Midterm 3
Section 5.3: Diagonalization
Definitions
· Diagonal matrix
· A matrix where the only non-zero entries are on the main diagonal
· Everywhere else is 0’s
· Similar matrices
· A matrix A is similar to a matrix D if: A = PDP-1
· P is an invertible matrix
· A & D have the same eigenvalues and determinant
· IMPORTANT NOTE:
· If two matrices are similar (same characteristic polynomial), then they have the same eigenvalues
· CONVERSE IS NOT TRUE:
· If two matrices have the same eigenvalues, that does not necessarily mean they are similar to each other
· Diagonalization
· Splitting up a matrix A into a diagonal matrix D and an invertible matrix P
· Useful to compute Ak for large k
· Algebraic multiplicity
· The number of repeats for an eigenvalue
· ai = 2: eigenvalue appears twice
· Geometric multiplicity
· The number of eigenvectors for a given eigenvalue
· Dimension of Nul (A - λI) for a specific λ
· Singular = Not Invertible
· Free variables
· Linearly dependent columns
· Nonsingular = Invertible

Remarks
· Diagonalization Formula
· A = PDP-1
· P: the set of all linearly independent eigenvectors
· D: the corresponding eigenvalues (in order)
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· Allows us to solve Ak for large k
· A2 = PD(P-1P)DP-1 => PD2P-1
· Ak = PDkP-1
· The Diagonalization Theorem (Theorem 5)
· An n x n matrix A is diagonalizable if and only if A has n linearly independent eigenvectors
· Dimension of A = Dimension of P
· A is diagonalizable if and only if there are enough eigenvectors to form a basis of Rn
· Eigenvector basis
· Steps to Diagonalize a Matrix
· Step 1: find the eigenvalues
· det(A - λI) = 0
· Step 2: find linearly independent eigenvectors of A
· (A - λI)v = 0
· Solve the null space
· Parametric vector form
· If # of total eigenvectors ≠ # of columns in A, then A is not diagonalizable (Theorem 5)
· Step 3: construct P from vectors in Step 2
· P = {v1 v2 … vn}
· Step 4: construct D from corresponding eigenvalues
· D = {λ1 λ2 … λn}
· Theorem 6
· An n x n matrix with n distinct eigenvalues is diagonalizable
· Note:
· It is not necessary for an n x n matrix to have n distinct eigenvalues in order to be diagonalizable
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· Theorem 7: Matrices whose Eigenvalues are Not Distinct
· Geometric multiplicity of λ must be less than or equal to the algebraic multiplicity of λ
· gi(λ) ≤ ai(λ)
· A matrix is diagonalizable if and only if the sum of the dimensions of the eigenspaces equals n (the number of columns)
· Total geometric multiplicity == number of columns in matrix A
· Characteristic polynomial of A factors completely into linear factors
· Geometric multiplicity for each eigenvalue = algebraic multiplicity for each eigenvalue
· Diagonalizability and Invertibility have NO CORRELATION with each other
· NEVER associate the word linearly independent, column space, null space, free variables, etc. with diagonalizable

Section 5.5: Complex Eigenvalues
Definitions
· Complex number: a + bi
· Any number of the form: a + bi
· i = [image: {"code":"$${\\sqrt[]{-1}}$$","type":"$$","font":{"family":"Lora","size":11,"color":"#000000"},"id":"5","backgroundColorModified":null,"backgroundColor":"#ffffff","aid":null,"ts":1636667099516,"cs":"KHEzpB03/yh4VOzwD3tqaQ==","size":{"width":29,"height":14}}]
· Complex eigenvalue: λ
· An eigenvalue that is a complex number: a + bi
· Note: if b = 0, then λ is a real eigenvalue
· Complex eigenvector: x
· An eigenvector subsisting of a complex eigenvalue
· Complex number space: ℂn
· The space of all complex numbers
· ℂ2
· A complex number space with 2 entries
· At least one entry is a complex number
· Conjugate of a complex number
· The conjugate for (a + bi) is (a - bi)
· Complex conjugate of a vector x
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· Re x
· The real parts of a complex vector x
· An entry can be 0
· Im x
· The imaginary parts of a complex vector x
· An entry can be 0
· Argument of λ = a + bi
· The angle φ produced by a and b on their respective Re x and Im x axis
· [image: ]

