Quiz 3

1. True or False? The statement below is DNF.

(5 pts.)

$$(p \land \neg q) \lor r$$

True, since it is a disjunction of conjunctions of variables or their negations.

(Note: according to the book, the answer would be false since the book also requires every variable to be present in each conjunction.)

2. Simplify the following statement. If it is a tautology or contradiction, you must say which for full credit on this problem.

$$[(p \land q) \to r] \lor (p \land \neg r)$$

If [(p/q) ->] is true, then the statement is true.

(5 pts.)

If [(prg) >r] is false, then (prg) is true and r is false.

Hence p is true and or is true, and so (proof) is true. This shows the statement is true.

The statement is true in all cases, so it is a tautology.

(You can also use logical equivalences or truth tables to solve this question)

3. Determine the validity of the argument. You must clearly justify your answer for full credit.

A correct response with little or no justification will not receive full credit. (10 pts.)

$$\frac{p \to r}{\frac{\neg p \to r}{r}}$$

Suppose both assumptions hold.

If p is true, then r is true by the first assumption.

If p is false, then r is true by the second assumption.

In all cases, r is true so the argument is valid.

i.e. truth value assignments to p and r where both assumptions hold

(You can also use truth tables)