
Math 2602 Finite and Linear Math Fall ’14

Homework 8: Core solutions

Review exercises for Chapter 5 page 183 problems 25, 26a-26b, 29.

Section 8.1 on page 252 problems 8, 9, 10, 13.

Section 8.2 on page 264 problems 1, 2, 4, 5, 7a-7b, 9.

25. Find a formula for an, given a0 = a1 = 1 and an = 3an−1−2an−2 +5 for n ≥ 2. Solution: The

difference between this recurrence relation and the previous ones (from the last homework) is

the extra term “+5”. First, let’s guess a particular solution, pn that satisfies the inhomogeneous

recurrence relation an = ran−1 + san−2 + f(n) above (with r = 3, s = −2, and f(n) = 5),

ignoring initial conditions. We guess that pn = c for some constant c, since f(n) is constant.

We plug in our guess pn into the inhomogeneous recurrence and solve for c. We have

pn = 3pn−1 − 2pn−2 + 5

c = 3c− 2c + 5

c− c = 5

0 = 5

Oops! Looks like our guess was not a good one. Let’s try a different guess. Let’s try pn = a+bn

since, at least, f(n) = 5 is linear (it’s even constant, but that obviously didn’t work). With

this choice of pn we plug into the inhomogeneous recurrence and try to solve for the constants

a and b. We have
pn = 3pn−1 − 2pn−2 + 5

a + bn = 3(a + b(n− 1))− 2(a + b(n− 2)) + 5

a + bn = 3a− 2a + 3bn− 2bn− 3b + 4b + 5

0 = b + 5

So b = −5 and a is undetermined (so just set a = 0, if we pick a different value it will work itself

out when we find c1, c2 later). Thus, a particular solution to the inhomogeneous recurrence,

ignoring initial conditions, is pn = −5n.

Now, by Theorem 5.3.2 on page 172 we have that the solution to the recurrence is the sum

pn+qn where pn is as above and qn is a general solution to the homogeneous recurrence relation

an = 3an−1 − 2an−2, ignoring initial conditions (meaning we haven’t solved for c1, c2 yet).

We solve an = 3an−1− 2an−2 in the usual way. The characteristic polynomial is x2− 3x+ 2 =

(x−2)(x−1), which has roots x = 1, 2. So the general solution to the homogeneous recurrence

is an = c1 + c22
n.

Finally, we have that the general solution to the inhomogeneous recurrence we started with is

an = pn + qn = −5n + c1 + c22
n. We solve for c1, c2 in the usual way, by taking into account



2

the initial values a0 = 1, a1 = 1. We have

a0 = 1 =⇒ c1 + c2 = 1

a1 = 1 =⇒ −5 + c1 + 2c2 = 1.

Solving the system of two linear equations in the two variables c1, c2 we immediately obtain

c2 = 5 and c1 = −4. Thus, the solution is

an = −5n− 4 + 5 · 2n, n ≥ 0.

Just because it’s the first time we’ve tried this, lets check. The first few terms of the sequence,

starting at n = 0 of course, are 1, 1, 6, 21, 56, . . ., and this satisfies a0 = a1 = 1 and a2 =

3(1) − 2(1) + 5 = 6 X and a3 = 3(6) − 2(1) + 5 = 21 X and a4 = 3(21) − 2(6) + 5 = 56 X.

We did it! (or at least, we checked the first few values) (to make extra sure we could also

check that the solution we found works by plugging it into the recurrence, but I’m sick of this

problem, um, I mean, ahem “checking that way is left to the reader”)

2

29. Let a and b be any positive integers and define the recurrence a1 = a, a2 = b, and an =

an−1 +an−2 for n ≥ 3. Assume that the sequence a2
a1
, a3
a2
, a4
a3
, . . . has a limit k. What is the value

of k? Solution: What to try? The recurrence relation given has characteristic polynomial

x2−x−1, which has roots x = −1±
√

2 using the quadratic formula. So, the general solution is

an = c1(−1 +
√

2)n + c2(−1−
√

2)n. For now, we are not overly concerned with the particular

values of c1, c2. Note that, since | − 1 +
√

2| < 1 that, in the limit, an ≈ c2(−1 −
√

2
n
).

