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Abstraet: When a deterministic algorithm for finding the minimum of
a function on a given set is employed, it may reach a local minimum and
remain there forever after. Restarting repeatedly and independently
by a random choice of a starting point when the algorithm reaches a
settling point engenders a probability of A” /s of not having seen the goal
state by the nth epoch. The rate A may be expressed precisely, if only
theoretically, as the solution to the equation A= ¢z n (A1) = (1—6p) ',
where ¢y is the probability generating function of the time to reach
a settling point given a start leading to a non-global extremum. Here,
8, is the probability of a random start leading directly to the goal and
in problems of interest will be quite small. A simple bound has A >
Boga@éggaﬁrﬁ%&}) so that slow geometric rates when 8y is small are
even slower when expected times between restarts in non-goal states are
large. Nevertheless, geometric rates imply that independent identical
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parallel processing has potential benefits in speeding up acquisition of
the goal states, and the expression of the precise rate in terms of the
probability generating function provides a method of statistical real-time
estimation of the resources required {o obtain an answer by a prescribed
fime.
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Key Words: restarting deterministic algorithms, geometric conver-
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1. Introduction

In this paper, the statistical properties of the progress towards the min-
imum are studied for a class of stochastic algorithms. Results extend
those of Shonkwiler and Van Vleck [4] and introduce on-the-fly estima-
tion of the rate of convergence of the algorithm and prove its asymptotic
normality.

Members of the class of stochastic algorithms treated here are gen-
erated by randomly restarting a deterministic iterative scheme when it
reaches a settling point. Given a real valued function C defined on a
topological domain ? with neighborhood system N, we analyze restart
methods for finding some point £* € opt(C) = G, the set of global min-
imizers of C over §1, where 2* € G entails C(z*) < Clz),z € Q. ¥ C is
sufficiently smooth, there are powerful numerical methods for identifying
local minimizers. Often these methods utilize local derivative, or gradi-
ent, information to construct a sequence of points xg, z1, %9, = Too
for which z is a local minimum as determined to within some toler-
ance. It is assumed here that whatever iterative imnprovement scheme g
is employed (more properly gc) it satisfies the following properties for
C fixed:

{Al) for each = € ) there is a smallest k = k{z) < oo such that
¢’ (z) = g*(z) for all j > k,
and

(A2 if z = Q(:r:), then there is a neighborhood N; € N of z such
that for no y € N, do we have C(y) < C(x). '
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The algorithm g generates a sequence of points zg, T, = g{zg),
zg = g*(zp), ... in Q. Under the assumptions, the limit of such a
sequence is a local minimizer, which could also be a global minimizer as
well, beyond which progress toward the objective is not possible by the
application of g alone. All points of the domain which are attracted to a
given local minimizer define its basin. Furthermore, the relation ¢z = y
if and only if limg_,c0 g7(z) = limj_0 ¢/ (y) is an equivalence relation
on §). The resulting equivalence classes, B;, i =0,1,..., are the basins
of Q relative to go. The settling point or local minimizer zo, of basin B
is given as the limit, limy_,., g¥(z), where z is any point of B.

Once g(z) = =z, the process must be restarted in order to have any
chance generally of converging to a global minimizer. For this, we use a
fixed probability distribution g over Q.

For a fixed function C on a fixed domain € and a fixed restart-
ing measure p there is an associated {2-valued stochastic process, X (t),
which we call the search process and can be described as follows. Let
Yi,...Yn,... be independent and identically distributed Q2-valued ran-
dom variables distributed according to g. Then X (1) = Y; and generally
X{t+1) = g(X(t}) unless these are the same, in which case X (¢t + 1) is
the next in the sequence of Y's.

If M is the union of all the basins whose settling points are global
minima, our primary interest is in T' = min{¢ : X(t) € M}, the first
hitting time of M by the search process. In our main result, we shall
prove that if i places positive mass at all points of the finite set £, then
there are A € (0,1}, § € (0, \), and a constant s > 1 such that for any € >
0, one has (§ +¢)"™|P{T > n] ~ A"/s| = 0 as n — co. Furthermore } is
the unique positive solution to the equation A ¢z n (A7) = (1—6p) 1,
where ¢z x is the probability generating function of the random time
to first settling point given that the starting state is one which leads to
a non-global extremum. Results on expectation of time to hit the goal,
consequences of independent identical processing, and how to estimate
the parameter A on the fly are also presented.

