
Math 2602 Finite and Linear Math Fall ’14

Homework 9: Core solutions

Section 8.2 on page 264 problems 13b, 27a-27b.

Section 8.3 on page 275 problems 1b, 8, 10a-10b, 14.

Section 8.4 on page 279 problems 2c, 7a.

Chapter 8 review problems on page 280 problem 6.

13b. Show that bn ≺ n! for any b > 1 Solution: Let an = bn

n!
. Then an+1

an
= bn+1/(n+1)!

bn/n!
= b

n+1
, which

converges to zero as n tends to infinity. By the ratio test (from Calculus), the series
∑∞

n=1 an
converges absolutely. A necessary condition for the series to converge, however, is that the

terms an must tend to zero. Hence, limn→∞
bn

n!
= 0. By Proposition 8.2.6 on page 256, we

have bn ≺ n!.

2

27a. Establish the triangle inequality:

|a + b| ≤ |a|+ |b|.

Solution: For any real number x and y we have

−|x| ≤ x ≤ |x|, and

−|y| ≤ y ≤ |y|.

Adding the two inequalities together we have

− (|x|+ |y|) ≤ x + y ≤ |x|+ |y|. (1)

But

|x + y| =

{
x + y if x + y ≥ 0

−(x + y) if x + y < 0.

In either case, |x + y| ≤ |x|+ |y| using Equation 1.

Alternate proof: We first show that |x + y|2 ≤ (|x|+ |y|)2. We have

|x + y|2 = (x + y)(x + y)

= x2 + 2xy + y2

= |x|2 + 2xy + |y|2

≤ |x|2 + 2|x||y|+ |y|2 = (|x|+ |y|)2.

Now, if a, b are any positive real numbers and a ≤ b, then
√
a ≤

√
b. This is immediate

since the function f(x) =
√
x is strictly increasing on it’s domain (recall, f ′(x) = 1

2
√
x
> 0 for

x > 0). This finishes the proof.

2

2

27b. Show that |x1+· · ·+xn| ≤ |x1|+· · ·+|xn| for any n ≥ 1 and real numbers x1, . . . , xn. Solution:

Proof by induction. When n = 1 we have |x1| ≤ |x1 X (by the way, the n = 2 case is just

what we did in the previous exercise). Now, suppose |x1 + · · · + xk| ≤ |x1| + · · · + |xk|. We

have,
|x1 + · · ·+ xk + xk+1| ≤ |x1 + · · ·+ xk|+ |xk+1|

≤ |x1|+ · · ·+ |xk|+ |xk+1,

where the first inequality follows from the previous exercise and the second equality follows

from the induction hypothesis.

2

1b. Show the sequence of steps in a binary search to find x = 7 in the list 1, 2, 3, 4, 5, 6, 7, 8, 9. How

many times is x compared with an element in the list? How many times would it be compared

if we used a linear search? Solution: Recall the binary search and linear search algorithms.

Binary search algorithm:

Input: a1, . . . , an, x with a1 ≤ a2 ≤ · · · ≤ an.

Procedure:

step 1: Initialize S = 0.

step 2: WHILE n > 0,

IF n = 1 then

IF x = a1 set n = 0 and replace S with 1.

ELSE set n = 0.

ELSE

set m = bn
2
c;

IF x ≤ am replace the current list with a1, . . . , am and set n = m;

ELSE replace the current list with am+1, . . . , an and replace n by n−m.

END WHILE

Output: S.

Linear search algorithm:

Input: a1, . . . , an, x.

Procedure:

step 1: Initialize S = 0.

For i = 1..n,

3

IF x = ai, set i = 2n and replace S with 1.

Output: S.

The algorithms above each take a list and output 1 if x is an element of the list and output 0

otherwise.

The steps in the binary search with the list 1, 2, 3, 4, 5, 6, 7, 8, 9 and x = 7 is as follows:

Initialize S = 0. Since n 6= 1 set m = b9
2
c = 4. The number x = 7 does not satisfy x ≤ am

since 7 � a4 = 4. So we replace the list by 5, 6, 7, 8, 9. Since n 6= 1 set m = b5
2
c = 2. The

number x = 7 does not satisfy x ≤ am since a2 = 6, so we replace the list by 7, 8, 9. Since

n 6= 1 set m = b3
2
c = 1. The number x = 7 does satisfy x ≤ a1 since a1 = 7. Hence, we

replace the list with the list “7”. Now, n = 1 and x = a1, so we replace S with 1. Finally, we

output S = 1.