Therefore, an+1/an ≈ c2(−1−
√
2)n+1

c2(−1−
√
2)n

= −1−
√

2. In other words, the limit of an+1/an is −1−
√

2

as n tends to infinity. (Cool!) (Notice, we never cared at all about what the values of a, b, c1, c2
were)

2

8. Describe an algorithm that, upon input of n real numbers, a1, a2, . . . , an, outputs their average.

Solution:

Input: a1, a2, . . . , an.

Procedure:

step 1: Initialize S = 0.

step 2: For i = 1..n,



3

replace S with S + ai.

step 3: replace S with S/n.

Output: S.

2

9. Describe an algorithm that outputs the maximum of the numbers a1, . . . , an. Solution:

Input: a1, a2, . . . , an.

Procedure:

step 1: Initialize S = a1.

step 2: For i = 1..n,

IF ai ≤ ai+1, replace S with ai+1.

Output: S.

2

10. Describe an algorithm that determines how many of the numbers a1, . . . , an are equal to x.

Solution:

Input: a1, a2, . . . , an, and x.

Procedure:

step 1: Initialize S = 0.

step 2: For i = 1..n,

IF ai = x, replace S with S + 1.

Output: S.

2

11. Describe an algorithm that gives all solutions x in the range 0 ≤ x < n to the congruence

ax ≡ b(mod n)

for given values of a, b, n, which should all be integer inputs. If there are no solutions, the

algorithm should output the words no solution. Solution:

It may be best to give some examples before trying to tackle this problem. First, some

questions to get us started.



4

What are the solutions to x ≡ 3 (mod 7)? Recall, x ≡ 3 (mod 7) means that the integer x has

a remainder of 3 after dividing by 7. There is only one x value that is in the range 0 ≤ x < 7,

namely x = 3.

What are the solutions to 2x ≡ 3 (mod 7)? The statement 2x ≡ 3 (mod 7) means “2x has

a remainder of 3 after dividing by 7”. Lets just check the x-values in the range x = 0, . . . , 6

that make that true.
x = 0 0 ≡ 3 (mod 7) false

x = 1 2 ≡ 3 (mod 7) false

x = 2 4 ≡ 3 (mod 7) false

x = 3 6 ≡ 3 (mod 7) false

x = 4 8 ≡ 3 (mod 7) false

x = 5 10 ≡ 3 (mod 7) false

x = 6 12 ≡ 3 (mod 7) false

Ok, so in this case, our algorithm should output no solution.

Let’s try another case. Set a = 2, b = 4 and n = 7. We are going to look for solutions to the

equivalence ax ≡ b (mod 7),

2x ≡ 4 (mod 7).

Again, we look in the range x = 0, . . . , 6 (since n = 7).

x = 0 0 ≡ 3 (mod 7) false

x = 1 2 ≡ 4 (mod 7) false

x = 2 4 ≡ 4 (mod 7) true

x = 3 6 ≡ 4 (mod 7) false

x = 4 8 ≡ 4 (mod 7) false

x = 5 10 ≡ 4 (mod 7) false

x = 6 12 ≡ 4 (mod 7) false

Alright, so in this case, the output of our algorithm should be x = 4.

Let’s do another case. Let’s try to make a lot of output this time. Set a = 7, b = 0 and n = 7.



5

Then,
x = 0 0 ≡ 0 (mod 7) true

x = 1 7 ≡ 0 (mod 7) true

x = 2 14 ≡ 0 (mod 7) true

x = 3 21 ≡ 0 (mod 7) true

x = 4 28 ≡ 0 (mod 7) true

x = 5 35 ≡ 0 (mod 7) true

x = 6 42 ≡ 0 (mod 7) true

In this case, the output should be x = 0, 1, 2, 3, 4, 5, 6, 7.

Ok, last example. Set a = 4, b = 0, and n = 8. Now lets find the solutions x in the range

x = 0, . . . , 7 (since n = 8 now the range is bigger, 0 ≤ x < n, then it was when n was equal to

7).

x = 0 0 ≡ 0 (mod 7) true

x = 1 4 ≡ 0 (mod 7) false

x = 2 8 ≡ 0 (mod 7) true

x = 3 12 ≡ 0 (mod 7) false

x = 4 16 ≡ 0 (mod 7) true

x = 5 20 ≡ 0 (mod 7) false

x = 6 24 ≡ 0 (mod 7) true

In this case, the output should be x = 0, 2, 4, 6.

