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2.1 Markov Chains

In this lecture, we will introduce Markov chains and show a potential algorithmic use of
Markov chains for sampling from complex distributions.

For a finite state space Ω, we say a sequence of random variables (Xt) on Ω is a Markov
chain if the sequence is Markovian in the following sense, for all t, all x0, . . . , xt, y ∈ Ω, we
require

Pr(Xt+1 = y|X0 = x0, X1 = x1, . . . , Xt = xt) = Pr(Xt+1 = y|Xt = xt).

We consider transitions which are independent of the time, known as time-homogeneous,
and denote the transition matrix as

P (x, y) = Pr(Xt+1 = y|Xt = x).

The t-step distribution is defined in the natural way,

P t(x, y) =

{

P (x, y) t = 1
∑

z∈Ω P (x, z)P t−1(z, y) t > 1

We will study the class of ergodic Markov chains, which have a unique stationary (i.e.,
limiting) distribution and thus will be useful from an algorithmic perspective. We say a
distribution π is a stationary distribution if it is invariant with respect to the transition
matrix, i.e.,

for all y ∈ Ω π(y) =
∑

x∈Ω

π(x)P (x, y).

A Markov chain is called ergodic if:

there exists t such that for all x, y ∈ Ω, P t(x, y) > 0.

For finite Markov chains the following pair of conditions are equivalent to ergodicity:
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• Irreducible: For all x, y ∈ Ω, there exists t = t(x, y) such that P t(x, y) > 0;

• Aperiodic: For all x ∈ Ω, gcd{t : P t(x, x) > 0} = 1.

Ergodic Markov chains are useful algorithmic tools in that, regardless of their initial state,
they eventually reach a unique stationary distribution. We can aim to design (approximate)
samplers by designing Markov chains with appropriate stationary distributions. The fol-
lowing theorem, originally proved by Doeblin [2], details the essential property of ergodic
Markov chains.

Theorem 2.1 For a finite ergodic Markov chain, there exists a unique stationary distribu-
tion π such that

for all x, y ∈ Ω, lim
t→∞

P t(x, y) = π(y).

Before proving the theorem, let us make a few remarks about its algorithmic consequences.
In general, it is difficult to determine this unique stationary distribution. However, there
is a large class of chains where it is trivial to verify the stationary distribution. A Markov
chain is called reversible if there exists a distribution π such that

for all x, y ∈ Ω, π(x)P (x, y) = π(y)P (y, x).

It is easy to check that such a π is a stationary distribution. When P is symmetric, it follows
that the stationary distribution is uniform over Ω.

The following example highlights the potential usefulness of reversible Markov chains. For
a graph G = (V,E), let Ω denote the set of matchings of G. We define a Markov chain on
Ω whose transitions Xt → Xt+1 are as follows. From Xt ∈ Ω,

• Choose an edge e uniformly at random from E.

• Let

X ′ =

{

Xt ∪ e if e 6∈ Xt

Xt \ e if e ∈ Xt

• If X ′ ∈ Ω, then set Xt+1 = X ′ with probability 1/2; Otherwise set Xt+1 = Xt.

Observe that the Markov chain is aperiodic (since P (M,M) ≥ 1/2 for all M ∈ Ω) and irre-
ducible (via the empty set) with symmetric transition probabilities. Therefore, the unique
stationary distribution is uniform over all matchings of G. If we can bound the asymptotic
rate of convergence to the stationary distribution, then we have a simple algorithm to gen-
erate an approximately random matching. Simply start at an arbitrary matching (e.g., the
empty set) and follow the transitions of the Markov chain until we are sufficiently close to
the stationary distribution. For now we focus on proving the theorem. In later lectures we
explore techniques for bounding the convergence rate.
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2.2 Coupling Technique

We will prove the theorem using the coupling technique. We begin by describing coupling for
general distributions before considering its application to Markov chains. For distributions
µ, ν on a finite set Ω, a distribution ω on Ω× Ω is a coupling if:

For all x ∈ Ω,
∑

y∈Ω

ω(x, y) = µ(x), and (2.1)

For all y ∈ Ω,
∑

x∈Ω

ω(x, y) = ν(y). (2.2)

In other words, ω is a joint distribution whose marginal distributions are the appropriate
distributions.

Coupling provides a convenient method to bound the variation distance between a pair of
distributions. It turns out there always exists an optimal coupling which exactly captures
the variation distance. The following lemma is known as the coupling lemma, and was first
detailed by Aldous [1].

Lemma 2.2 Consider a pair of distributions σ, ν on a finite Ω.

