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STAVROS GAROUFALIDIS AND DON ZAGIER

Abstract. We discuss a matrix of periodic holomorphic functions in the upper and lower
half-plane which can be obtained from a factorization of an Andersen-Kashaev state integral
of a knot complement with remarkable analytic and asymptotic properties that defines a
PSL2(Z)-cocycle on the space of matrix-valued piecewise analytic functions on the real
numbers. We identify the corresponding cocycle with the one coming from the Kashaev
invariant of a knot (and its matrix-valued extension) via the refined quantum modularity
conjecture of [32] and also relate the matrix-valued invariant with the 3D-index of Dimofte-
Gaiotto-Gukov. The cocycle also has an analytic extendability property that leads to the
notion of a matrix-valued holomorphic quantum modular form. This is a tale of several
independent discoveries, both empirical and theoretical, all illustrated by the three simplest
hyperbolic knots.
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1. Introduction

In this paper, which is a companion of [32], we want to tell a story about q-series and
quantum invariants of knots that seems to us very interesting. The story started 11 years ago
with the challenge to compute the asymptotic expansion at q → 1 of a q-hypergeometric series
that appeared in the evaluation of a tetrahedron quantum spin network. As it turned out,
when q = e2πiτ with τ tending to zero on the positive imaginary axis, the asymptotics were
oscillatory (with approximate oscillation 0.32306), and after some experimentation, it was
found that the oscillation was given by the volume of the simplest hyperbolic (figure eight)
knot, divided by 2π. The appearance of the 41 knot was a bit strange, since this knot has
little to do with the tetrahedral spin network (or its complement) in Euclidean or hyperbolic
3-dimensional space. This strange coincidence persisted further, where it was found by a
numerical computation that the first and the second terms in the asymptotic expansion were,
after some minor normalization, rational numbers with numerator 11 and 697, respectively.
A search in our databases revealed that the number 697 appears as the second coefficient
in the asymptotic expansion of the 41 knot, whereas the number 11 appears as the first
coefficient. This was surely not an accident! Using numerical methods, we were able to
match the asymptotics of the Kashaev invariant of the 41 knot to the radial asymptotics of
the above q-series to over 100 terms.

So, our q-series was certainly attached to an invariant of the 41-knot. A systematic col-
lection of such knot invariants (indexed by a pair of integers) was given by the 3D-index
of Dimofte–Gaoiotto–Gukov [12, 11], and in fact, our q-series could be re-written as a q-
hypergeometric sum G0(q) related to the 3D-index, and nearly, but not quite, matched to
the so-called total 3D-index. An illegitimate (i.e., formal, but divergent) computation of the
total 3D-index suggested that the latter should equal to G0(q)2, but a computation showed
that it did not agree. Further attempts to identify the quotient of the total 3D-index by
G0(q) did not produce any results.

The next source of q-series attached to knots was the state-integral of Andersen-Kashaev [4].
Although the latter is an analytic function of τ in the cut plane C′ = C r (−∞, 0] , it was
well-known in the physics literature (see [5]) that it should factorize into a finite sum of
products of q-series times q̃-series, where q = e2πiτ and q̃ = e−2πi/τ . In fact, Kashaev and
the first author exactly did so for the state-integral of the 41 knot (and for one dimensional
state-integrals in general) and found out a second q-series G1(q); [27]. What is more, the
total 3D-index of the 41 knot experimentally was checked to be the product G0(q)G1(q), a
statement that can be proven rigorously.

We next looked at asymptotics of the vector (G0(q), G1(q)) of q-series of the 41 knot when
q approaches a root of unity e2πiα (for a rational number α), and without a surprise this

time, we found the pair of asymptotic series Φ̂
(σ1)
α (2πiτ) and Φ̂

(σ2)
α (2πiτ) (corresponding to

the geometric representation of the 41 knot and its complex conjugate) that appear in a
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refinement of the quantum modularity conjecture [32]. Replacing the q and q̃-series in the
state integral when q is near a root of unity by their asymptotic expansions produced a
bilinear combination of factorially divergent series which are convergent power series! This
phenomenon was illustrated by a dramatic drop in the growth rate of the 150-th coefficient
of the corresponding power series.

Having understood the story for the simplest hyperbolic knot, we observed two new phe-
nomena. One is quadratic relations (which are trivial for the 41 knot) for the vector of 3
q-series (inside and outside the unit disk) for the 52 knot, and for the vector of 6 q-series for
the (−2, 3, 7)-pretzel knot. Another is the presence of a level, being 2 for the (−2, 3, 7)-pretzel
knot, presumably related to the fact that its Newton polygon has half-integer slopes.