The restarting of algorithms in the manner we have described gen-
erally goes under the name of mutltistart (see [3]}. The main inspiration
for our research on this topic is the work of Shonkwiler and Van Vleck
[4] who studied restarting from the perspective of its consequences on
first hitting times. Our results here augment theirs since we show that
generally s > 1. Mendivil, Shonkwiler, and Spruill [2] extended their
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results to non-stationary and more general processes through the use of
renewal equations. One of the topics not covered in those papers and
ireated here is the estimation, based on data accumulated through a
run, of the algorithm’s convergence rate.

In the next section it is shown that corresponding to the Markov
chain X on  is a Markov chain X* whose state space {¥* is simple
enough to allow us to compute Perron-Frobenius eigenvectors and has
a subset M* such that if T* = min{n : X}, € M}, then for all n,
PIT > n] = P[T* > nj.

2. Notation and a Simple Canonical Representation

The set € is taken, without loss of generality, to be a finite set and is the
digjoint union U?:() B, of basins of attraction which partition the space.
Let M = {J!_oBi,g < b denote the union. of basins of attraction to
global minima and, without loss of generality, assume By = M. Define
for each ¢ = 0,...,b, \; = max{k(x) : * € B} Introduce the set Q*:

O = {(Gk) i =0,1,...,b,k=0,1,..., M}

Denote the transition matrix of the Markov ghain X (n) by P(z, g') =
p(z') if g(z) = =, Plz,a’) = 1 if ' = g{z) # z, and P(z,z'} = 0
otherwise. Let

A(i, k) = {z € B; : k{z) =k},

define for (4,) € 2*

pGN) = Y we)

#€A(E,7)

and the transition function @ on Q* x (* by Q((%, ), @, N =1ifi=7
and j' = j — 1 > 0, (in the same basin and g yields a new candidate
point) Q((i; 1), (#,3")) = p*{((,5")) if j = 0, (restart since we are at the
bottom of a basin) and Q((i, §), (', §')) = 0 otherwise.

Let M* = {{¢,7) € Q* : i = 0}. Since the B's form a partition,
X*(t) = (((X (1)), k(X (¢))), where 4(X () is the basin in which X (t) is
located, is well defined. Clearly the distribution of 7' is the same as that
of min{t : i(X(¢)) = 0} = T, and since the transition function ¢} is
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easily verified to be that of X*, we can and shall work with the chain
X* to obtain information about the function P[T" > {].

3. Rate of Convergence of Tail Probabilities

Tt will be proven that the tail probabilities P[T > n] tend to zero geo-
metrically for restarted processes and the precise rate ascertained in this
section.

Begin by simplifying notation. We shall assume that our process X
is the canonical process of Section 2 and call the transition matrix P,
with the state probability vector arranged as

!
P = @0,01130,1: - POXg P04 Py - - P A D020, -- s P22z -+ 1 P80y

.. :pb,)\b)s

so that the probability distribution on states at epoch ¢ is ph Pt for an
initial distribution py.

Denote by P the submatrix of the transition P obtained by deletmg
the first Ay + 1 rows and columns and correspondingly, the vector Do
is formed by deleting the first Ag + 1 entries of the initial probability
vector, pp. Then starting according to the initial distribution po, the
probability

P[T' > n] = fpP"1,

where 1 is an appropriately sized vector of all I's. From the Perron-
Frobenius theory of positive matrices it is known that if A € (0,1) is the
Perron-Frobenius elgenva,lue (spectral radius) of P with left elgenvector
w normalized g0 w'l = 1, right eigenvector x normalized so W x=1 and
if § < X is the next largest magnitude of an eigenvector of P, then for
any ¢ > 0

' (6 +&)~™I1P" — A"xwl|| = 0 (3.1)

as n — 00.
Write ¢*((i,7)) = rij, the restart distribution, and define the poly-

S ¥
HOED DI AT

i=1 k=0

nomial
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For reasons which shall become apparent, f is called the structure poly-
nomial. Define s = (x'y)~'.

