w2j,2).

3. Swap the edges (w1,1, w2j−1,2) and (w2j,1, w2j+1,2) for (w2j,1, w2j−1,2) and (w1,1, w2j+1,2).

4. Finally, swap the edges (w1,1, w2k+1,2) and (w2k+2,1, w1,2) for the edges (w1,1, w1,2) and (w2k+2,1, w2k+1,2).

We end up with the graph G̃′, as promised.
Last, we show part (iv) of the theorem. As in the proof of Theorem 2, we bound the conductance

of the chain: let S be the set of all subgraphs of Gn that satisfy part a) of the claim. Then, π(S) = 1/2
and ∑

s1∈S,s2∈Σr,c,b\S
π(s1)P (s1, s2) =

1
|Σr,c,b|

1
n2(n− 1)2

,
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since there is a unique pair of graphs s1 ∈ S1, s2 ∈ S2 such that P (s1, s2) > 0, namely P (s1, s2) =
1

4(n(n−1)/2)2
. To estimate |Σr,c,b|, recall that there are exactly 2k−i subgraphs of Hk that satisfy the

all-one degree sequence and contain the edge (w1,1, w2i+1,2). Therefore, there are
∑k

i=1 2k−i+2k+1 =
2k+1 subgraphs of Hk with all-one degree sequence (2k of those that contain the edge (w1,1, w2k+2,2)
and 1 that contains the edge (w1,1, w1,2). Thus, |Σr,c,b| = 2(2k+1)2 = 22k+3 = 2n/4+3/2 and the
conductance is bounded by 1

n2(n−1)22n/4 , an inverse exponential function. This concludes the proof
of part (iv) of the theorem.

4 Conclusions

The main question that remains open is whether the Diaconis-Gangolli chain could be slowly mixing
even in the case without cell bounds. To tackle this question, we might consider several special cases.
The families of instances in this paper use cell-bounds of 0 or 1. To get closer to the unbounded
case, we might ask whether our results hold in the case when the cell-bounds bi,j are strictly positive.
Also, it may be helpful to know whether the Diaconis-Gangolli chain mixes slowly for cell-bounds
of the form b and b + 1 for larger b > 0. Finally, we note that for our instances it was sufficient to
consider the variant of the Diaconis-Gangolli chain that always adds 1 to the entries on the chosen
diagonal and subtracts 1 from the other diagonal’s entries. Once we allow larger cell-bounds, adding
and subtracting a larger number could possibly help to speed up the mixing time.
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