Homework 9: Core solutions

Section 8.2 on page 264 problems 13b, 27a-27b.
Section 8.3 on page 275 problems 1b, 8, 10a-10b, 14 .
Section 8.4 on page 279 problems 2c, 7 a.
Chapter 8 review problems on page 280 problem 6.
13b. Show that $b^{n} \prec n$! for any $b>1$ Solution: Let $a_{n}=\frac{b^{n}}{n!}$. Then $\frac{a_{n+1}}{a_{n}}=\frac{b^{n+1} /(n+1)!}{b^{n} / n!}=\frac{b}{n+1}$, which converges to zero as n tends to infinity. By the ratio test (from Calculus), the series $\sum_{n=1}^{\infty} a_{n}$ converges absolutely. A necessary condition for the series to converge, however, is that the terms a_{n} must tend to zero. Hence, $\lim _{n \rightarrow \infty} \frac{b^{n}}{n!}=0$. By Proposition 8.2.6 on page 256, we have $b^{n} \prec n$!.

27a. Establish the triangle inequality:

$$
|a+b| \leq|a|+|b| .
$$

Solution: For any real number x and y we have

$$
\begin{aligned}
& -|x| \leq x \leq|x|, \text { and } \\
& -|y| \leq y \leq|y|
\end{aligned}
$$

Adding the two inequalities together we have

$$
\begin{equation*}
-(|x|+|y|) \leq x+y \leq|x|+|y| \tag{1}
\end{equation*}
$$

But

$$
|x+y|= \begin{cases}x+y & \text { if } x+y \geq 0 \\ -(x+y) & \text { if } x+y<0\end{cases}
$$

In either case, $|x+y| \leq|x|+|y|$ using Equation 1.
Alternate proof: We first show that $|x+y|^{2} \leq(|x|+|y|)^{2}$. We have

$$
\begin{aligned}
|x+y|^{2} & =(x+y)(x+y) \\
& =x^{2}+2 x y+y^{2} \\
& =|x|^{2}+2 x y+|y|^{2} \\
& \leq|x|^{2}+2|x||y|+|y|^{2}=(|x|+|y|)^{2} .
\end{aligned}
$$

Now, if a, b are any positive real numbers and $a \leq b$, then $\sqrt{a} \leq \sqrt{b}$. This is immediate since the function $f(x)=\sqrt{x}$ is strictly increasing on it's domain (recall, $f^{\prime}(x)=\frac{1}{2 \sqrt{x}}>0$ for $x>0$). This finishes the proof.

27b. Show that $\left|x_{1}+\cdots+x_{n}\right| \leq\left|x_{1}\right|+\cdots+\left|x_{n}\right|$ for any $n \geq 1$ and real numbers x_{1}, \ldots, x_{n}. Solution: Proof by induction. When $n=1$ we have $\left|x_{1}\right| \leq \mid x_{1} \checkmark$ (by the way, the $n=2$ case is just what we did in the previous exercise). Now, suppose $\left|x_{1}+\cdots+x_{k}\right| \leq\left|x_{1}\right|+\cdots+\left|x_{k}\right|$. We have,

$$
\begin{aligned}
\left|x_{1}+\cdots+x_{k}+x_{k+1}\right| & \leq\left|x_{1}+\cdots+x_{k}\right|+\left|x_{k+1}\right| \\
& \leq\left|x_{1}\right|+\cdots+\left|x_{k}\right|+\mid x_{k+1}
\end{aligned}
$$

where the first inequality follows from the previous exercise and the second equality follows from the induction hypothesis.

1b. Show the sequence of steps in a binary search to find $x=7$ in the list $1,2,3,4,5,6,7,8,9$. How many times is x compared with an element in the list? How many times would it be compared if we used a linear search? Solution: Recall the binary search and linear search algorithms.

Binary search algorithm:

Input: a_{1}, \ldots, a_{n}, x with $a_{1} \leq a_{2} \leq \cdots \leq a_{n}$.
Procedure:
STEP 1: Initialize $S=0$.
STEP 2: WHILE $n>0$,
IF $n=1$ then
IF $x=a_{1}$ set $n=0$ and replace S with 1 .
ELSE set $n=0$.
ELSE
set $m=\left\lfloor\frac{n}{2}\right\rfloor$;
IF $x \leq a_{m}$ replace the current list with a_{1}, \ldots, a_{m} and set $n=m$;
ELSE replace the current list with a_{m+1}, \ldots, a_{n} and replace n by $n-m$.
END WHILE
Output: S.

Linear search algorithm:

Input: a_{1}, \ldots, a_{n}, x.
Procedure:
STEP 1: Initialize $S=0$.
For $i=1 . . n$,

IF $x=a_{i}$, set $i=2 n$ and replace S with 1 .

Output: S.