Remarks
· Finding complex eigenvalues and complex eigenvectors
· Step 1: det(A - λ) = 0
· Getting the eigenvalues: λ
· If the characteristic equation produces complex roots, then those roots are the complex eigenvalues
· Step 2: Solve (A - λI)x = 0 for x
· Getting the eigenvectors: x
· Will get something with the form:
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· x:
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· Step 3: Find the other eigenvector
· Find the conjugate of the other eigenvector:
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· Re x & Im x
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· Properties of Complex Conjugate Matrices
· Where
· r: scalar
· x: vector
· B: matrix
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· Basically, you can find the conjugates first, then multiply them together
· Complex Eigenvalues and Complex Eigenvectors Come in Pairs
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· The Meaning of a Matrix that Acts on ℂn
· A transformation matrix that rotates then scales
· [image: ]
· Theorem 9
· For A = real 2 x 2 matrix with (λ = a - bi , where b ≠ 0) and associated eigenvector v in ℂ2 :
· A = PCP-1
· P = [Re v    Im v]
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· Why does this work?
· A is 2 x 2 and has two eigenvalues (complex eigenvalues come in pairs)
· C must be a 2 x 2 matrix as a result

Section 10.2: Google PageRank
Definitions
· Stochastic matrix
· A matrix whose individual columns have an entry sum of 1
· Always has at least one steady state
· Steady-state vectors
· A probability vector q such that Pq = q
· Regular stochastic matrix
· A stochastic matrix where for some power k, Pk contains entries all > 0
· Always has a unique steady state
· Dangling nodes
· Any column that represents a web page that is a dead end
· Usually is the form of an elementary column: {e1, e2, … , en}

Remarks
· If P is a stochastic matrix, then a steady-state vector for P is a probability vector q such that
	Pq = q
· Notes about stochastic matrices
· Every stochastic matrix P has a steady-state vector q
· 1 must be an eigenvalue of any stochastic matrix
· A steady-state vector is a probability vector which is also an eigenvector of P associated with the eigenvalue 1
· Non-regular stochastic matrices can have multiple steady state vectors
· Theorem 1
· If P is a regular m x m stochastic matrix with m ≥ 2, then the following statements are true:
a. There is a stochastic matrix Π such that 
b. Each column of Π is the same probability vector q
i. Would look something like this:
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c. For any initial probability vector , 
d. The vector q is the unique probability vector which is an eigenvector of P associated with the eigenvalue 1
e. The eigenvalues of P satisfy 
· PageRank
· Adjustment 1:
· Replace all dangling node columns with [image: {"type":"$$","backgroundColorModified":null,"font":{"color":"#000000","family":"Lora","size":11},"aid":null,"id":"24","backgroundColor":"#ffffff","code":"$$\\begin{bmatrix}\n{1/n}\\\\\n{1/n}\\\\\n{...}\\\\\n{1/n}\\\\\n\\end{bmatrix}$$","ts":1636960219852,"cs":"Ad0wn4leyzvZgIWbZCj3FQ==","size":{"width":33,"height":76}}] where n is the number of columns/rows
· P* = P but with all dangling nodes replaced with the adjustment
· Adjustment 2:
· K = [image: {"type":"$$","backgroundColorModified":null,"font":{"color":"#000000","family":"Lora","size":11},"aid":null,"id":"24","backgroundColor":"#ffffff","code":"$$\\begin{bmatrix}\n{1/n}\\\\\n{1/n}\\\\\n{...}\\\\\n{1/n}\\\\\n\\end{bmatrix}$$","ts":1636960219852,"cs":"Ad0wn4leyzvZgIWbZCj3FQ==","size":{"width":33,"height":76}}]
· Google Matrix Formula:
	

Section 6.1: Inner Product, Length, and Orthogonality	Comment by Patrick Kim: Most Important Concepts Here!!!
Definitions
· Inner product (dot product)
· If u and v are vectors in ℝn, then the inner (dot) product of u and v is:
· uTv   or:
· 
· [image: ]
· Vector length: 
· 
· Unit vector
· A vector whose length is 1
· Vector normalization
· Dividing a nonzero vector by its length to make it a unit vector
· Distance between two vectors
· 
· Orthogonal vectors
· Two vectors are orthogonal if their dot product equals 0
· Orthogonal complements
· A set of vectors that are all orthogonal to a subspace W
· Representation as a line or plane depends on the null space of W
· What does it mean for a subspace to be in ℝn?
· Subspace (contains zero vector and is closed under addition and multiplication) has n entries for each vector in it (dimension n)
· Note: R1 means that the vectors have one entry
· Span of just [1]

