Concentration Bounds and Asymptotic Distribution for the Empirical Spectral Projectors of Sample Covariance Operators

Karim Lounici
Georgia Inst. of Technology

September 10, 2015

(Joint work with Vladimir Koltchinskii) Let X, X_1, \ldots, X_n be i.i.d. Gaussian random variables in a separable Hilbert space \mathbb{H} with zero mean and covariance operator $\Sigma = \mathbb{E}(X \otimes X)$, and let $\hat{\Sigma} := n^{-1} \sum_{j=1}^n (X_j \otimes X_j)$ be the sample (empirical) covariance operator based on (X_1, \ldots, X_n). Denote by P_r the spectral projector of Σ corresponding to its r-th eigenvalue μ_r and by \hat{P}_r the empirical counterpart of P_r. We derive tight bounds on

$$\sup_{x \in \mathbb{R}} \left| \mathbb{P} \left\{ \frac{\| \hat{P}_r - P_r \|_2^2 - \mathbb{E}\| \hat{P}_r - P_r \|_2^2}{\text{Var}^{1/2}(\| P_r - P_r \|_2^2)} \leq x \right\} - \Phi(x) \right|,$$

where $\| \cdot \|_2$ denotes the Hilbert–Schmidt norm and Φ is the standard normal distribution function. These bounds depend on the so called effective rank of Σ defined as $r(\Sigma) = \frac{\text{tr}(\Sigma)}{\| \Sigma \|_\infty}$, where $\text{tr}(\Sigma)$ is the trace of Σ and $\| \Sigma \|_\infty$ is its operator norm, as well as another parameter characterizing the size of $\text{Var}(\| \hat{P}_r - P_r \|_2^2)$.

For an eigenvalue μ_r of Σ of multiplicity 1 with associated eigenvector θ_r, we derive new properties about the bias of the sample covariance eigenvector as an estimator of θ_r. As a consequence, we suggest a new simple estimator of θ_r with decreased bias and we derive a concentration bound on the l_∞-norm of the deviation between the estimator and θ_r. This result may be of interest to perform variable selection.