Homework 9: Core solutions

Section 8.2 on page 264 problems 13b, 27a-27b. Section 8.3 on page 275 problems 1b, 8, 10a-10b, 14. Section 8.4 on page 279 problems 2c, 7a. Chapter 8 review problems on page 280 problem 6.

13b. Show that $b^n \prec n!$ for any b > 1 Solution: Let $a_n = \frac{b^n}{n!}$. Then $\frac{a_{n+1}}{a_n} = \frac{b^{n+1}/(n+1)!}{b^n/n!} = \frac{b}{n+1}$, which converges to zero as n tends to infinity. By the ratio test (from Calculus), the series $\sum_{n=1}^{\infty} a_n$ converges absolutely. A necessary condition for the series to converge, however, is that the terms a_n must tend to zero. Hence, $\lim_{n\to\infty} \frac{b^n}{n!} = 0$. By Proposition 8.2.6 on page 256, we have $b^n \prec n!$.

27a. Establish the triangle inequality:

$$|a+b| \le |a| + |b|.$$

Solution: For any real number x and y we have

$$-|x| \le x \le |x|$$
, and
 $-|y| \le y \le |y|$.

Adding the two inequalities together we have

$$-(|x|+|y|) \le x+y \le |x|+|y|.$$
(1)

But

$$|x+y| = \begin{cases} x+y & \text{if } x+y \ge 0\\ -(x+y) & \text{if } x+y < 0. \end{cases}$$

In either case, $|x + y| \le |x| + |y|$ using Equation 1.

Alternate proof: We first show that $|x + y|^2 \leq (|x| + |y|)^2$. We have

$$|x + y|^{2} = (x + y)(x + y)$$

= $x^{2} + 2xy + y^{2}$
= $|x|^{2} + 2xy + |y|^{2}$
 $\leq |x|^{2} + 2|x||y| + |y|^{2} = (|x| + |y|)^{2}$

Now, if a, b are any positive real numbers and $a \leq b$, then $\sqrt{a} \leq \sqrt{b}$. This is immediate since the function $f(x) = \sqrt{x}$ is strictly increasing on it's domain (recall, $f'(x) = \frac{1}{2\sqrt{x}} > 0$ for x > 0). This finishes the proof.

27b. Show that $|x_1 + \cdots + x_n| \leq |x_1| + \cdots + |x_n|$ for any $n \geq 1$ and real numbers x_1, \ldots, x_n . Solution: Proof by induction. When n = 1 we have $|x_1| \leq |x_1 \checkmark$ (by the way, the n = 2 case is just what we did in the previous exercise). Now, suppose $|x_1 + \cdots + x_k| \leq |x_1| + \cdots + |x_k|$. We have,

$$\begin{aligned} x_1 + \dots + x_k + x_{k+1} &\leq |x_1 + \dots + x_k| + |x_{k+1}| \\ &\leq |x_1| + \dots + |x_k| + |x_{k+1}, \end{aligned}$$

where the first inequality follows from the previous exercise and the second equality follows from the induction hypothesis.

1b. Show the sequence of steps in a binary search to find x = 7 in the list 1, 2, 3, 4, 5, 6, 7, 8, 9. How many times is x compared with an element in the list? How many times would it be compared if we used a linear search? Solution: Recall the binary search and linear search algorithms.

Binary search algorithm:

Input: a_1, \ldots, a_n, x with $a_1 \le a_2 \le \cdots \le a_n$. Procedure: STEP 1: Initialize S = 0. STEP 2: WHILE n > 0, IF n = 1 then IF $x = a_1$ set n = 0 and replace S with 1. ELSE set n = 0. ELSE set $m = \lfloor \frac{n}{2} \rfloor$; IF $x \le a_m$ replace the current list with a_1, \ldots, a_m and set n = m; ELSE replace the current list with a_{m+1}, \ldots, a_n and replace n by n - m. END WHILE Output: S. Linear search algorithm:

Input: a_1, \ldots, a_n, x . Procedure: STEP 1: Initialize S = 0. For i = 1..n, IF $x = a_i$, set i = 2n and replace S with 1.

Output: S.

The algorithms above each take a list and output 1 if x is an element of the list and output 0 otherwise.

The steps in the binary search with the list 1, 2, 3, 4, 5, 6, 7, 8, 9 and x = 7 is as follows: Initialize S = 0. Since $n \neq 1$ set $m = \lfloor \frac{9}{2} \rfloor = 4$. The number x = 7 does not satisfy $x \leq a_m$ since $7 \nleq a_4 = 4$. So we replace the list by 5, 6, 7, 8, 9. Since $n \neq 1$ set $m = \lfloor \frac{5}{2} \rfloor = 2$. The number x = 7 does not satisfy $x \leq a_m$ since $a_2 = 6$, so we replace the list by 7, 8, 9. Since $n \neq 1$ set $m = \lfloor \frac{3}{2} \rfloor = 1$. The number x = 7 does satisfy $x \leq a_1$ since $a_1 = 7$. Hence, we replace the list with the list "7". Now, n = 1 and $x = a_1$, so we replace S with 1. Finally, we output S = 1.

