Homework 7: Core solutions

Section 5.2 on page 167 problems 1b-1d, 3, 12a-12c, 20a-20b.
Section 5.3 on page 174 problems 2, 8, 13 .
Section 5.4 on page 181 problems 1a-1c.

1. Give recursive definitions of the following sequences.
(b) $5,3,1,-1,-3, \ldots$ Solution: We have that the sequence is defined recursively as $a_{n}=a_{n-1}-2$ and $a_{1}=5$. Solving the recurrence we see that $a_{n}=5-2(n-1)$.
(c) $4,1,3,-2,5,-7,12,-19,31, \ldots$ Solution: The sequence is defined recursively by $a_{n}=a_{n-2}-a_{n-1}$, for all $n \geq 3$ and $a_{1}=4, a_{2}=1$.
(d) $1,2,0,3,-1,4,-2, \ldots$ Solution: This one was definitely the hardest of the three to figure out. The reason is because the depth of the recurrence is 3 and those are more difficult to see. The sequence is recursively defined by $a_{n}=a_{n-3}+a_{n-2}-a_{n-1}$ for $n \geq 4$, with $a_{1}=1, n_{2}=2, n_{3}=0$.
2. Define a sequence recursively by $a_{1}=1$ and $a_{n}=3 a_{n-1}$ for $n \geq 2$. Solve the recurrence relation. That is, find an explicit formula for a_{n} that does not involve any of the previous terms. Solution: The solution is $a_{n}=3^{n-1}$. This is proved by induction and the proof is left to the reader.
3. Define a sequence recursively by $a_{0}=2, a_{1}=3$, and $a_{n}=3 a_{n-1}-2 a_{n-2}$ for $n \geq 2$.
(a) Find the first 5 terms. Solution: The first 5 terms are 2, 3, 5, 9, 17.
(b) Guess a formula for a_{n}. Solution: Looking at the progression in the first 5 terms, we see that to get from the first term to the second you add 1 , to get from the second to the third you add 2 , to get from the third to the fourth you add 4 , and to get from the fourth to the fifth you add 8. But we are asked to guess a solution, not a recursive definition. With this perspective, and using what we already discovered, we guess that $a_{n}=1+2^{n}$ for $n \geq 0$.
(c) Prove that your guess is correct. Solution: We just check that the definition $a_{n}=$ $2+2^{n}$ satisfies the recurrence relation. The base cases are when $n=0$ and $n=1$, and we have that $a_{0}=1+2^{0}=2$, which is the correct value for the 0 -th term of the sequence provided, and $a_{1}=1+2^{1}=3$, which is also the correct value. Now, given $a_{n}=1+2^{n}$ we have to check that $a_{n}=3 a_{n-1}-2 a_{n-2}$. We have $3 a_{n-1}-2 a_{n-2}=3\left(1+2^{n-1}\right)-2\left(1+2^{n-2}\right)=1+3 \cdot 2^{n-1}-2 \cdot 2^{n-2}=1+2 \cdot 2^{n-1}=1+2^{n}$, as desired.
4. An arithmetic sequence begins $116,109,102, \ldots$..
(a) Find the 300th term. Solution: An arithmetic sequence is one that is defined recursively as $a_{n}=a_{n-1}+c$ for some constant c. In this case, $c=-7$ and the solution to the recursion is $a_{n}=116-7(n-1)$, for $n \geq 1$. Thus, the 300 th term is $a_{300}=116-7(300-1)=116-7(299)=-1977$.
(b) Is -480 a term? If yes, which one. Solution: Note that -480 has a remainder of 3 modulo 7 (since $-480=7 *(-68)+3$). But all the terms in the sequence have a remainder of 4 modulo 7 (for example, $116=7 * 16+4$). So, -480 is not a term of the sequence. The closest terms of the sequence to -480 are -476 and -483 .
5. Solve the recursively defined sequence $a_{n}=-6 a_{n-1}+7 a_{n-2}$, for $n \geq 2$ with $a_{0}=-5$ and $a_{1}=3$. Solution: The characteristic polynomial is $x^{2}+6 x-7$ which factors as $(x-1)(x+7)$, so the roots of the characteristic polynomial are $x_{1}=1$ and $x_{2}=-7$. Hence, the general solution to the recursion is $a_{n}=c_{1}(1)^{n}+c_{2}(-7)^{n}$. Next we use the known values of a_{0}, a_{1} to solve for c_{1}, c_{2}. We have

$$
\begin{aligned}
a_{0}=-5 & \Longrightarrow c_{1}+c_{2}=5, \text { and } \\
a_{1}=3 & \Longrightarrow c_{1}-7 c_{2}=3
\end{aligned}
$$