Theorem 3.1. If all r;; are positive for i > 1 and if there is at
least one :c for which g(z) # =, then the Perron-Frobenius eigenvalue \
of P is 770 , where 1 is the unique zero greater than 1 of the polynomial

I ¥
Fay =33 0 -1

i=1 k=0

The corresponding right eigenvector x is proportional to v, where v; , =
ng , and the corresponding left eigenvector w Is proportional to the vector
w, where

Af
E : u—k
Wi = Tiullp 3
u=k

0 <k <A1 <i<b Furthermore, defining

Ao
90 = Zrﬂ,k 3
k=0
if the deleted initial probability vector fy is the deleted vector 7, then

_ (1)
. 70(70 ;)f (10) S0 > L.
0

Proof. First observe that the polynomial f satisfies f(1} =1 — 6y —
1= —8 <0, f0{5) > 0, and f@(5) > 0, so that there is a unique solu-
tion 7 > 1 to f{n) = 0. It is then a simple matter to verify that the given
vector v is a right eigenvector and that the corresponding eigenvalue-is
7!, where f(n) = 0. It follows from Varga [5] that 5! is the P-F eigen-
value of P. Writing w' = (wig, W11, -y W A, W0, -+, Wh 3, ) and set-
ting i,y = w; y = 0 for v > A, one has the (¢, ) coordinate of the vector
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w'B =33 wiaP((3,0), @, k) = X0, Yoty win P((,), (&, &) as

(W' Py ) = Zwa oP((3,0), (7, k')) +zzw@,uP((z v}, (&, k)

i=1 v=1
b

N
= Tit k! Z Wy + Wit k41 = Tit g Z E Tiwl

i=1 i=1 v=0

A
v—k—1
+ Z T3t w1 .

v=ki+1

Using f(n) = 0 on the last expression, we get

Ay
- 11 1
(WP py =rip=+= 9 raanF = § : Tl = Wi
U = nor

It has been demonstrated that the claimed eigenvalue is the Perron-
Frobenius eigenvalue and the corresponding right and left eigenvectors
have been found; our next step is to prove the formula for s. It is first
shown that for arbitrary 7, w'(n)v{n) = fF1)(5). We have

o) = 35w avss = ZE(ET,M )

i=1 =0 =1 s=0

and, interchanging the order of summation in the right-most sums, it is:

b )\i X b .\{
= Z Z Z rign St = Z Z(ﬂ? + Vi 05t = FU(g).

i=1 =0 =0 i=1 =0

The left eigenvector w is normalized so that o'l = 1. Since w = aw
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one has
oA /P PR ¥
1=au'l = aZ Zwi,,, =a Z Z Zri,un“””
i=1 v=0 i=1 v=0u=v
(Z Z Tiu E % v) = az Z T:,uﬂ w1 (77_1_:"_“
i=1 u=0 i=1 u=0 (Tl' )

I:f(ﬂ +1“ZZT“L:| = f("? +90]

i=1 u=0

Therefore, g == 7 =l

From the normahzatmn of the right eigenvector we have from above
1 = w'y = aw'ev = acfD{zp) so that ¢ = 1/afV (). Since

_ 1 fno) + 6
st=ady=rew= vy = vy
X af(me) (0 — 1)S D (0}

o) + o
((no —1)f 0 (o) )ZZ"‘ w5

=1 u=0

H

_ ( f(no) + 6o ) Flno) +1
(0 — 1)) (10) o

one has, using f(ng) = 0 and dropping the subscript,

_ (g =1V _ 9~ 1)V ()
s —-f(1)

. FW () £ (n)
(f) — f(R/(n—-1) BROIGN

where the last step is a consequence of the mean value theorem and,
finally, since f& >0,5>7n> L. O

Example 3.2. To illustrate the ideas, consider a small traveling
salesman problem (TSP) on 7 cities. For the TSP on 7 cities there are 6!
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possible tours so that N = 720 is the number of points in ). (Pairing ev-
ery tour with its reverse leads to 360 distinct potential solutions but we
ignore these pairings). The cities, placed in a 10 X 10 square, have loca-
tions 0:(2,2), 1:(7,3), 2:(4,5), 3:(8,7), 4:(1,6), 5:(6,9), 6:(3,8). The space
Q of tours is 0 (0,1,2,3,4,5,6,0); 1 (0,1,2,3,4,6,5,0); 2 (0,1,2,3,5,4,6,0);
...;719 (0,6,5,4,3,2,1,0). The minimum tour length is 24.27 achieved by
Tour 123 (0,2,1,3,5,6,4,0) and its reverse Tour 478. Tours always begin
and end with city 0 so its mention is eliminated henceforth. The itera-
tive algorithm g is taken as “successive city swap” defined by: given a
Tour, then {Step 1) start at the leftmost tour position ¢ = 1, and (Step
2) swap the cities in positions ¢ and i + 1, (Step 3) if the tour length
has not increased, replace Tour by this modification and go to Step 1,
otherwise increment i and (Step 4) if i = 6 return Tour, otherwise go to
Step 2. Among the basins defined by g is the depth 4 basin shown in
Figure 1 ending with Tour 6 =(1,2,4,3,5,6) which is a local minimizer.