There are a total of 4 comparisons using the binary search.

If we were to do a linear search, there would be 7 comparisons (6 failed comparison and then a successful comparison).

8. Show the sequence of steps involved in merging the sorted lists 2, 4, 4, 6, 8 and 1, 5, 7, 9, 10. How many comparisons are required? Solution: Recall the merging algorithm.

Merging algorithm: $MERGE(\mathcal{L}_1, \mathcal{L}_2)$ Input: $\mathcal{L}_1 = (a_1, \ldots, a_s)$ and $\mathcal{L}_2 = (b_1, \ldots, b_t)$ with $a_1 \le a_2 \le \cdots \le a_s$ and $b_1 \le b_2 \le \cdots \le b_t$. Procedure:

STEP 1: Initialize $\mathcal{L}_3 = ()$. STEP 2:

IF \mathcal{L}_1 is empty, set $\mathcal{L}_3 = \mathcal{L}_2$ and STOP.

IF \mathcal{L}_2 is empty, set $\mathcal{L}_3 = \mathcal{L}_1$ and STOP.

STEP 3:

IF $a_1 \leq b_1$, remove a_1 from \mathcal{L}_1 and append it to \mathcal{L}_3 ; if this empties \mathcal{L}_1 then append \mathcal{L}_2 to \mathcal{L}_3 and STOP. Relabel the elements in \mathcal{L}_1 and repeat Step 3.

ELSE $a_1 > b_1$, remove b_1 from \mathcal{L}_2 and append it to \mathcal{L}_3 ; if this empties \mathcal{L}_2 then append \mathcal{L}_1 to \mathcal{L}_3 and STOP. Relabel the elements in \mathcal{L}_2 and repeat Step 3.

Output: \mathcal{L}_{3} .

The sequence of steps is as follows:

	\mathcal{L}_1	\mathcal{L}_2	\mathcal{L}_3
1	(2, 4, 4, 6, 8)	(1, 5, 7, 9, 10)	()
2	(2, 4, 4, 6, 8)	(5, 7, 9, 10)	(1)
3	(4, 4, 6, 8)	(5, 7, 9, 10)	(1, 2)
4	(4, 6, 8)	(5, 7, 9, 10)	(1, 2, 4)
5	(6, 8)	(5, 7, 9, 10)	(1, 2, 4, 4)
6	(6, 8)	(7, 9, 10)	(1, 2, 4, 4, 5)
7	(8)	(7, 9, 10)	$\left(1,2,4,4,5,6\right)$
8	(8)	(9, 10)	(1, 2, 4, 4, 5, 6, 7)
9	()	(9, 10)	$\left(1,2,4,4,5,6,7,8\right)$
10	()	()	(1, 2, 4, 4, 5, 6, 7, 8, 9, 10)

There are 8 comparisons required (the 1rst and 10th step did not require a comparison).

10. Find an example of two ordered lists of lengths s and $t \geq 3$ that can be merged with

- (a) one comparison. Solution: Set $\mathcal{L}_1 = (1)$ and $\mathcal{L}_2 = (2, 3, 4)$.
- (b) t comparisons. Solution: Set $\mathcal{L}_{\infty} = (t+1)$ and $\mathcal{L}_{2} = (1, 2, 3, \dots, t)$.
- 11. Sort the list 7, 2, 2, 5, 3, 5, 4 using bubble sort and merge sort. In each case, how many comparisons were needed? (for merge sort, you may ignore comparisons required to check the size and parity of n at each iteration of Step 3) Solution: The merge sort and bubble sort algorithms are stated below. Recall the Merging algorithm above whose input $\mathcal{L}_1, \mathcal{L}_2$ are two ordered lists and whose output $MERGE(\mathcal{L}_1, \mathcal{L}_2)$ is the merged ordered list coming from $\mathcal{L}_1, \mathcal{L}_2$.

Merge sort algorithm:

Input: An unordered list $\mathcal{L} = (a_1, \dots, a_n)$. Procedure: STEP 1: Initialize F = 0. STEP 2: For i = 1..n, define \mathcal{L}_i to be the list with single element a_i . STEP 3: WHILE F = 0, IF n = 1, set F = 1. IF n = 2m is even,

```
For i = 1..m
replace \mathcal{L}_i with MERGE(\mathcal{L}_{2i}, \mathcal{L}_{2i-1}).
Set n := m.
IF n = 2m + 1 is odd and n \neq 1,
For i = 1..m
replace \mathcal{L}_i with MERGE(\mathcal{L}_{2i}, \mathcal{L}_{2i-1}).
Set \mathcal{L}_{m+1} := \mathcal{L}_n.
Set n := m + 1.
Output: \mathcal{L}_1.
```

Bubble sort algorithm:

Input: An unordered list $\mathcal{L} = (a_1, \dots, a_n)$. Procedure: STEP 1: For i = n - 1 down to 1, For j = 1..i, IF $a_j > a_{j+1}$, set $a_j := a_{j+1}$ and $a_{j+1} := a_j$. Output: \mathcal{L} .