We have to solve two linear equations in two variables, which can be done using several methods. For example, adding 7 times the first equation to the second equation we see that $8 c_{1}=38$ or $c_{1}=19 / 4$, and then substituting this into the first equation we get $c_{2}=1 / 4$. So the particular solution to the recurrence is $a_{n}=\frac{19}{4}+\frac{1}{4}(-7)^{n}$.
8. Solve the recurrence $a_{n}=2 a_{n-1}-a_{n-2}$ for $n \geq 2$, where $a_{0}=40$ and $a_{1}=37$. Solution: The characteristic polynomial is $x^{2}-2 x+1=(x-1)^{2}$, so the general solution is $a_{n}=c_{1}-n c_{2}$. The particular solution is found using the given values of a_{0}, a_{1}. We have

$$
\begin{aligned}
& a_{0}=40 \Longrightarrow c_{1}-0 c_{2}=40, \text { and } \\
& a_{1}=37 \Longrightarrow c_{1}-c_{2}=37
\end{aligned}
$$

Therefore, $c_{1}=40$ and $c_{2}=3$, and the particular solution is $a_{n}=40-3 n$.

13a. Solve the homogeneous recurrence relation $a_{n}=5 a_{n-1}-6 a_{n-2}$ for $n \geq 2$, and $a_{0}=2, a_{1}=$ 11. Solution: The recurrence is solved in the usual way. The characteristic polynomial is $x^{2}-5 x+6=(x-6)(x+1)$ which has roots $x=6,-1$. The general solution is thus $a_{n}=c_{1} 6^{n}+(-1)^{n} c_{2}$. We find c_{1}, c_{2} using the given information that $a_{0}=2, a_{1}=11$. We have

$$
\begin{aligned}
a_{0}=2 & \Longrightarrow c_{1}+c_{2}=2, \text { and } \\
a_{1}=11 & \Longrightarrow 6 c_{1}-c_{2}=11
\end{aligned}
$$

Adding the two equations together we get $7 c_{1}=13$, hence $c_{1}=13 / 7$. Substitution into the first equation yields $c_{2}=2-13 / 7=1 / 7$. So the particular solution is $a_{n}=\frac{13}{7} 6^{n}+\frac{1}{7}(-1)^{n}$.

1. What sequence is associated to the following generating functions?
(a) $(2-3 x)^{2}$ Solution: Expand the polynomial to see that it is $4-12 x+9 x^{2}$, so the corresponding sequence with this generating function is $4,-12,9,0,0,0, \ldots$
(b) $\frac{x^{4}}{1-x}$ Solution: Recall that $\frac{1}{1-x}=1+x+x^{2}+\cdots$. So, $\frac{x^{4}}{1-x}=x^{4}\left(\frac{1}{1-x}\right)=x^{4}(1+$ $\left.x+x^{2}+\cdots\right)=x^{4}+x^{5}+x^{6}+\cdots$. The corresponding sequence to this generating function is $0,0,0,0,1,1,1, \ldots$
(c) $\frac{1}{(1+3 x)^{2}}$ Solution: Note that $\frac{1}{1+3 x}=\frac{1}{1-(-3 x)}=1-3 x+(3 x)^{2}-(3 x)^{3}+\cdots$. Hence,

$$
\begin{aligned}
\frac{1}{(1+3 x)^{2}} & =\left(\frac{1}{1+3 x}\right)\left(\frac{1}{1+3 x}\right) \\
& =\left(1-3 x+9 x^{2}-27 x^{3}+\cdots\right)\left(1-3 x+9 x^{2}-27 x^{3}+\cdots\right) \\
& =1+(-3-3) x+(9+9+9) x^{2}+\cdots \\
& =1-6 x+27 x^{2}-108 x^{3}+\cdots+(n+1)(-3)^{n} x^{n}+\cdots
\end{aligned}
$$

So, the corresponding sequence to this generating function is $1,-6,27,-108, \ldots$, defined by $a_{n}=(n+1)(-3)^{n}, n \geq 0$.

