Math 2602	Finite and Linear Math	Fall '14

Homework 12: Core problems

Section 10.1 on page 309: 1, 3, 4bf, 11, 12, 13, 15, 16, 17, $18,21,23$, \& Extra problem.

1a. Find a connected graph with as few vertices as possible that has precisely two vertices of odd degree.

1b. Find a connected graph with as few vertices as possible that has precisely two vertices of even degree.
3. In each case, explain why the graph is Eulerian and find a Eulerian circuit. ditto prob $\mathbf{4 b f}$

(a)

(b)

4b.

4f.
11. Suppose \mathcal{G}_{1} and \mathcal{G}_{2} are Eulerian graphs with no vertices in common. Let $v_{1} \in V\left(\mathcal{G}_{1}\right)$ and $v_{2} \in V\left(\mathcal{G}_{2}\right)$, and consider the graph \mathcal{H} obtained from $\mathcal{G}_{1}, \mathcal{G}_{2}$ by connecting v_{1} and v_{2} by an edge,

$$
\mathcal{H}=\left(V\left(\mathcal{G}_{1}\right) \cup V\left(\mathcal{G}_{2}\right), E\left(\mathcal{G}_{1}\right) \cup E\left(\mathcal{G}_{2}\right) \cup\left\{\left(v_{1}, v_{2}\right)\right\}\right)
$$

Is \mathcal{H} Eulerian? Prove your answer.
12. For what values of $n>1$ is \mathcal{K}_{n} Eulerian? Prove your answer. For what values of $n>1$ does \mathcal{K}_{n} posses a Eulerian trail (that is, a trail from two vertices of \mathcal{K}_{n} that passes through every vertex and contains every edge).
13. The graph $\mathcal{K}_{m, n}$ is called the bipartite complete graph on (m, n). It is a bipartite graph with vertices $\left\{v_{1}, \ldots, v_{m}, w_{1}, \ldots, w_{n}\right\}$ and edge set $\left\{\left(v_{i}, w_{j}\right) \mid 1 \leq i \leq m, 1 \leq j \leq n\right\}$ (do you know how many edges it has?). Find a necessary and sufficient condition on natural numbers m, n such that $\mathcal{K}_{m, n}$ is Eulerian, and prove your answer. Then, do the same for having a Eulerian trail.
15. Prove that any circuit in a graph must contain a cycle, and that any circuit which is not a cycle contains at least two cycles.
16. Is it true that any closed walk in a graph contains a cycle? Prove or give a counterexample.
17. Let v, w be two distinct vertices of a graph \mathcal{G}. Prove that there exists a walk from v to w if and only if there exists a path from v to w.
18. For any two vertices $v, w \in V(\mathcal{G})$ write $v \sim w$ if there is a walk from v to w or if $v=w$. Prove that this gives an equivalence relation on $V(\mathcal{G})$ (that is, a relation that is reflexive, symmetric, and transitive). The equivalence classes are herby called connected components of \mathcal{G}. Why is this a good name?
21. Let \mathcal{G}_{1} and \mathcal{G}_{2} be two graphs. Prove that if $\mathcal{G}_{1} \simeq \mathcal{G}_{2}$ are isomorphic then either they are both connected or they are both disconnected. Does the converse of this statement hold?
23. Let \mathcal{G} be a connected graph with $n>1$ vertices. Prove that \mathcal{G} has at least $n-1$ edges, and that if no vertex has degree 1, then \mathcal{G} has at least n edges.

Extra problem. Show that the book's definition of connectedness agrees with the definition from class. That is, show that the two definitions below are logically equivalent.
Definition 1. A graph $\mathcal{G}=(V, E)$ is disconnected if there exist non-empty subgraphs $\mathcal{H}_{1}=$ $\left(V_{1}, E_{1}\right)$ and $\mathcal{H}_{2}=\left(V_{2}, E_{2}\right)$ such that V_{1} and V_{2} partition V and E_{1} and E_{2} partition E. A graph is connected if it is not disconnected.

Definition 2. A graph \mathcal{G} is connected if for any two vertices v, w there is a walk between v and w.