There are a total of 4 comparisons using the binary search.

If we were to do a linear search, there would be 7 comparisons (6 failed comparison and then

a successful comparison).

2

8. Show the sequence of steps involved in merging the sorted lists 2, 4, 4, 6, 8 and 1, 5, 7, 9, 10.

How many comparisons are required? Solution: Recall the merging algorithm.

Merging algorithm: MERGE(L1,L2)

Input: L1 = (a1, . . . , as) and L2 = (b1, . . . , bt) with a1 ≤ a2 ≤ · · · ≤ as and b1 ≤ b2 ≤ · · · ≤ bt.

Procedure:

step 1: Initialize L3 = ().

step 2:

IF L1 is empty, set L3 = L2 and STOP.

IF L2 is empty, set L3 = L1 and STOP.

step 3:

IF a1 ≤ b1, remove a1 from L1 and append it to L3; if this empties L1 then append

L2 to L3 and STOP. Relabel the elements in L1 and repeat Step 3.

ELSE a1 > b1, remove b1 from L2 and append it to L3; if this empties L2 then append

L1 to L3 and STOP. Relabel the elements in L2 and repeat Step 3.

Output: L3.

4

The sequence of steps is as follows:

L1 L2 L3

1 (2, 4, 4, 6, 8) (1, 5, 7, 9, 10) ()

2 (2, 4, 4, 6, 8) (5, 7, 9, 10) (1)

3 (4, 4, 6, 8) (5, 7, 9, 10) (1, 2)

4 (4, 6, 8) (5, 7, 9, 10) (1, 2, 4)

5 (6, 8) (5, 7, 9, 10) (1, 2, 4, 4)

6 (6, 8) (7, 9, 10) (1, 2, 4, 4, 5)

7 (8) (7, 9, 10) (1, 2, 4, 4, 5, 6)

8 (8) (9, 10) (1, 2, 4, 4, 5, 6, 7)

9 () (9, 10) (1, 2, 4, 4, 5, 6, 7, 8)

10 () () (1, 2, 4, 4, 5, 6, 7, 8, 9, 10)

There are 8 comparisons required (the 1rst and 10th step did not require a comparison).

2

10. Find an example of two ordered lists of lengths s and t ≥ 3 that can be merged with

(a) one comparison. Solution: Set L1 = (1) and L2 = (2, 3, 4).

(b) t comparisons. Solution: Set L∞ = (t + 1) and L2 = (1, 2, 3, . . . , t).

11. Sort the list 7, 2, 2, 5, 3, 5, 4 using bubble sort and merge sort. In each case, how many compar-

isons were needed? (for merge sort, you may ignore comparisons required to check the size and

parity of n at each iteration of Step 3) Solution: The merge sort and bubble sort algorithms

are stated below. Recall the Merging algorithm above whose input L1,L2 are two ordered lists

and whose output MERGE(L1,L2) is the merged ordered list coming from L1,L2.

Merge sort algorithm:

Input: An unordered list L = (a1, . . . , an).

Procedure:

step 1: Initialize F = 0.

step 2: For i = 1..n,

define Li to be the list with single element ai.

step 3: WHILE F = 0,

IF n = 1, set F = 1.

IF n = 2m is even,

5

For i = 1..m

replace Li with MERGE(L2i,L2i−1).

Set n := m.

IF n = 2m + 1 is odd and n 6= 1,

For i = 1..m

replace Li with MERGE(L2i,L2i−1).

Set Lm+1 := Ln.

Set n := m + 1.

Output: L1.

Bubble sort algorithm:

Input: An unordered list L = (a1, . . . , an).

Procedure:

step 1:

For i = n− 1 down to 1,

For j = 1..i,

IF aj > aj+1, set aj := aj+1 and aj+1 := aj.

Output: L.