Remarks
· Dot Product and Cross Product are Different
· 
· Dot product gives you a number
· Cross product gives you a vector
· Theorem 1: Dot Product Properties
· Where
· u, v, and w are vectors in ℝn
· c is a scalar in ℝ
a. 
i. Symmetry
b. 
i. Linearity
c. 
i. Scalars
ii. Easy method: just find the dot product of the two vectors first, then multiply by the scalar
d. 
i. Positivity
ii.  if and only if u = 0
· Vector Length Properties
· Vector length is always positive
· 
· 
· Normalizing a Vector
· 
· u: a unit vector
· u is in the same direction as v, but u has different magnitude than v
· Finding the Distance between Two Vectors
· Step 1: subtract the two vectors
· u - v
· Step 2: find the length of the resultant vector
· 
· Rudimentary Notes about Orthogonality
· Two vectors are orthogonal = two vectors are perpendicular to each other
· 
· 
· Zero vector is orthogonal to every vector in ℝn
· Theorem 2: The Pythagorean Theorem
· Two vectors are orthogonal if and only if 
· [image: ]
· Rudimentary Notes about Orthogonal Complements
· What is an orthogonal complement?
· It is a set of vectors where each vector is orthogonal to a subspace W[image: ]
· Orthogonal Complement of W = W⊥
· A vector x is in W⊥ if and only if x is orthogonal to every vector in a set that spans W
· Must calculate every single dot product pair to prove orthogonality
· W⊥ is a subspace of ℝn ↔ W is also a subspace of ℝn
· Both subspaces have n entries
· They do not necessarily have the same dimension
· dim(Row W⊥) = n - dim(Col W)
· Could be 2,2 or 1,3 where n = 4
· Theorem 3
· Let A be an m x n matrix:
· (Row A)⊥ = Nul A
· The row space of the orthogonal complement of A is the null space of A
· (Col A)⊥ = Nul AT
· The column space of the orthogonal complement of A is the null space of A transpose
· Proof
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· What is null space?
· Av = 0
· Essentially taking the dot product of every row of A with the vector v and seeing that v is orthogonal to A
· Rank Theorem
· Row A
· The space spanned by the rows of matrix A
· Given by the pivot rows of A
· dim(Row A) = dim(Col A)
· # of pivot columns = # of pivot rows
· Row AT = Col A
· N = # of columns in a matrix
· N = dim(Col A) + dim(Nul A)
· N = dim(Row A) + dim(Nul A)

Section 6.2: Orthogonal Sets
Definitions
· Orthogonal set
· A set of vectors {u1, …, up} in ℝn where each pair of distinct vectors from the set is orthogonal
· 
· Orthogonal basis
· A basis for a subspace W that is also an orthogonal set
· Orthogonal projection
· Essentially projecting a vector onto a line/plane to get its orthogonal complement
·      L: subspace spanned by u
· Orthonormal set
· An orthogonal set where every vector is a unit vector
· Orthonormal basis
· A basis for a subspace W that is also an orthonormal set
· Orthogonal matrix
· A square matrix whose columns form an orthonormal set

Remarks
· Theorem 4: Orthogonal Sets and Linear Independence
· If is an orthogonal set of nonzero vectors in ℝn, then S is linearly independent and is a basis for the subspace spanned by S
· All orthogonal sets are linearly independent sets
· However, not all linearly independent sets are orthogonal
· Remember to omit the zero vector for an orthogonal set
· Theorem 5: Finding the Weights for a Linear Combination of an Orthogonal Basis
· Letbe an orthogonal basis for a subspace W of ℝn:
For every y in W, the weights in the linear combination
	
