January 24, 2000

possible outcomes (p. 60)

<table>
<thead>
<tr>
<th>PRIMAL</th>
<th>optimal</th>
<th>infeasible</th>
<th>unbounded</th>
</tr>
</thead>
<tbody>
<tr>
<td>optimal</td>
<td>possible</td>
<td>impossible</td>
<td>impossible</td>
</tr>
<tr>
<td>DUAL</td>
<td>infeasible</td>
<td>impossible</td>
<td>possible</td>
</tr>
<tr>
<td>unbounded</td>
<td>impossible</td>
<td>possible</td>
<td>impossible</td>
</tr>
</tbody>
</table>

Remarks: if one problem has a solution, so does the other. Furthermore the optimal values are equal (see theorem 5.1 on page 58).

Both problems can be infeasible. In that case, you could say that \(\sup (P) = -\infty \) and \(\inf (D) = +\infty \). This is the only case where the optimal values can be different.

Example: \((P)\) max \(2x_1 - x_2\) subject to \(x_1 - x_2 \leq 1\), \(-x_1 + x_2 \leq -2\), \(x_1 \geq 0\), \(x_2 \geq 0\) is infeasible. It's dual is also infeasible.

Otherwise, infeasibility is paired with unboundedness:

- If \((P)\) is unbounded, then \((D)\) is infeasible and \(\sup (P) = \inf (D) = +\infty\).
- If \((D)\) is unbounded then \((P)\) is infeasible and \(\sup (P) = \inf (D) = -\infty\).

Note: A supremum over an empty set is considered to be \(-\infty\) and an infimum over an empty set is considered to be \(+\infty\).

Why should this be so? Consider these rules:

\[
\inf (A \cup B) = \min \{\inf (A), \inf (B)\}
\]

and

\[
\sup (A \cup B) = \max \{\sup (A), \sup (B)\}.
\]

How must \(\inf \emptyset\) and \(\sup \emptyset\) be defined in order that these rules continue to hold when the sets \(A\) and/or \(B\) are empty?

The dual of the dual is the primal

To see this, first write \((D)\) in standard form:

\[
\max -(b_1 y_1 + \ldots + b_m y_m) \text{ subject to } \quad -(a_{11} y_1 + \ldots + a_{m1} y_m) \leq -c_1 \\
\quad \ldots \\
\quad -(a_{1n} y_1 + \ldots + a_{mn} y_m) \leq -c_n \\
\text{all } y_i \geq 0.
\]

Treating this as if it were the primal, write down its dual:

\[
\min -(c_1 x_1 + \ldots + c_n x_n) \text{ subject to } \quad -(a_{11} x_1 + \ldots + a_{1n} x_n) \geq -b_1 \\
\quad \ldots
\]
\[
-(a_{m1}x_1 + \ldots + a_{mn}x_n) \geq -b_m \\
\text{all } x_j \geq 0
\]

and you see that this problem is equivalent to (P).

Motivation for the Dual

An example: (P) \(\text{max } 3x_1 + 2x_2 \) subject to \(x_1 \geq 0 \) and \(x_2 \geq 0\)

\[
\begin{align*}
-x_1 + 2x_2 & \leq 4 \\
x_1 + x_2 & \leq 8 \\
2x_1 + x_2 & \leq 13 \\
x_1 - x_2 & \leq 5
\end{align*}
\]

Every feasible solution provides a lower bound for the optimal value. For example, \((5,1)\) is feasible, so \(3(5)+2(1) = 17 \leq \text{max}(P)\).

There is also a way to find upper bounds. Suppose we have found four nonnegative numbers \(y_1, y_2, y_3, y_4\) such that

\[
\begin{align*}
-y_1 + y_2 + 2y_3 + y_4 & \geq 3 \\
2y_1 + y_2 + y_3 - y_4 & \geq 2
\end{align*}
\]

of (D).