The algorithms above each take a list and output 1 if x is an element of the list and output 0 otherwise.
The steps in the binary search with the list $1,2,3,4,5,6,7,8,9$ and $x=7$ is as follows: Initialize $S=0$. Since $n \neq 1$ set $m=\left\lfloor\frac{9}{2}\right\rfloor=4$. The number $x=7$ does not satisfy $x \leq a_{m}$ since $7 \nsubseteq a_{4}=4$. So we replace the list by $5,6,7,8,9$. Since $n \neq 1$ set $m=\left\lfloor\frac{5}{2}\right\rfloor=2$. The number $x=7$ does not satisfy $x \leq a_{m}$ since $a_{2}=6$, so we replace the list by $7,8,9$. Since $n \neq 1$ set $m=\left\lfloor\frac{3}{2}\right\rfloor=1$. The number $x=7$ does satisfy $x \leq a_{1}$ since $a_{1}=7$. Hence, we replace the list with the list " 7 ". Now, $n=1$ and $x=a_{1}$, so we replace S with 1 . Finally, we output $S=1$.
There are a total of 4 comparisons using the binary search.
If we were to do a linear search, there would be 7 comparisons (6 failed comparison and then a successful comparison).
8. Show the sequence of steps involved in merging the sorted lists 2, 4, 4, 6, 8 and 1, 5, 7, 9, 10. How many comparisons are required? Solution: Recall the merging algorithm.
Merging algorithm: $\operatorname{MERGE}\left(\mathcal{L}_{1}, \mathcal{L}_{2}\right)$
Input: $\mathcal{L}_{1}=\left(a_{1}, \ldots, a_{s}\right)$ and $\mathcal{L}_{2}=\left(b_{1}, \ldots, b_{t}\right)$ with $a_{1} \leq a_{2} \leq \cdots \leq a_{s}$ and $b_{1} \leq b_{2} \leq \cdots \leq b_{t}$. Procedure:
STEP 1: Initialize $\mathcal{L}_{3}=()$.
STEP 2:
IF \mathcal{L}_{1} is empty, set $\mathcal{L}_{3}=\mathcal{L}_{2}$ and STOP.
IF \mathcal{L}_{2} is empty, set $\mathcal{L}_{3}=\mathcal{L}_{1}$ and STOP.
STEP 3:
IF $a_{1} \leq b_{1}$, remove a_{1} from \mathcal{L}_{1} and append it to \mathcal{L}_{3}; if this empties \mathcal{L}_{1} then append \mathcal{L}_{2} to \mathcal{L}_{3} and STOP. Relabel the elements in \mathcal{L}_{1} and repeat Step 3.
ELSE $a_{1}>b_{1}$, remove b_{1} from \mathcal{L}_{2} and append it to \mathcal{L}_{3}; if this empties \mathcal{L}_{2} then append \mathcal{L}_{1} to \mathcal{L}_{3} and STOP. Relabel the elements in \mathcal{L}_{2} and repeat Step 3.
Output: \mathcal{L}_{3}.

The sequence of steps is as follows:

	\mathcal{L}_{1}	\mathcal{L}_{2}	\mathcal{L}_{3}
1	$(2,4,4,6,8)$	$(1,5,7,9,10)$	()
2	$(2,4,4,6,8)$	$(5,7,9,10)$	(1)
3	$(4,4,6,8)$	$(5,7,9,10)$	$(1,2)$
4	$(4,6,8)$	$(5,7,9,10)$	$(1,2,4)$
5	$(6,8)$	$(5,7,9,10)$	$(1,2,4,4)$
6	$(6,8)$	$(7,9,10)$	$(1,2,4,4,5)$
7	(8)	$(7,9,10)$	$(1,2,4,4,5,6)$
8	(8)	$(9,10)$	$(1,2,4,4,5,6,7)$
9	()	$(9,10)$	$(1,2,4,4,5,6,7,8)$
10	()	()	$(1,2,4,4,5,6,7,8,9,10)$

There are 8 comparisons required (the 1 rst and 10th step did not require a comparison).
10. Find an example of two ordered lists of lengths s and $t \geq 3$ that can be merged with
(a) one comparison. Solution: Set $\mathcal{L}_{1}=(1)$ and $\mathcal{L}_{2}=(2,3,4)$.
(b) t comparisons. Solution: Set $\mathcal{L}_{\infty}=(t+1)$ and $\mathcal{L}_{2}=(1,2,3, \ldots, t)$.
11. Sort the list $7,2,2,5,3,5,4$ using bubble sort and merge sort. In each case, how many comparisons were needed? (for merge sort, you may ignore comparisons required to check the size and parity of n at each iteration of Step 3) Solution: The merge sort and bubble sort algorithms are stated below. Recall the Merging algorithm above whose input $\mathcal{L}_{1}, \mathcal{L}_{2}$ are two ordered lists and whose output $\operatorname{MERGE}\left(\mathcal{L}_{1}, \mathcal{L}_{2}\right)$ is the merged ordered list coming from $\mathcal{L}_{1}, \mathcal{L}_{2}$.

Merge sort algorithm:

Input: An unordered list $\mathcal{L}=\left(a_{1}, \ldots, a_{n}\right)$.
Procedure:
STEP 1: Initialize $F=0$.
STEP 2: For $i=1$..n,
define \mathcal{L}_{i} to be the list with single element a_{i}.
STEP 3 : WHILE $F=0$,
IF $n=1$, set $F=1$.
IF $n=2 m$ is even,

For $i=1$.. m
replace \mathcal{L}_{i} with $\operatorname{MERGE}\left(\mathcal{L}_{2 i}, \mathcal{L}_{2 i-1}\right)$.
Set $n:=m$.
IF $n=2 m+1$ is odd and $n \neq 1$,
For $i=1 . . m$
replace \mathcal{L}_{i} with $\operatorname{MERGE}\left(\mathcal{L}_{2 i}, \mathcal{L}_{2 i-1}\right)$.
Set $\mathcal{L}_{m+1}:=\mathcal{L}_{n}$.
Set $n:=m+1$.
Output: \mathcal{L}_{1}.

Bubble sort algorithm:

Input: An unordered list $\mathcal{L}=\left(a_{1}, \ldots, a_{n}\right)$.
Procedure:
STEP 1:
For $i=n-1$ down to 1 ,
For $j=1 . . i$,
IF $a_{j}>a_{j+1}$, set $a_{j}:=a_{j+1}$ and $a_{j+1}:=a_{j}$.
Output: \mathcal{L}.