are given by:
	    (j = 1, …, p)
· This method is better for finding the scalars than row reduction
· However, this method is only applicable for orthogonal bases
· How to find an Orthogonal Projection
· [image: ]
· [image: ]
· z: the component of y orthogonal to u
· Geometric Representations of an Orthogonal Projection
· [image: ]
· [image: ]
· Orthogonal Projections can be written as a Linear Combination of a Vector’s Components
· 
· All orthonormal sets are orthogonal
· However, not all orthogonal sets are orthonormal
· Theorem 6: Transpose of a Matrix with Orthonormal Columns
· An m x n matrix U has orthonormal columns if and only if 
· The transpose of a matrix with orthonormal columns multiplied by the original matrix always results in the identity matrix
· Does it need to be square? NO!
· Proof
· [image: ]
· Main diagonal: all 1’s
· Remember, an orthonormal vector times itself is the square root of its length, which equals 1!!!
· Everywhere else: all 0’s
· Remember, an orthonormal vector is also orthogonal, so two different vectors that are orthogonal to each other will have a product of 0
· ATA where A is a matrix with orthogonal columns (DIFFERENT)
· Produces a diagonal matrix with all entries equal to each vector’s length squared
· Theorem 7: Properties of a Matrix with Orthonormal Columns
· Let U be an m x n matrix with orthonormal columns, and let x and y be in ℝn:
· 
· Linear mapping [image: {"aid":null,"code":"$$x\\,\\to Ux$$","font":{"color":"#000000","size":11,"family":"Lora"},"type":"$$","backgroundColorModified":null,"backgroundColor":"#ffffff","id":"20","ts":1636693647601,"cs":"4ciQPbzRNggjb+d/aQMqcQ==","size":{"width":52,"height":9}}] preserves length
· 
·  if and only if x and y are orthogonal to each other
· Linear mapping [image: {"aid":null,"code":"$$x\\,\\to Ux$$","font":{"color":"#000000","size":11,"family":"Lora"},"type":"$$","backgroundColorModified":null,"backgroundColor":"#ffffff","id":"20","ts":1636693647601,"cs":"4ciQPbzRNggjb+d/aQMqcQ==","size":{"width":52,"height":9}}] preserves orthogonality
· Difference between Orthogonal Matrix and a Matrix with Orthonormal Columns
· Orthogonal matrix must be square!!!
· U-1 = UT
· The inverse of orthogonal matrices is its transpose
· Orthogonal matrices have linearly independent columns
· Determinant of an Orthogonal Matrix
· If A is an orthogonal matrix, then detA is equal to 1 or -1
· Converse is NOT TRUE
· If the determinant of a square matrix = 1, then the matrix must be orthogonal. => False
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Section 6.3: Orthogonal Projections
Definitions
· ŷ: orthogonal projection of y onto W
· ŷ = projWy
· z: orthogonal component of y onto W
· z = y - ŷ
· Best approximation
· 
· The vertical distance going straight up and down between a vector and its projection’s space
· Any distance between a vector and a subspace that is not perpendicular to the space is automatically not the shortest distance

Remarks
· Properties of an orthogonal projection onto ℝn
· [image: ]
· Given a vector y and a subspace W in ℝn, there is a vector ŷ in W such that:
· ŷ is the unique vector in W for which  is orthogonal to W
· ŷ is the unique vector in W closest to y
· Key to finding least-squares solutions (6.5)
· Theorem 8: The Orthogonal Decomposition Theorem
· Let W be a subspace of ℝn. Then each y in ℝn can be uniquely in the form
	
where
	ŷ is in W
	z is in W⊥
· If {u1 , … , up} is any orthogonal basis of W, then
	
· 
· We assume W is not the zero subspace
· Otherwise, W⊥ = ℝn
· y = 0 + y
· Everything projected onto the zero subspace is just the zero vector
· Properties of Orthogonal Projections
· If y is in W = Span{u1 , … , up}, then projWy = y
· If y is already in the subspace, then projecting it onto the same subspace does not do anything
· Theorem 9: The Best Approximation Theorem
· Let W be a subspace of ℝn, let y be any vector in ℝn, and let ŷ be the orthogonal projection of y onto W. Then ŷ is the closest point in W to y.
· 
for all v in W distinct from ŷ
· [image: ]
· Theorem 10
· If {u1 , … , up} is an orthonormal basis for a subspace W in ℝn, then
	