Ok, we are ready to try to describe the algorithm.

Recall, ax ≡ b (mod n) if and only if ax − b ≡ 0 (mod n). In other words, x satisfies the

equivalence ax ≡ b (mod n) exactly when ax − b is divisible by n. Now, in order to ensure

that our algorithm is a finite process, we can’t check all the possible multiples of 7 to see if

ax− b is one of them, so we will have to write a sub-routine to deal with checking if ax− b is

divisible by 7.

There is some issue when ax− b is negative. But for now, we will avoid discussing it.

Sub-routine DIV (x, a, b, n): Input: x, a, b, n with ax− b ≥ 0.

Procedure:

step 1: Initialize S = 0.

step 2: For k = 0..dax−b
n
e,



6

IF ax− b = kn, replace S with 1.

Output: S.

The algorithm DIV (x, a, b, n) outputs 1 if ax − b is divisible by n and outputs 0 otherwise.

This is because if the output of the algorithm is 1, then for some k in the range 0 ≤ k ≤ dax−b
n
e

the equality ax− b = kn holds.

If we knew that ax− b were non-negative for all x in the range 0 ≤ x < n, the algorithm we

would want is

Input: a, b, n.

Procedure:

step 1: Initialize S = {}.
step 2: For x = 0..n− 1,

IF DIV (x, a, b, n) = 1, replace S with S ∪ {x}.
Output: S.

We can adjust the algorithm to accommodate for the restriction ax− b by replacing b with its

remainder modulo n. That is, ax− b is divisible by 7 if and only if ax− (b + 7k) is divisible

by 7 for all integers k (very easy to prove directly). To that end, define the subroutine

Sub-routine REM(b, n):

Input: b, n.

Procedure:

step 1: Initialize r = 0.

step 2: For x = 0..n− 1,

IF DIV (x, 1, b, n) = 1, replace r with x.

Output: r where 0 ≤ r < n and r ≡ b (mod n).

Finally, the desired algorithm is

Input: a, b, n.

Procedure:

step 1: Initialize S = {}.
step 2:

IF ax− b ≥ 0

For x = 0..n− 1,

IF DIV (x, a, b, n) = 1, replace S with S ∪ {x}.
IF ax− b¡ 0

Replace b with REM(b, n),

For x = 0..n− 1,



7

IF DIV (x, a, b, n) = 1, replace S with S ∪ {x}.
Output: S.

2

1. Consider the distance algorithm used to calculate√
(x1 − y1)2 + (x2 − y2)2 + · · ·+ (xn − yn)2

using 3n operations: n subtractions, n squarings, n− 1 additions, and 1 square root. Assume

that addition and subtraction require the same amount of time, that addition is twice as fast as

multiplication, and that multiplication is ten times as fast as the square root operation. Find

the complexity function. Solution: Considering the time it takes to perform the subtraction

operation as a ‘unit’, the complexities of the + and− operation are both 1. The complexity of 2

is 2, and the complexity of
√

is 10. The complexity of the algorithm is thus n+2n+n−1+10 =

4n + 9 = O(n). (by the way, the original algorithm was also O(n), so really no time is lost

with the extra assumptions)

2

2. Show that the number of operations required to multiply an n-digit number by a single-digit

number does not exceed 3n − 2. Count + and · as equivalent operations. Solution: Consider

the following algorithm for multiplying an n-digit number by a single-digit number.

Input: (anan−1 . . . a1)10, x.

Procedure:

step 1: Initialize m1 = r1 = · · · = mn = rn = mn+1 = rn+1 = 0.

step 2: For i = 1..n,

replace mi with the ones digit of x · ai + ri,

IF x · ai ≥ 10 replace ri+1 with 1,

step 3: Replace mn+1 with rn+1.

Output: (mn+1mnmn−1 . . .m1)10.