Returning to the case of the 41 knot, the factorization of its state-integral suggested that
we look at a bilinear q and q̃-combination of the vector (G0(q), G1(q)) of q-series where now
q̃ = e2πiγ(τ) for a fixed element γ of SL2(Z) (the case of the original state-integral being the
one with γ =

(
0 −1
1 0

)
). A priori, this function is analytic only for τ ∈ CrR, but a numerical

computation revealed that this function is analytic on a cut plane Cγ. This suggested an
extension of the Andersen–Kashaev state integral that depends on an element γ of SL2(Z),
and even more to an SL2(Z)-version of the Faddeev quantum dilogarithm, which is studied
in current joint work of Kashaev and the authors [28].

A closer look at the asymptotics of the vector (G0(q), G1(q)) as q approaches 1, shows

that they were given by linear combinations of a pair of asymptotic series Φ̂(σ1)(2πiτ) and

Φ̂(σ2)(2πiτ). This suggested that suitable linear combination of the vector (G0(q), G1(q))

should be simply asymptotic to one of the two Φ̂(σj)(2πiτ) series above. However, this
statement is incorrect. Instead, the radial asymptotics when q = e2πiτ and τ tends to zero in
a fixed ray arg(τ) = θ0 depend on the ray, but different rays detect asymptotic expansions

of the form e−2πim/τ Φ̂(σj)(2πiτ) for m a nonnegative integer. When arg(τ) = π/2, these
exponentially small corrections cannot be numerically observed, however when arg(τ) is near

0 or π, one can indeed see a multiple of these series e−2πim/τ Φ̂(σj)(2πiτ), appearing, and what
is more, the multiple is an integer number. This phenomenon is already hinted by the bilinear
factorization of the state-integral as a finite sum of products of q-series times q̃-series, and
was glimpsed in the present work, and studied more extensively in the work of Gu–Mariño

and the first author [22, 23]. This lead to a matrix
( G

(m)
0 (q) G

(m)
1 (q)

G
(m+1)
0 (q) G

(m+1)
1 (q)

)
whose entries are

descendant q-series indexed by the integers with G
(0)
0 (q) = G0(q) and G

(1)
1 (q) = G1(q).

The matrix of descendant q-series defined for |q| 6= 1 lead to a matrix of asymptotic
series, and to a matrix-valued PSL2(Z)-cocycle whose value at

(
0 −1
1 0

)
is given by a matrix

of descendant Andersen–Kashaev state-integrals and whose value at γ ∈ SL2(Z) is given by
the matrix of descendant state-integral invariants of [28].

The two matrix-valued cocycles, one from [32] and the other one from the current paper
agree at the rational numbers. This follows from a second factorization property of the state-
integrals at rational points [26]. This leads to the notion of a holomorphic quantum modular
form, a generalization of a mock modular form, whose realization as periodic functions
at rational numbers was the focus of [32] and whose realization as periodic holomorphic
functions in CrR was the focus of our paper.
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In this paper we will have a number of statements called “Observations,” all of which were
first observed empirically, but of which some are now proved and others still conjectural. We
will indicate this individually in each case.

A preliminary draft of this paper was already written in 2012 but then not published
because we kept finding new results which made the older versions obsolete. In the present
paper, the relation to the perturbative series and functions on roots of unity treated in [32]
have finally become clear. Related aspects of this work appeared in [13, 14, 27, 21, 37, 36].
Modular linear q-difference equations were introduced in [29]. An extension of the matrix-
valued q-series to a matrix of one additional row and column that sees the trivial PSL2(C)-
representation was given in [24]. A detailed study of the asymptotics of the full 3D-index
(as opposed to its total version discussed here) and of the related Turaev–Viro invariant was
given in [30]. A detailed study of the 6 × 6 matrix of q-series associated to the (−2, 3, 7)-
pretzel knot is given by Ni An and Yunsheng Li in [1].

Finally, we mention that this story of quantum knot invariants (i.e., 3-manifolds with
torus boundary) extends to the case of the Witten–Reshetikhin–Turaev of closed hyperbolic
3-manifolds, as confirmed by Campbell Wheeler in his Ph.D. thesis [52, 51].

