Homework 2: Core solutions

These homework solutions have been created by Sal, so let him know if you find any mistakes. The problems assigned in the core section were:
Section 0.1 on page 10 problems $6 \mathrm{~b}-6 \mathrm{c}, 6 \mathrm{f}, 6 \mathrm{i}, 7 \mathrm{~d}, 7 \mathrm{f}, 7 \mathrm{k}$.
Section 0.2 on page 16 problems $3 \mathrm{~b}, 3 \mathrm{~d}, 3 \mathrm{f}, 6,7,13$.
Review Exercises for Chapter 0 on page 17-18 problems 2a, 3a, 15, 16.

Section 1.1 on page 23 problems 1b, 2a, 4.

Questions are in italics, and have generally been shortened or reworded, and after long solutions there is a \square
6. Write down the converse and contrapositive of each implication. Recall the converse of $p \rightarrow q$ is $q \rightarrow p$, and the contrapositive of $p \rightarrow q$ is $\neg q \rightarrow \neg p$.
(b) $x^{2}=1 \rightarrow x= \pm 1$. The converse is $x \pm 1 \rightarrow x^{2}=1$, while the contrapositive is $x \neq \pm 1 \rightarrow x^{2} \neq 1$.
(c) If $x^{2}=x+1$, then $x=1+\sqrt{5}$ or $x=1-\sqrt{5}$. The converse is: If $x=1+\sqrt{5}$ or $x=1-\sqrt{5}$, then $x^{2}=x+1$. The contrapositive is: If $x \neq 1 \pm \sqrt{5}$, then $x^{2} \neq x+1$.
(f) $a b=0 \rightarrow a=0$ or $b=0$. The converse is $a=0$ or $b=0 \rightarrow a b=0$, while the contrapositive is $a \neq 0$ and $b \neq 0 \rightarrow a b \neq 0$.
(i) If $p(x)$ is a polynomial of odd degree, then $p(x)$ has at least one real root. The converse is: If $p(x)$ is a polynomial which has at least one real root, then $p(x)$ has odd degree. The contrapositive is: If $p(x)$ is a polynomial which has no real roots, then the degree of $p(x)$ is even.
7. Rewrite using "for all" and "for some".
(d) There are infinitely many primes. For every natural number n, there are more than n primes.
(f) All positive real numbers have real square roots. For every real number x, if x is positive then the positive and negative square root of x are real numbers.
(k) Every polynomial of degree 3 has a real root. For every polynomial $p(x)$, if $p(x)$ has degree 3, then $p(x)$ has a real root.
3. Exhibit a counter-example.
(b) For integers a, b, we have $a b=1 \rightarrow a=b=1$. Set $a=b=-1$. Then $a b=1$ but $a \neq 1$.
(d) If the average of 4 different integers is 10, then at least one of the numbers must be greater than 12. The average of $8,9,11$, and 12 is 10 , but none of these numbers is greater than 12.
(f) For all real numbers x, y, we have $x-y=y-x$. If $x \neq y$ this statement is false. In particular, set $x=0$ and $y=1$, then $x-y=-1$ and $y-x=1$ and $-1 \neq 1$.
6. State the converse of the following implication and state whether the converse is true or false.

$$
x \text { is an even integer } \rightarrow x+2 \text { is an even integer. }
$$

The converse is the statement: If $x+2$ is an even integer, then x is an even integer. Both the statement and it's converse are true.
7. Determine whether the statement in Problem $\# 6$ is true or false if \rightarrow is replaced with \leftrightarrow. Since the implication and its converse are both true, the two statements are equivalent and so " x is an even integer $\leftrightarrow x+2$ is an even integer" is a true statement.
13. Consider the following assertions.
\mathcal{A} : There exists a real number y such that $y>x$ for every real number x, \mathcal{B} :For every real number x, there exists a real number y such that $y>x$.

Which one is true and which one is false. Explain carefully and justify your reasoning. The first statement is false. There does not exists a real number y that is greater than all other real numbers. In particular, if y is real then $y+1$ is real and $y<y+1$.

The second statement is true. For every real number x there does exist a real number y which is bigger than x; in particular set $y=x+1$. Note, there are actually infinitely many such y 's that will work.

1b. Construct a truth table for the compound statement $(p \wedge q) \vee((\neg p) \rightarrow q)$. This is easy I bet you can do it.

2a. If $p \rightarrow q$ is false, determine the truth value of $(p \wedge(\neg q)) \vee((\neg p) \rightarrow q)$. If $p \rightarrow q$ is false, then p is true but q is false. So, in particular $p \wedge(\neg q)$ is true, and hence the compound statement is true since the first part of the disjunction is true.
4. Determine the truth value of $[p \rightarrow(q \wedge(\neg r))] \vee[r \leftrightarrow((\neg s) \vee q)]$ in the case where each of p, q, r, and s are false. When all atomics are false, the first part of the disjunction is true, since it is an implication. Hence the compound statement is true.