· If U = [u1  u2  …  up], then
	  for all y in ℝn
· Remember, if u1 is a unit vector, then 
· Theorem 10 using Matrix with Orthonormal Columns vs. Orthogonal Matrix
· If U is an n x p matrix with orthonormal columns and W is the column space of U,
· UTUx = Ipx = x    for all x in ℝp
· UUTy = projWy	   for all y in ℝn
· If U is an n x n matrix with orthonormal columns, then U is an orthogonal matrix
· UUTy = Iy = y   for all y in ℝn
· See end of 6.2

Section 6.4: The Gram-Schmidt Process
Definitions
· Gram-Schmidt process
· Algorithm for producing an orthogonal/orthonormal basis for any nonzero subspace of ℝn

Remarks
· Theorem 11: The Gram-Schmidt Process
· [image: ]
· Remember: a basis is a set of linearly independent vectors that span a subspace W
· # of vectors in a basis = # of pivot columns/rows
· Gram-Schmidt requires a linearly independent basis (invertible/nonsingular)
· Any nonzero subspace W of ℝn has an orthogonal basis because an ordinary basis {x1 , … , xp} is always available
· Orthonormal Bases
· Simply normalize all vectors in an orthogonal basis {v1 , … , vp}
· Theorem 12: The QR Factorization
· If A is an m x n matrix with linearly independent columns, then A can be factored as A = QR
	Q: an m x n matrix whose columns form an orthonormal basis for
	     Col A
	R: an n x n upper triangular matrix with positive entries on its
	     diagonal
· Process
1. Use Gram-Schmidt to find Q
2. If needed, normalize the orthogonal basis given by Q
3. Solve A = QR for R
a. R = QTA
· If the columns of A were linearly dependent, then R would not be invertible
 
Section 6.5: Least-Squares Problems
Definitions
· General least-squares problem
· Find x that makes  as small as possible
· Normal equations
· 
· Difference between x and 
· x just refers to some general solution
·  is the solution that solves the least-squares problem/normal equations
· Least-squares error
· Distance from b to  where  is the least-squares solution to b
· 

Remarks
· What is the motivation for solving least-squares problems?
· Finding a close enough solution to Ax = b when it is an inconsistent system
· If A is m x n and b is in ℝm, a least-squares solution of Ax = b is an  in ℝn such that
	
for all x in ℝn
· If A is already consistent, then 
· Solution of the General Least-Squares Problem
· Use the Normal Equations!!!
· 
· Derivation
· [image: ]
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· Theorem 13
· The set of least-squares solutions of Ax = b coincides with the nonempty set of solutions of the normal equations 
· Possible to have more than one least-squares solution
· Existence of a free variable ⇔ columns of A are linearly dependent
· Theorem 14
· Let A be an m x n matrix. The following statements are logically equivalent
a. The equation Ax = b has a unique least-squares solution for each b in ℝm
b. The columns of A are linearly independent
c. The matrix ATA is invertible
· When these statements are true, the least-squares solution  is given by:
	
· Calculating the Least-Squares Error
· 
· Theorem 15: Finding the Least-Squares Solution using QR Factorization
· Given an m x n matrix A with linearly independent columns, let A = QR be a QR factorization of A. Then, for each b in ℝm, the equation Ax = b has a unique least-squares solution, given by
	
	
· What if b is orthogonal to the columns of A? What can we say about the least-squares solution of Ax = b?
· If b is orthogonal to A, then the projection of b onto A is 0
· A least-squares solution, , of Ax = b satisfies 

Section 6.6: Applications to Linear Models
Definitions
· Least-Squares Lines
· 
· Residual
· Difference between the actual y-value and the predicted y-value

Remarks
· What is a Least-Squares Line?
· It is basically a line of best-fit for a set of data
· Least-squares lines minimize:
	the sum of the squares of the residuals ⇔ the least-squares solution
· Objective:
· Find (coefficients) that create the least-squares line
· Procedure using Normal Equations:
· [image: ]
· Use the normal equations to solve
· [image: ]
· Procedure using Mean-Deviation Form:
· Find the average of all the x-values: 
· Calculate  for each x
· [image: ]
· Do this but with the new x* values
· The General Linear Model
· 
· Solve the normal equations:
· 
· Example:
· [image: ]
· Multiple Regression
· Occurs when there are 2 or more independent variables
· Example:
· [image: ]
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FIGURE 3 A rotation followed by a
scaling.
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FIGURE 4 The orthogonal projection
of y onto W is the closest point in W
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