2. How the q-series arise

2.1. The Quantum Modularity Conjecture. In this section we tell the rather amusing
story of how we purely accidentally found a q-series whose asymptotics near roots of unity
agreed with the divergent perturbative series arising from the Volume Conjecture and the
Quantum Modularity Conjecture for the 41 knot, and how a series of further numerical
experiments led to the final picture that is described in this paper.

A knot K has two famous quantum invariants, the (colored) Jones polynomial JKN (q) ∈
Z[q, q−1] and the Kashaev invariant 〈K〉N ∈ Q for N ∈ N. (Both definitions will be omitted
since they aren’t used here and can be found in many places [39, 50, 40].) Murakami-
Murakami [48] found that 〈K〉N is the value of JKN (q) at q = ζN and this is the formula that
we will need. For any knot it can in principle be made explicit. For instance,

〈41〉N =
N−1∑
n=0

∣∣(ζN ; ζN)n
∣∣2 (1)

with (q; q)n :=
∏n

j=1(1 − qj) being the usual q-Pochhammer symbol and ζN = e2πi/N . The
Kashaev invariant can be extended equivariantly to a function J on complex roots of unity.
Moreover, it is known by the work of Murakami and Murakami [48] that the (similarly
defined) invariant JK(−1/N) for any knot K is equal to the knot invariant 〈K〉N defined
by Kashaev [40]. The famous volume conjecture of Kashaev states that for any hyperbolic
knot K the logarithm of 〈K〉N is asymptotically equal to CN as N tends to infinity, where C
equals the (complexified) hyperbolic volume of the knot divided by 2πi. There are very few
cases for which the volume conjecture has been rigorously proved, but for the 41 knot it is
quite easy using the Euler-Maclaurin formula and standard asymptotic techniques, because
all of the terms in (1) are positive, and one finds the much more precise formula

J41
(
− 1

N

)
∼ N3/2 Φ̂

(2πi

N

)
(2)
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with Φ̂(h) defined by

Φ̂(h) = eiV/h Φ(h) , (3)

where V is the hyperbolic volume of the knot

V = Vol
(
S3 r 41

)
= 2 Im(Li2(eπi/3)) = 2.0298829 · · · (4)

and where Φ(h) is the formal power series with algebraic coefficients (which up to a common
factor all lie in the trace field Q(

√
−3) of the 41 knot) having the form

Φ(h) =
∞∑
j=0

Ajh
j , Aj =

1
4
√

3

( 1

72
√
−3

)j aj
j!

(5)

with aj ∈ Q, the first values being given by

j 0 1 2 3 4 5 6 7

aj 1 11 697 724351
5

278392949
5

244284791741
7

1140363907117019
35

212114205337147471
5

A proof of (2) is given in [6] and in [32]. A weaker asymptotic formula with Φ(h) replaced
by its constant term a0 was proved by Andersen and Hansen [3].

2.2. A q-series G0(q). The surprising discovery that we made, completely by accident, is
that there is a close connection between the asymptotic expression occurring here and the
radial asymptotics of the function in the unit disk defined by

G0(q) = (q; q)∞

∞∑
n=0

(−1)n
qn(3n+1)/2

(q; q)3
n

= 1− q − 2q2 − 2q3 − 2q4 + q6 + · · · . (6)

The infinite sum in (6) occurred in the work of the first author on the stability of the
coefficients of the evaluation of the regular quantum spin network [21, Sec.7], and in the
course of a numerical investigation of its asymptotics as q → 1 we discovered empirically the
following:

Observation 1. We have

G0(e2πiτ ) ∼
√
τ
(

Φ̂(2πiτ) − i Φ̂(−2πiτ)
)

(7)

to all orders in τ as τ tends to 0 along any ray in the interior of the upper half-plane.

It was to achieve this simple statement that we included the factor (q; q)∞ in (6). The proofs
of this observation and the subsequent ones in this section are sketched in the appendix.
Our next discovery were two further formulas for G0 that we found empirically.

Observation 2. We have:

G0(q) =
1

(q; q)∞

∞∑
n,m=0

(−1)n+m q
(n+m)(n+m+1)/2

(q; q)n (q; q)m
=

∞∑
n=0

(−1)n
qn(n+1)/2

(q; q) 2
n

. (8)

A proof of the above equation was given by S. Zwegers (see Section A.1). These expressions
are of interest because, unlike the original series in (6) whose origin had no obvious connection
with the 41 knot, these series are related to it: the first one, which was shown to us by T.
Dimofte, is typical of the series occurring in his work with Gaiotto and Gukov [12, 11, 20]
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on the 3D index of a triangulation, while the second one is typical of those occurring in the
work of Dimofte and the first author on q-series associated to ideal triangulations of cusped
3-manifolds [13].

