Practice Exam 2

1. What can you say about a graph on four vertices that has 6 edges? Generalize this statement.
2. Prove or disprove:
(a) Every connected graph that has at least three vertices of degree 2 contains \mathcal{K}_{3} as a subgraph.
(b) Every graph that has at least one edge contains \mathcal{K}_{2} as a subgraph.
(c) The complete graph on four vertices is planar.
(d) The isomorphism classes of graphs with no edges corresponds to the number of vertices in the graph.
3. Consider $\mathcal{G}=(\{a, b, c, d\},\{a b, b c, b d, c d\})$ and the graph \mathcal{H} whose model is

Which of the following are isomorphisms from \mathcal{G} to \mathcal{H} ? Explain.
(a) $\begin{gathered}\phi:\{a, b, c, d\} \rightarrow\{w, x, y, z\} \\ \phi(a)=w, \phi(b)=x, \phi(c)=y, \phi(d)=z .\end{gathered}$
(b)

$$
\begin{gathered}
\phi:\{a, b, c, d\} \rightarrow\{w, x, y, z\} \\
\phi(a)=w, \phi(b)=x, \phi(c)=z, \phi(d)=y
\end{gathered}
$$

(c) $\begin{gathered}\phi:\{a, b, c, d\} \rightarrow\{w, x, y, z\} \\ \phi(a)=x, \phi(b)=w, \phi(c)=y, \phi(d)=z .\end{gathered}$
4. Explain the difference between graph and pseudograph. Is every graph a pseudograph? Is every pseudograph a graph?
5. Consider the graph \mathcal{G} whose model is shown.

(a) Give a description of \mathcal{G} using the definition.
(b) Is \mathcal{G} bipartite? If so, give a bipartition and draw a model which shows that \mathcal{G} is bipartite. If not, explain why \mathcal{G} is not bipartite.
(c) How many subgraphs of \mathcal{G} contain exactly 2 vertices each having degree 1 ?
(d) How many of these subgraphs are non-isomorphic? In other words, how many isomorphism classes are there for subgraphs of \mathcal{G} that contain exactly 2 vertices of degree 1 ?
(e) How many subgraphs of \mathcal{G} contain exactly 3 vertices and have degree sequence $3,1,1$?
6. Write an algorithm which takes as input n real numbers a_{1}, \ldots, a_{n} and outputs the number of times that a_{1} occurs in the list. What is the complexity of your algorithm (be specific).
7. Prove that e^{n} is not $O\left(n^{k}\right)$ for any natural number k.
8. Solve the recurrence relation $a_{n}=s a_{n-1}+t a_{n-2}$ for various values of s, t which are integers and initial conditions a_{0}, a_{1} which are also integers (usually most of the parameters are nonnegative integers such that the characteristic polynomial factors and the linear equations you solve are not too nasty).
9. Let \mathcal{G}_{1} denote the graph on one vertex z. Define inductively \mathcal{G}_{n} for $n>1$ as follows: the vertex set of \mathcal{G}_{n} is the vertex set of \mathcal{G}_{n-1} appended with one more vertex v which is not a vertex of \mathcal{G}_{n-1}, and the edge set of \mathcal{G}_{n} is the edge set of \mathcal{G}_{n-1} appended with the edge (z, v).
(a) Draw a model for \mathcal{G}_{n} for some small values of n. What would you like to call the model? (That is, find the obvious name for the graph \mathcal{G}_{n})
(b) Find a closed formula for the number of edges in \mathcal{G}_{n}. Find a recursively defined formula.