Then if \(x=(x_1,x_2)\) is feasible for (P), we can conclude that

\[
\begin{align*}
3x_1 + 2x_2 & \leq (-y_1 + y_2 + 2y_3 + y_4)x_1 + (2y_1 + y_2 + y_3 - y_4)x_2 \quad \text{(because } x_1, x_2 \geq 0) \\
& = y_1(-x_1 + 2x_2) + y_2(x_1 + x_2) + y_3(2x_1 + x_2) + y_4(x_1 - x_2) \\
& \leq 4y_1 + 8y_2 + 13y_3 + 5y_4 \quad \text{(because } x \text{ feasible and } y_1 \geq 0)
\end{align*}
\]

so \(4y_1 + 8y_2 + 13y_3 + 5y_4\) is an upper bound for (P). In other words, every feasible point for (D) gives an upper bound for (P).

Examples

\(y=(1,1,1,1)\) is feasible for D, so 30 is an upper bound for (P).
\(y=(0,1,1,0)\) is feasible for D, so 21 is an upper bound for (P).

The dual (D) is the problem of finding the smallest such upper bound for (P).

\(c^Tx \leq b^Ty\) whenever \(x\) is feasible for (P) and \(y\) is feasible for (D)

Proof:

\[
c^Tx = c_1x_1 + \ldots + c_nx_n \leq (a_{11}y_1 + \ldots + a_{m1}y_m)x_1 + \ldots + (a_{1n}y_1 + \ldots + a_{mn}y_m)x_n
\]

\[
= (a_{11}x_1 + \ldots + a_{1n}x_n)y_1 + \ldots + (a_{m1}x_1 + \ldots + a_{mn}x_n)y_m
\]

\[
\leq b_1y_1 + \ldots + b_my_m = b^Ty.
\]

Read this carefully and try to see where each constraint is used.

Matrix Formulation

PRIMAL

\[
\begin{align*}
\text{max } c^Tx \\
\text{subject to } Ax & \leq b, \ x \geq 0
\end{align*}
\]

DUAL

\[
\begin{align*}
\text{min } b^Ty \\
\text{subject to } A^Ty & \geq c, \ y \geq 0
\end{align*}
\]

The inequality is established as follows. Assume \(Ax \leq b, \ x \geq 0, \ A^Ty \geq c, \ y \geq 0\).

Then:
If x is feasible for (P) and y is feasible for (D), we have seen that $c^t x \leq b^t y$.

Consequently, $c^t x \leq \sup(P) \leq \inf(D) \leq b^t y$.

Also, if x is feasible for (P) and y is feasible for (D), and $c^t x = b^t y$, then x solves (P) and y solves (D).

"Certificate of optimality"

Example: In the example considered above, $(5,3)$ is feasible for (P) and $(0,1,1,0)$ is feasible for (D). Since $c^t x = 3(5) + 2(3) = 21$ and $b^t y = 4(0) + 8(1) + 13(1) + 5(0) = 21$, we know that $(5,3)$ is a maximizer for (P), $(0,1,1,0)$ is a minimizer for (D), and that the optimal value for both problems is 21.

HW#13 Consider the following linear programming problem (note that it is the same as the one in HW#9):

- to maximize $z = x + 2y$ subject to the constraints
 - $x \geq 0$, $y \geq 0$, $y \leq 2$, $x + y \leq 4$, $y - x \leq 1$
 a) Write down the dual.
 b) Find a solution (the point where the optimum is achieved) to the dual.
 c) Display a "certificate of optimality" for the primal and dual solutions.

HW#14: Consider the linear programming problem

(P) maximize $x_1 + 2x_2$ subject to the constraints

- $x_1 + 5x_2 \leq 7$
- $3x_1 + 2x_2 \leq 8$
- $x_1 + x_2 \leq 2$
- $x_1 \geq 0$, $x_2 \geq 0$

Explain why the optimal value in (P) can be no greater than 3.25. In your argument, make no explicit mention of the dual problem and do not compute the optimal value of (P). Pretend you have never heard about the dual. However, you may find it helpful to secretly solve (P) and the dual to help you develop your argument.