Equation (7) turns out to be only a part of a bigger story. On the one hand, the power
series Φ(h) is only a special case at α = 0 of the more general asymptotic series Φα(h) (α ∈ Q)
occurring in the modularity conjecure for J41(q) made by the second author in [54] and play
a central role in our prior paper [32]. These asymptotic series appear in the asymptotics of
G0(q) for q = e2πi(α+τ) as τ → 0 in a cone in the upper half-plane. This will be discussed
in Section 3.3 below. On the other hand, the q-series G0(q) and the asymptotic formula (7)
are related to the Dimofte-Gaiotto-Gukov index and to the Hikami-Kashaev state integral.
We explain this next.

2.3. The index, the state integral and a second q-series G1(q). After describing the
radial asymptotics of G0(q) at roots of unity, our next step was to look for a connection
between the power series G0(q) and the index of 41. The index is an invariant of suitable ideal
triangulation introduced in [12, 11]. Necessary and sufficient conditions for its convergence
were established in [20] and its topological invariance was proven in [25], leading in particular
to an invariant IndK(q) for any knot K (in equation (2) of [25], this invariant was denoted
by Itot

K (q)). The index is defined as a sum over a lattice of products of the tetrahedron index
function

I∆(m, e) =
∞∑

n=max{0,−e}

(−1)n
q

1
2
n(n+1)−(n+ 1

2
e)m

(q; q)n(q; q)n+e

.

For the 41 knot, the rotated index at (0, 0) (abbreviated simply by the index below) is given
by

Ind41(q) =
∑

k1,k2∈Z

I∆(k1, k2)I∆(k2, k1) = 1− 8q − 9q2 + 18q3 + 46q4 + 90q5 + · · · .

It seems quite natural to expect a relation between the Ind41(q) and G0(q). This is
encouraged by the illegitimate rewriting of Ind41(q) as a 4-dimensional sum over the integers
(which is divergent), but after some rearrangement it decouples into the product of two
two-dimensional sums each of which is equal to G0(q). Nonetheless, when we performed
experiments no relation between the series Ind41(q) and G0(q)2 was observed.

The key to finding the missing relation between Ind41(q) and G0(q) turned out to involve
the Andersen-Kashaev state integral associated to the 41 knot [4] and its factorization [27]
as a sum of products of q-series and q̃-series.

State integrals appear in quantum hyperbolic geometry and in Chern-Simons theory with
complex gauge group pioneered by the work of Kashaev [4, 41], Dimofte [9, 10] and many
other researchers [38, 15]. Their building block is the Faddeev quantum dilogarithm, and
a suitable combinatorial ideal triangulation of a cusped hyperbolic 3-manifold M and the
result is a holomorphic function which is often independent of the ideal triangulation, thus a
topological invariant. Below, we will use the state integral of the Andersen-Kashaev invariant
of a hyperbolic knot complement [4]. In the normalization that we will use this invariant is
a holomorphic function ZM(τ) on the cut plane C′, and for the 41 knot is given by (see [4,
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Sec.11.4])

Z41(τ) =

∫
R+iε

Φ√τ (x)2 e−πix
2

dx (τ ∈ C′ = C r (−∞, 0]) (9)

(for convenience we write ZK in place of ZS3rK), with small positive ε, where Φb(x) is
Faddeev’s quantum dilogarithm [17]

Φb(x) =
(−q1/2e2πbx; q)∞

(−q̃1/2e2πb−1x; q)∞
, q = e2πiτ , q̃ = e−2πi/τ , τ = b2 . (10)

As is well-known (see for instance [5, 27]), the structure of the set of poles of the quantum
dilogarithm permits one to factorize this integral as a finite sum of a product of functions
of q and q̃ as above. The answer here is given by the following theorem. Let G1(q) be the
q-hypergeometric series defined by

(qeε; q)2
∞

(q; q)2
∞

∞∑
m=0

(−1)m
qm(m+1)/2e(m+1/2)ε

(qeε; q)2
m

= G0(q) +
ε

2
G1(q) +O(ε)2 (11)

and given explicitly by

G1(q) =
∞∑
m=0

(−1)m qm(m+1)/2

(q; q)2
m

(
E1(q) + 2

m∑
j=1

1 + qj

1− qj

)
(12)

= 1− 7q − 14q2 − 8q3 − 2q4 + 30q5 + 43q6 + 95q7 + 109q8 + . . .

where E1(q) (“the non-modular Eisenstein series of weight 1”) is the power series

E1(q) = 1 − 4
∞∑
n=1

qn

1− qn
= 1 − 4

∞∑
n=1

d(n) qn (d(n) = number of divisors of n) . (13)

Theorem ([27]). When Im(τ) > 0, we have:

2i (q̃/q)1/24 Z41(τ) = τ 1/2G1(q)G0(q̃) − τ−1/2G0(q)G1(q̃) , (14)

where q = e2πiτ and q̃ = e−2πi/τ .