There are a total of 2n multiplications and n additions in this algorithm. Thus, the complexity

is bounded by 3n. But we need to get rid of two operations to meet the book’s requirement

of a complexity bounded by 3n− 2. It isn’t hard to see how to change the algorithm above to

get the desired result.



8

Input: (anan−1 . . . a1)10, x.

Procedure:

step 1: Initialize m1 = r1 = · · · = mn = rn = mn+1 = rn+1 = 0.

step 2: Replace m1 with the ones digit of x · a1.
step 3: For i = 2..n,

Replace mi with the ones digit of x · ai + ri,

IF x · ai ≥ 10 replace ri+1 with 1,

step 4: Replace mn+1 with rn+1.

Output: (mn+1mnmn−1 . . .m1)10.

In Step 2 there is one operation. In each iteration of Step 3 there are three operations, and

there are n− 1 iterations, for a total of 3(n− 1) operations in Step 3. Thus, the total number

of operations is 1 + 3(n− 1) = 1 + 3n− 3 = 3n− 2 X. 2

By the way . . .

If we do not allow the operation “·”, then we replace x ·ai+ri with ai + ai + · · ·+ ai︸ ︷︷ ︸
x times

+ri. With

this replacement, the algorithm now uses x + 1 of the “+” operations in the i-th iteration of

Step 2. Thus, the complexity is bounded by
∑n

i=1(x + 1) = n(x + 1) = O(n). Unfortunately,

this is not good enough for the problem; we are supposed to show the complexity is bounded

by f(n) = 3n− 2 and n(x + 1) is bigger if x ≥ 3, which is possible.

If we instead replace x · ai + ri with x + x + · · ·+ x︸ ︷︷ ︸
ai times

+ ri, then the complexity of the i-th

iteration of Step 2 is bounded by ai +1, and the complexity of the algorithm is
∑n

i=1(ai +1) ≤
max{a1, . . . , an} · n + n = O(n). But, again, this complexity is not good enough unless the

maximum of the digits in the n-digit number is 2.

Even though neither are “good enough”, they are both good enough from an asymptotic

standpoint (they all are O(n)).

Question: What is the best complexity you can get if you only allow the operation +? What

is the best complexity you can get if the cost of · is some constant times the cost of +?

3. Let x be a real number and n a positive integer. Consider the following two algorithms for

calculating x2n.

Algorithm A:

Input: x, n.

Procedure:

step 1: Initialize a = 1.



9

step 2: For i = 1..2n,

replace a with xa.

Output: a.

Algorithm B:

Input: x, n.

Procedure:

step 1: Initialize a = x.

step 2: For i = 1..n,

replace a with a2.

Output: a.

Find complexity functions for both algorithms and explain why B is more efficient. Assume

that · is the basic operation. Solution: The complexity of A is 2n while the complexity of B

is only n. Since, n ≺ 2n, the complexity of B is much (much MUCH ) better.

2

7a. Show f(n) = 5n is O(g) where g(n) = n3. Solution: We need to find c > 0 and n0 ∈ Z such

that

∀n ≥ n0 f(n) ≤ cg(n).

Setting c = 1 and n0 = 5 works, since if n ≥ 5 then 5n ≤ n2 ≤ n3.

2

7b. Show f(n) = 17n4 + 8n3 + 5n2 + 6n+ 1 is O(g) where g = n4 Solution: Set c = 85 and n0 = 0.

Then, if n ≥ 0 we have

17n4 + 8n3 + 5n2 + 6n + 1 ≤ 17n4 + 17n4 + 17n4 + 17n4 + 17n4 = 85n4.

2

9. If f, g, h : N→ R, f = O(h) and g = O(h), show that f + g = O(h). Solution: By definition,

since f = O(h) there exists c1 > 0 and n0 ∈ Z such that if n ≥ n0 then f(n) ≤ c1h(n).

Similarly, there exists c2 > 0 and m0 ∈ Z such that if n ≥ m0 then g(n) ≤ c2h(n). Set

c = c1 + c2 and N0 = max{m0, n0}. Then, if n ≥ N0 then f(n) ≤ c1h(n) and g(n) ≤ c2h(n),

so f(n) + g(n) ≤ (c1 + c2)h(n), as desired.

2