(a) For a coupling ω and (X,Y ) ∼ ω (i.e., (X,Y ) is a random variable chosen from the
distribution ω),

dtv(µ, ν) ≤ Pr(X 6= Y ).

(b) There always exists a coupling ω where, for (X,Y ) ∼ ω,

dTV (µ, ν) = Pr(X 6= Y ).

Proof of Lemma, part (a):

Since ω is a valid coupling, for any z ∈ Ω, we know that ω(z, z) ≤ min{µ(z), ν(z)}. Summing
over all z, this is exactly the probability that X and Y are equal, i.e.,

Pr(X = Y ) =
∑

z∈Ω

ω(z, z) ≤
∑

z∈Ω

min{µ(z), ν(z)}.

Therefore,

Pr(X 6= Y ) ≥ 1−
∑

z∈Ω

min{µ(z), ν(z)}

=
1

2

∑

z∈Ω

|µ(x)− ν(x)|

= dTV (µ, ν).
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This completes the proof of part (a) of the lemma.

Proof of Lemma, part (b):

For all z ∈ Ω, let

ω(z, z) = min{µ(z), ν(z)}.

This ensures dTV (µ, ν) = Pr(X 6= Y ). Now we need to complete the construction of ω in a
valid way. This requires defining the off-diagonal terms in a way that guarantees ω has the
correct marginal distributions.

For y, z ∈ Ω, y 6= z, let

ω(y, z) =
(µ(y)− ω(y, y))(ν(z)− ω(z, z))

1−
∑

x∈Ω ω(x, x)

It is straightforward to verify that ω satisfies (2.1) and (2.2), thus it is a valid coupling.

We will consider couplings for Markov chain. Consider a pair of Markov chains (Xt) and
(Yt) on Ω with transition matrices PX and PY , respectively. The Markov chain (X ′

t, Y
′

t ) on
Ω× Ω is a (Markovian) coupling if

For all a, b, c ∈ Ω, Pr(X ′

t+1 = c|X ′

t = a, Y ′

t = b) = PX(a, c), and

For all a, b, c ∈ Ω, Pr(Y ′

t+1 = c|X ′

t = a, Y ′

t = b) = PY (b, c).

In other words, if we simply observe the first coordinate, it behaves like PX and similarly
the second coordinate acts according to PY . This is a more restrictive form of coupling
then is necessary. In general, the first condition might be true if have no knowledge of
the other chain, i.e., we may have Pr(X ′

t+1 = c|X ′

t = a) = PX(a, c) and similarly for the
second coordinate. Such a coupling is called a non-Markovian coupling. Most applications
of coupling construct Markovian couplings, this simplifies the analysis.

For such a Markovian coupling (X ′

t, Y
′

t ) of (Xt) and (Yt) we then have

dTV (Xt, Yt) ≤ Pr(X ′

t 6= Y ′

t |X
′

0 = X0, Y
′

0 = Y0).

Choosing Y0 from the stationary distribution π, we have Yt is distributed according to π for
all π (since π is invariant), which implies

dTV (Xt, π) ≤ Pr(X ′

t 6= Y ′

t |X
′

0 = X0, Y
′

0 ∼ π).

This shows how we can use coupling to bound the distance from stationarity.

2.3 Stationary Distribution

We are now prepared to prove the theorem.
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Proof of Theorem:

Create two copies of the Markov chain, denoted by (Xt) and (Yt), where X0 and Y0 are
arbitrary states of Ω. We will create a coupling for these chains in the following way. From
(Xt, Yt), choose Xt+1 according to the transition matrix P . If Yt = Xt, set Yt+1 = Xt+1,
otherwise choose Yt+1 according to P , independent of the choice for Xt.

By ergodicity, we know that there exists t∗ such that for all x, y ∈ Ω, P t∗(x, y) ≥ ε > 0.
Therefore, for all X0, Y0 ∈ Ω,

Pr(Xt∗ 6= Yt∗ | X0, Y0) ≤ 1− ε.

Since this holds for all pairs of initial states, we can similarly look at the probability of
coalescing during steps t∗ → 2t∗:

Pr(X2t∗ 6= Y2t∗ |Xt∗ 6= Yt∗) ≤ 1− ε.