The coefficients of G0(q) and G1(q) can be computed easily using that

G0(q) =
∞∑
m=0

Tm(q), G1(q) =
∞∑
m=0

Rm(q)Tm(q) (15)

where Tm(q) and Rm(q) are given by the recursion

Tm(q) = − qm

(1− qm)2
Tm−1(q) , Rm(q) = Rm−1(q) + 2

1 + qm

1− qm
(16)

with initial conditions T0(1) = 1 and R0(q) = E1(q). For instance, we find:

G1(q) =1− 7q − 14q2 − 8q3 − 2q4 + 30q5 + 43q6 + 95q7 + 109q8 + 137q9 + 133q10 + 118q11

+ 20q12 − 64q13 − 232q14 − 468q15 − 714q16 − 1010q17 − 1324q18 − 1632q19

− 1878q20 + · · · − 207821606967484464484714504354799q1500 + . . .
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Quite by accident, when we compared the power series expansions of G0(q), G1(q), and the
index, we discovered the following.

Observation 3. The three q-series G0(q), G1(q) and Ind41(q) are related by

Ind41(q) = G0(q)G1(q) . (17)

A proof of Equation (17) was communicated to us by T. Dimofte and an additional proof
follows from the results of Section 5.3 of [23]. This observation suggests that the q-seriesG0(q)
and G1(q) are intimately related. Since we had already discovered a relationship between
the asymptotics of G0(q) as q → 1 and the power series occurring in (2) (Observation 1), it
was natural to make a similar numerical study of the asymptotics of G1(q) as q → 1. The
result of this experiment, stated in the following observation, was surprisingly simple.

Observation 4. We have:

G1(e2πiτ ) ∼ 1√
τ

(Φ̂(2πiτ) + i Φ̂(−2πiτ)) (18)

to all orders in τ as τ tends to 0 in a cone in the interior of the upper half-plane.

The right hand side of Equation (11) defines a sequence of power series (one for every
power of ε) the first two of which are G0(q) and G1(q)/2. This is analogous to the ε-
deformations of linear differential equations studied for instance by Golyshev and the second
author [34, 55], and also analogous to the theory of Jacobi forms, where ε plays the role of a
Jacobi variable. The connection between ε-deformation and factorization of state integrals
is discussed further in Section A.5 below. One may wonder whether the q-series given by
the coefficient of ε2 (or εk for k ≥ 2) in (11) has radial asymptotics given by a variation of
Observations 1 and 4. A relation was recently found by Wheeler [52].

We discovered empirically the following alternative q-series representation for G1, which
is just a slight modification of the second formula for G0 given in (8).

Observation 5. For |q| < 1 we have:

G1(q) =
∞∑
n=0

(−1)n
q
n(n+1)

2 (6n+ 1)

(q; q)2
n

. (19)

This was later proved in [23, Sec.5.3].

2.4. Holomorphic functions in C rR. The relation of the q-series G0 and G1 with the
state integral given in Equation (14) brings out one more aspect to the q-series G0 and G1,
namely their extension outside the unit disk |q| > 1. This happens because on the one hand
the state integral satisfies the symmetry

Z41(τ) = Z41(τ
−1), τ ∈ CrR (20)

(which in turn follows from the corresponding symmetry of Faddeev’s quantum dilogarithm),
and on the other hand the state integral is factorized in terms of explicit q-hypergeometric
series, which are guaranteed to be convergent when |q| 6= 1. Indeed, the summand in last part
of Equation (8) is invariant under the replacement of q by q−1, and hence the formula of the
equation defines an extension of G0 for |q| > 1 which satisfies the property G0(q) = G0(q−1).
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Likewise, Equation (12), together with the convention that E1(q−1) = −E1(q) for |q| > 1,
defines an extension of G1 which satisfies the property G1(q) = −G1(q−1). Summarizing, we
have

G0(q) = G0(q−1), G1(q) = −G1(q−1), (q ∈ C, |q| 6= 1) (21)

and Equation (14) holds for τ ∈ CrR.

