## Practice Exam 1 solutions

1. Prove that

$$
1+2+2^{2}+\cdots 2^{n}=2^{n+1}-1
$$

Solution: We give a proof by induction. For $n=0$ the left hand side equals 1 , and the right hand side equals $2^{1}-1=1$, which proves the base case. Now suppose the equality holds for $k \geq 1$, and we show that it holds for $k+1$. We have

$$
\begin{aligned}
1+2+2^{2}+\cdots 2^{k}+2^{k+1} & =2^{k+1}-1+2^{k+1} \\
& =2 \cdot 2^{k+1}-1=2^{k+2}-1
\end{aligned}
$$

which means that the equality holds when $n=k+1$.
2. Prove or disprove:

$$
2+4+6+8+\cdots+2 n=(n-1)(n+2)
$$

Solution: This is false, it should be $n(n+1)$ on the right hand side since the left hand side equals $2(1+2+3+\cdots+n)=2 \cdot \frac{n(n+1)}{2}$.
3. Valid? Prove or disprove.

\[

\]

Solution: Part (a) is invalid. When $p, q, r$ are all true the assumptions are true but the conclusion is false. Part (b) is valid. We give a simple proof by contradiction. Suppose, seeking a contradiction, that the argument is invalid. Then, for some assignment the conclusion is false and the assumptions are all true. If the conclusion is false then $p$ is true. By the first assumption and the fact that $p$ is true we get that $q$ is true. By the second assumption and the fact that $q$ is true we get that $r$ is false, but $r$ is true by the third assumption, which is a contradiction.
4. Valid? Prove or disprove.

If I work hard, then I earn lots of money.
If I don't pay high taxes, then I don't work hard.
If I work hard, then I pay high taxes.
Solution: The second assumption is the contrapositive of the conclusion, so the argument is clearly valid.
5. True or False questions.
(i) If $p \wedge q$ is true, then $p \vee q$ is true. TRUE
(ii) If $p \rightarrow q$ is true and $q \rightarrow p$ is true, then $p$ is logically equivalent to $q$. TRUE
(iii) If $\mathcal{A}$ is a tautology and $\mathcal{B}$ is a contradiction, then $\mathcal{A} \wedge(\neg \mathcal{B})$ is a tautology. TRUE
(iv) If $\mathcal{A} \Longleftrightarrow \mathcal{B}$ and $\mathcal{C}$ is any statement, then $(\mathcal{A} \rightarrow \mathcal{C}) \Longleftrightarrow(\mathcal{B} \rightarrow \mathcal{C})$. TRUE
$(\mathrm{v})$ If the premises of an argument are all contradictions, then the argument is valid. TRUE
(vi) The statement $(p \rightarrow q) \leftrightarrow(q \wedge(r \rightarrow s)$ evaluates to TRUE when all the atomic statements $p, q, r, s$ are true. TRUE
6. In the math department there are 30 personal computers (PCs).

20 have A drives,
8 have 19-inch monitors,
25 are running Windows XP,
20 have at least two of these properties,
6 have all three properties.
(a) How many PCs have at least one property?
(b) How many have none of these properties?
(c) How many have exactly one?

Solution: The number of PCs that have at least one property can be calculated as follows. Let $A, B, C$ denote the sets of computers having A drives, 19-inch monitors, and those that are running Windows XP, respectively. Then the number PCs with at least one property is
the number of elements in the set $A \cup B \cup C$. Note that $A \cap(B \cup C)=(A \cap B) \cup(A \cap C)$. We have

$$
\begin{aligned}
|A \cup B \cup C| & =|A|+|B \cup C|-|A \cap(B \cup C)| \\
& =|A|+(|B|+|C|-|B \cap C|)-|(A \cap B) \cup(A \cap C)| \\
& =|A|+|B|+|C|-|B \cap C|-(|A \cap B|+|A \cap C|-|(A \cap B) \cap(A \cap C)|) \\
& =|A|+|B|+|C|-|A \cap B|-|A \cap C|-|B \cap C|+|A \cap B \cap C| \\
& =|A|+|B|+|C|-(|A \cap B|+|A \cap C|+|B \cap C|)+|A \cap B \cap C| .
\end{aligned}
$$

We already have $|A|,|B|,|C|$, and $|A \cap B \cap C|$. So, we just need to compute the number

$$
|A \cap B|+|A \cap C|+|B \cap C| .
$$

Note that this number is the number of elements in exactly 2 sets plus three times the number of elements in all 3 sets (draw a Venn diagram if you don't see this immediately, or read the simple proof below), which can also be said to be the number of elements in at least 2 sets plus two times the number of elements in all 3 sets. Hence, this number is $20+2 * 6=32$. So, the number of elements in at least one set is $20+8+25-(32)+6=27$.

Next, the number with none of the properties is the total number of computers minus the number that have at least one property, so $30-27=3$.

Finally the number with exactly one property is the number that have at least one property minus the number that have exactly two properties, so $27-20=7$.

Claim: For any finite sets $A, B, C$ contained in some universal finite set $U$, the number $|A \cap B|+|A \cap C|+|B \cap C|$ equals the number of elements that are in at least 2 of the sets plus two times the number of elements that are in all three sets. Proof: Denote by $S$ the elements of $U$ that are in at least 2 sets. We are asked to show that

$$
|A \cap B|+|A \cap C|+|B \cap C|=|S|+2|A \cap B \cap C|
$$

We prove the equality by examining how each element of $U$ contributes to each side of the above equality.

Let $x$ be an element of $U$. If $x$ does not belong to $S$, then it will not contribute to either side of the equality. If $x$ belongs to $S$, then either $x$ is in exactly one of the sets $A \cap B, A \cap C, B \cap C$, or $x$ is in all 3 of them. In the first case, $x$ does not belong to all three sets and so contributes +1 to both the LHS and RHS. In the second case, $x$ belongs to the triple-intersection and so contributes +3 to both the LHS and RHS. This finishes the proof of the claim.
7. How many ways can you get a total of 6 when rolling two dice?

Solution: The possible ways to get 6 are if the die say $(1,5),(2,4),(3,3),(4,2),(5,1)$, so there are 5 possibilities.
8. How many three digit numbers contain the digits 2 and 5 but not 0,3 , or 7 ?

Solution: I will consider 3 digit numbers in the range 000-999. In this case, 2 of the digits must be 2 and 5 , and the last digit can be one of $1,2,4,5,6,8$, or 9 . There are 7 choices for the unknown digit, and there are several ways to permute the three digits once all are chosen. If the chosen digit is 2 or 5 , then there are 3 permutations, and if the chosen digit is $1,4,6,8$, or 9 , there are 6 permutations. So, there are a total of $2 * 3+5 * 6=36$ possible numbers.
9. In a group of 29 people, how many people must there be whose birthdays are in the same month?

Solution: There are 12 months, so in a group of 29 people, by the Strong Pigeon Hole Principle, there are $\left\lceil\frac{29}{12}\right\rceil=\lceil 2.4167\rceil=3$ people who have birthdays in the same month.