Recall that, under our coupling, once Xs = Ys we have Xs′ = Ys′ for all s
′ ≥ s. Therefore,

Pr(X2t∗ 6= Y2t∗ | X0, Y0) = Pr(X2t∗ 6= Y2t∗ , Xt∗ 6= Yt∗ | X0, Y0)

Conditioning on not coalescing at time t∗, and then applying our earlier observation we have

Pr(X2t∗ 6= Y2t∗ | X0, Y0) = = Pr(X2t∗ 6= Y2t∗ |Xt∗ 6= Yt∗) Pr(Xt∗ 6= Yt∗ | X0, Y0)

≤ (1− ε)2

It is clear that for integer k > 0,

Pr(Xkt∗ 6= Ykt∗ | X0, Y0) ≤ (1− ε)k. (2.3)

Therefore,

Pr(Xkt∗ 6= Ykt∗ | X0, Y0)→ 0 as k →∞.

Since Xt = Yt implies Xt′ = Yt′ for all t
′ ≥ t, we have

Pr(Xt 6= Yt | X0, Y0)→ 0 as t→∞.

Note that the distributions of Xt and Yt are P t(X0, .) and P t(Y0, .) respectively. The coupling
of the Markov chain we defined, defines a coupling of the distributions P t(X0, .) and P t(Y0, .).
Hence by Lemma 2.2

dTV (P
t(X0, .), P

t(Y0, .)) ≤ Pr(Xt 6= Yt) ≤ (1− ε)k

where k = b t
t∗
c. Consider the sequence {at(x) = P t(x, y)}t for some x, y ∈ Ω. To prove

that P t(x, y) converges, we have to prove that for all x the sequences {at(x)}t tend to the
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same limit. From Equation 2.4, it is easy to see that for all x1 and x2, the variation distance
between P t(x1, y) and P t(x2, y) tends to zero. Hence if we prove that {at(x)}t converges for
some x it follows that P t(x, y) converges to the same limit for all x.

In Equation 2.4, let X0 = x and Y0 be drawn according to the distribution P (X0, ·). Hence
we get that dTV (P

t(x, ·), P t+1(x, ·)) tends to zero at an exponential rate. Therefor for any
δ, we can find a t(δ) such that dTV (P

t(δ)(x, ·), P t(δ)+1(x, ·)). Since the sequence is bounded,
it follows that P t(x, ·) converges to a limiting distribution. ¿From our earlier argument it is
clear that for all x, P t(x, ·) converges to the same distribution. Hence,

lim
t→∞

P t(x, y) = σ(y), for all x, y ∈ Ω.

Moreover, since Ω is finite, the above limit holds if our initial state is chosen from some
distribution π. Therefore, we reach some limiting distribution σ, regardless of the initial
state. But is σ invariant, i.e., is it independent of time?

Now we’ll show σ is invariant and therefore a stationary distribution. If we knew a priori the
existence of a stationary distribution π, e.g., in the case of reversible chains, then we could
choose Y0 from π and uniqueness of π would follow.

For an initial state X0, let Y0 be chosen from X1, i.e., viewing X0 and Y0 as vectors, we have
Y0 = X0P . We have shown the following,

lim
t→∞

∑

y∈Ω

Y0(y)P
t(y, z) =

∑

y∈Ω

Y0(y)σ(z) = σ(z).

However, we also have the following,

lim
t→∞

∑

y∈Ω

Y0(y)P
t(y, z) = lim

t→∞

P t+1(x, z)

= lim
t→∞

∑

z′∈Ω

P t(x, z′)P (z′, z)

=
∑

z′∈Ω

σ(z′)P (z′, z)

Therefore, σP = σ, and σ is the unique stationary distribution, which completes the proof
of the theorem.

2.4 Markov Chains for Algorithmic Purposes

For a Markov chain (e.g., the chain on matchings introduced earlier) to be useful for algorith-
mic purposes, we need that it converges quickly to its stationary distribution. The theorem
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we proved simply shows it converges in the limit over time, but it gives no indication as to
the rate of convergence as a function of the size of the state space, i.e., |Ω|. Therefore, we
define the mixing time τmix(ε) as the time until the chain is within variation distance ε from
the worst initial state. Formally, let

τmix(ε) = max
X0∈Ω

min{t : dtv(P
t(X0, ·), π) ≤ ε}.

For the matchings chain, our hope is that τmix(ε) = poly(n, log(1/ε)), where n is the number
of vertices in the input graph. This then gives an efficient algorithm to approximately sample
and approximately count matchings.

It suffices to reach variation distance below some constant, say 1/2e. We can then boost to
arbitrarily small variation distance, see the following exercise.

Exercise 2.3 Prove

τmix(ε) ≤ τmix(1/2e) ln(1/ε).

Hint: recall the proof approach for inequality (2.3).

References

[1] D. J. Aldous. Random walks on finite groups and rapidly mixing Markov chains. In
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