264
0 144
AN
120 123
|

126 3

\/

6
Figure 1

That the set of tours §2 is a topological space can be seen by taking
as basic open sets the sets B(z) = (Jio._.{g"(z)} for z € Q. The basin
structure induced by g and the particular locations of the cities consists
of 44 basins of which 2 are goal basins. The goal basins comprise 62
points so that 8y = 62/720 = 0.0861. The length of the longest goal

basin path is dy = 6. The longest non goal basin path has length d =9

so the structure polynomial is of degree 10. The structure polynomial
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is exactly
1
F&) = 5 (2% + 130€2 + 174¢ + 148¢* + 93¢5 + 4465 + 18¢7

+ 668 +26% 4+ £10) — 1

Its principal root is 7 = 1.0254, hence it follows from Theorem 3.1 that
A = g~} = 0.9753. Observe that P is a 658 by 658 square matrix
and ) is the largest root of its 168th degree characteristic polynomial,
but it has been found here as the solution of a 10th degree polynomial.
One also calculates s = 1.067 and observes that s > 1, as predicted by
Theorem 3.1. O

Geometric convergence to zero of the the tail probabilities has been
established. From the well known fact that E[T] = 3 -, P[T > nj
and this tail convergence, Shonkwiler and Van Vleck [4] were able to
show that under independent identical process%t_he ratio of expected
times ﬁgﬂ— to hit the goal basin M satisfies ma] ms™ 1 as A —
1. Theorem 3.1 shows that under widely applicable assumptions, s >
1, so that quite generally, speedup by independent parallel processing,
measured in terms of expected time to goal, is super-linear in large
difficult problems, ones for which A is close to 1.

The parameter A, which is termed the retention rate by Shonkwiler
and Van Vieck, has also a description in terms of the probability distri-
bution of times to restart in non-goal basins.

Corollary 3.3. Under the conditions of Theorem 3.1, A solves

Al = (1 —6) !

where ¢y |y is the probability generating function of the random time
to first settling point given that the starting state is one which leads to
a non-global extremum.

Proof.

¢H]N(é):ZP[ H =n|N}z" *ZZ T_”;O

n>0 n>0 i=1
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Therefore

bun{z) = %'- 0

4. Estimating A

Knowledge of the parameter A can be used in determining the number
n of iterations required to achieve P[T > n| = 1/2 as n =~ %‘3‘2 If A
is knowmn, then one would know how long to run the process, or using
m independent processes, since P[T,;, > n] = P™T > n, to realize
P[Ty, > n] =~ 1/2 one would require n,, ~ =22 iterations each to be
run on m independent processors.

Corollary 3.3 can be used in connection with data accumulated dur-
ing a run to estimate the parameter A as shall be described below. How-
ever, and more simply, utilizing the convexity of the probability gener-
ating function one can obtain the bound X\ = (8o L+BIHIND) _ - §

 00+(1-80)(1+ETH|N]) —=

based on a linear approximation of the function n¢g (7). Note that
as E[H|N] — 0 the bound becomes 1 — 6 and as E[H|N| — oo the
bound approaches 1. Since the bound is monotonic in E[H|N] it per-
haps appears odd that 1 — 8y < X for every value of E[H|N], for if one
simply chose at random according to g each time without employing the
algorithm, then the rate of approach of the tail probability P[T" > n} to
zero would be (1 — 8p)", an apparently better rate. However, it should
be kept in mind that the search is for a goal state, and if the algorithm
is not being run, then this method would generally yield only a state in
M, the basin of attraction M to the goal states G. Assuming the “size”
of goal states is u(G) € u(M}) = 8, the actual rate of approach to a
goal state for simple random search is (I — u(G))™* > (1 — Gp)™.

One statistic, available as the runs proceed, is the number of times
I;, it takes j iterations until the algorithm must be restarted, j =0, ....
There are two possibilities; if the problem is one in which the goal is
recognized when it is found, in such problems as the inverse fractal
problems (see [1]) then one can with certainty estimate the conditional
probabilities p; = P[H = j|N] of requiring j steps consistently by p; . =
1; /Ny, where Ny, is the number of restarts required by the nth epoch.
In the other case in which the goal is not recognized, the worst case
scenario is assumed at each stage, that the goal has not yet been found.
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In the latter case, as long as the goal has not been found the procedure
is consistently estimating the correct conditional probabilities, and if
the goal has already been found, then the estimate is irrelevant. It is
clear from elementary probabilistic considerations that $;, — p; for
each § =0,1,2,..., where the convergence is almost sure.

