ON SEQUENCES OF ITERATES OF GENERALIZATION OF $
ho$-CONTRACTIONS

B. CHEVREAU (BORDEAUX)

Given a number $\rho > 0$ an operator T on a Hilbert space \mathcal{H} is called a ρ-contraction if there exists a Hilbert space \mathcal{K} containing \mathcal{H} and a unitary operator $U \in L(\mathcal{K})$ such that

$$T^n h = \rho^n P h U^n h \text{ for } h \in \mathcal{H} \text{ and } n \in \mathbb{N}^* \ (1).$$

Thus, by the celebrated Nagy-Foias dilation result, 1-contractions are exactly usual contractions. In fact Nagy and Foias are “responsible” for the introduction (including the terminology) and fundamental properties of these operators (back in the sixties) motivated by a so-called “strange dilation result” of Berg saying (in the above terms) that 2-contractions are exactly the operators whose numerical radius ($w(T) := \sup_{\|x\|=1} |(Tx, x)|$) is equal to 1.

Eckstein (back in 1972) proved that, for any ρ-contraction T on a Hilbert space \mathcal{H} and any vector $h \in \mathcal{H}$, the sequence $\{\|T^n h\|\}$ is convergent (a fact which is elementary for ordinary contractions). We show that this remains true for a natural generalization of the class of ρ-contractions, which we call the class of $(\rho, N)\text{-contractions}$ (the definition is as above but with the equality (1) holding for $n \geq N$ where N is a given natural integer). Our argument follows the lines of Mlak’s proof of Eckstein’s result, but is somewhat simplified by a study of coisometric $(\rho, N)\text{-dilations}$ of these operators, which seems to be of independent interest. Along the way we also point out that Gavruta’s example, disproving a conjecture of Berneeci-Foias according to which an operator T such that T^p is ρ-contraction might be a ρ'-contraction for some $\rho'(\geq \rho)$, extends to (ρ, N)-contractions. Namely, given any integer $p > 1$, there exists an operator T such that $T^p = I$ which is not a (ρ, N)-contraction (for whatever choice of ρ and N).

This is joint work with Dan Crăciunescu (West University Timişoara).