Math 2602

Finite and Linear Math

Homework 12: Core problems

Section 10.1 on page 309: 1, 3, 4bf, 11, 12, 13, 15, 16, 17, 18, 21, 23, & Extra problem.

- **1a.** Find a connected graph with as few vertices as possible that has precisely two vertices of odd degree.
- **1b.** Find a connected graph with as few vertices as possible that has precisely two vertices of even degree.

3. In each case, explain why the graph is Eulerian and find a Eulerian circuit. ditto prob 4bf

11. Suppose \mathcal{G}_1 and \mathcal{G}_2 are Eulerian graphs with no vertices in common. Let $v_1 \in V(\mathcal{G}_1)$ and $v_2 \in V(\mathcal{G}_2)$, and consider the graph \mathcal{H} obtained from $\mathcal{G}_1, \mathcal{G}_2$ by connecting v_1 and v_2 by an edge,

 $\mathcal{H} = (V(\mathcal{G}_1) \cup V(\mathcal{G}_2), E(\mathcal{G}_1) \cup E(\mathcal{G}_2) \cup \{(v_1, v_2)\}).$

Is H Eulerian? Prove your answer.

12. For what values of n > 1 is \mathcal{K}_n Eulerian? Prove your answer. For what values of n > 1 does \mathcal{K}_n posses a Eulerian trail (that is, a trail from two vertices of \mathcal{K}_n that passes through every vertex and contains every edge).

13. The graph $\mathcal{K}_{m,n}$ is called the bipartite complete graph on (m,n). It is a bipartite graph with vertices $\{v_1, \ldots, v_m, w_1, \ldots, w_n\}$ and edge set $\{(v_i, w_j) | 1 \le i \le m, 1 \le j \le n\}$ (do you know how many edges it has?). Find a necessary and sufficient condition on natural numbers m, n such that $\mathcal{K}_{m,n}$ is Eulerian, and prove your answer. Then, do the same for having a Eulerian trail.

15. Prove that any circuit in a graph must contain a cycle, and that any circuit which is not a cycle contains at least two cycles.

- **16.** Is it true that any closed walk in a graph contains a cycle? Prove or give a counterexample.
- 17. Let v, w be two distinct vertices of a graph \mathcal{G} . Prove that there exists a walk from v to w if and only if there exists a path from v to w.

18. For any two vertices $v, w \in V(\mathcal{G})$ write $v \sim w$ if there is a walk from v to w or if v = w. Prove that this gives an equivalence relation on $V(\mathcal{G})$ (that is, a relation that is reflexive, symmetric, and transitive). The equivalence classes are herby called **connected components of** \mathcal{G} . Why is this a good name?

21. Let \mathcal{G}_1 and \mathcal{G}_2 be two graphs. Prove that if $\mathcal{G}_1 \simeq \mathcal{G}_2$ are isomorphic then either they are both connected or they are both disconnected. Does the converse of this statement hold?

23. Let \mathcal{G} be a connected graph with n > 1 vertices. Prove that \mathcal{G} has at least n - 1 edges, and that if no vertex has degree 1, then \mathcal{G} has at least n edges.

Extra problem. Show that the book's definition of connectedness agrees with the definition from class. That is, show that the two definitions below are logically equivalent.

Definition 1. A graph $\mathcal{G} = (V, E)$ is disconnected if there exist non-empty subgraphs $\mathcal{H}_1 = (V_1, E_1)$ and $\mathcal{H}_2 = (V_2, E_2)$ such that V_1 and V_2 partition V and E_1 and E_2 partition E. A graph is connected if it is not disconnected.

Definition 2. A graph \mathcal{G} is connected if for any two vertices v, w there is a walk between v and w.