We take our estimate of the probability generating function ¢ x(2)
to be X _

Suin(z) = D jn?
720

and, assuming for the moment that 8 is known, our estimate of X is
M = 1/1, where 7, solves

M (mn) = (L —6) 7"

Theorem 4.4. Under the conditions of Theorem 3.1 and condi-
tional on having not yet hit the basin containing the global minimum
by time epoch n,

VN (An — A) = N(0, V),
where
e $A =0
(A1) = At (A1)’

and convergence is in law.

“Proof. Consider the function g of the K +3 variables po, - . .,pk, T, u,
defined by

K
g(p,z,u) = ZP}-’LJH —u = z¢(z) — u.

=0

For each. probability vector p with all coordinates positive and u > 1 we
have seen in Theorem 3.1 that there is a unique solution z(p, u) satisfy-
ing g(p, z(p,u),u) = 0. We are interested in the function z(p, ) and,
applying the inverse function theorem find that for any fixed probability
vector pp whose entries are all positive and ug > 1 there is a neighbor-
hood Npy of {Po, ue) such that the function z = z(p, u) i continuously
differentiable on Ny, with derivative

dg(p,z,u
R

VP,ug(Pa z, u)|m=$(P:‘u) :

1
:czm(p,u)]
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Since Ny, (bn — P) =+ N(0, X}, where 5, ; is —pip; if i # j and p;q;
if i = §, the usual application of the é-method holding u = {1 — &)L,
yields

VNa (R = X) = N(0,\*(Vpz) £Vp1)

which upon simplification is the claimed result. [

By replacing A and ¢ by their sample estimates Xand ¢ in V one
also has as a usual and practical consequence of Slutsky’s theorems, that

(in - /\)
\/V/Na

The result above depends on knowledge of the value 6y and it is
not likely to be available. If one possessed a root-n consistent estimator
90,n of it, then a like result could be obtained by taking u, = éu1n.
However, it is unclear under what circumstances such an estimator would
be available and useful. For example, the estimator ég}n which consists
of the proportion of restarts which have occurred at the current best (=
smallest} value of C attained is consistent, but as soon as one instance
of the minimum has been obtained, the reason for estimating A has
disappeared! Before that event, the estimator is indicating the size of
a basin whose size may be unrelated to the one of interest. It seems
that there must be some knowledge of 8y to take full advantage of the
machinery. Some use of preliminary and ongoing runs or of conservative
estimates of #y can be made as expressed in the following, whose proof
i8 left to the reader.

— N(0,1).

Corollary 4.5. Under the conditions of Theorem 3.1 with 3, (¢) =
z(pn, 1 + €) and conditional on having not yet hit the basin containing
the global minimum by time epoch n,

VN (Aa(€) — A(€)) = N(0,V(e)),

where A1 (¢) = z(pg, 1+¢) and V (€) is as above with X replaced by A(e).
Furthermore, A(€) is greater or less than A in accordance with whether
o is greater or less than I% =4..

Under the conditions of Corollary 4.5 we have an estimator of an
upper or lower bound on the rate of convergence depending upon how
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g, is chosen. Taking 1+¢ = 2/¥=  for example, where a preliminary run
of m epochs results in Ny, restarts, if f were greater than IE?, then the
probability the goal would have been seen in Ny, restarts would exceed
0.5. Thus either 6, is less than @ or it is reasonably likely that the
preliminary runs have discovered the goal basin. The choice of 0.5 is
arbitrary and can be replaced, according to the desires of the searcher,
with an appropriate value. The resulting A(e} is only a lower bound
on the true geometric rate so that A(e) will not be conservative; an
underestimate of resources is the result. Prior information on the size of
8, is important as are the numbers of restarts as the search proceeds. A
choice of 0, sufficiently small will lead to conservative estimates of the
rate.

Rua Time Estimate of eta

1.037
1.0251
eta ’
1.021
1.01571
-200 I 0T g 200 160 600
Iterations
Figure 2

Example 4.6. Continuing Example 3.2, in which 8¢ = 0.0861 and
A = 0.97527561, one finds V = 5.475 x 1071, A choice of 8, = 0.09
and an application of Corollary 4.5 yields A{e) = 0.97412905 while for
0. = 0.06 the result is A(e) = 0.98289893. The lower bound obtained
compares with the simple but slightly better lower bound X = 0.974266.
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Simulation yields the following plot of the current estirmate At (namely
Figure 2).
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