3. q-series and perturbative series

In this section we discuss three further aspects of our pair (G0(q), G1(q)) of q-series. One is
that their asymptotic expansions depend on a sector. This seems to be a property of general
q-hypergeometric series not observed before, which is not only theoretically interesting, but
also practically so, since to numerically compute asymptotic expansions, we can choose rays
with a single dominant asymptotics, making the numerical computation much easier. From
that point of view, the numerical asymptotics when q ∈ [0, 1) tends to 1 is a very resonant
situation.

A second aspect is that bilinear combinations of factorially divergent series give con-
vergent power series. These bilinear combinations are motivated by the factorization of
state-integrals, combined by the asymptotic expansions of our q-series, and lead to explicit
formulas for the Taylor series expansions of state-integrals at rational numbers, which sub-
sequently have been proven in [26].

The third aspect is that the asymptotic analysis of our q-series can be extended to any
complex root of unity. This is hardly a surprise, and relates the asymptotic expansions of
the pair (G0(q), G1(q)) as q approaches a root of unity to the asymptotic expansions of the
Kashaev invariant in the quantum modularity conjecture of the second author [54].

3.1. Asymptotics of holomorphic functions in sectors. Since we will be considering
functions of q on |q| 6= 1 as well as functions of τ ∈ CrR with q = e2πiτ , we will use capital
letters for functions F (q) of q with |q| 6= 1 and small letters for the corresponding functions
f(τ) := F (e2πiτ ) of τ ∈ CrR. For instance, we have

g0(τ) = G0(e2πiτ ), g1(τ) = G1(e2πiτ ), τ ∈ CrR (22)

and Observations 1 and 4 can be written in the form

g0(τ) ∼
√
τ (Φ̂(2πiτ) − i Φ̂(−2πiτ)), g1(τ) ∼ 1√

τ
(Φ̂(2πiτ) + i Φ̂(−2πiτ)) (23)

as τ ∈ C r R goes to 0 in a cone in the interior of the upper half-plane. We emphasize
here that we are not only considering limits as q → 1 radially, which would correspond to
taking τ = iε with a positive real number ε tending to zero, but are also allowing τ to tend
to 0 at an fixed angle. This is important when actually doing the numerical experiments
since often (and also here) the limit when one moves along the imaginary axis only is hard
to recognize because the two terms in (18) are both oscillatory and have the same order of
magnitude, so that they interfere with one another, and it is only possible to see the numerical

structure clearly when one allows oneself more freedom. The two asymptotic series Φ̂(2πiτ)

and i Φ̂(−2πiτ) partition the upper half plane into two sectors S1 : arg(τ) ∈ (0, π/2] and

S2 : arg(τ) ∈ [π/2, π); see Figure 1. In the interior of S1, Φ̂(2πiτ) dominates exponentially,
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and the reverse happens in S2, while on the common ray arg(τ) = π/2 both functions have
oscillatory growth.

Out[25]=
0.2 0.4 0.6 0.8 1.0
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1

Figure 1. A plot of the growth rates Re(iV/(±2πiτ)) of Φ̂(±2πiτ) for
arg(τ) = πθ with 0 < θ < 1 and |τ | fixed. The branches cross at 0.5 and
partition the interval (0, 1) in two sectors.

On a fixed ray, the asymptotic statements of equation (23) involves combinations of series
with different growth rates, and it would appear at first sight that the coefficient in front of
the dominated series in (23) is meaningless. However, the refined optimal truncation of [32]
and [31] allows us to make numerical sense of the both divergent series Φ(±2πiτ) with a
relative error that is exponentially rather than merely polynomially small compared to the
leading term, and then we can “see” both terms in (23).

We can also try to take a linear combination of the two equations in (23) to get new
holomorphic functions w(σ1)(τ) and w(σ2)(τ) whose asymptotic behavior near the origin gives

each of the individual completed series Φ̂(±2πiτ) separately. Specifically, if we define a

holomorphic vector-valued function w(τ) =
(
w(σ1)(τ)

w(σ2)(τ)

)
by

w(τ) =
1

2

(
1 1
1 −1

) (
τ−1/2 g0(τ)
τ 1/2 g1(τ)

)
,

(
τ−1/2 g0(τ)
τ 1/2 g1(τ)

)
=

(
1 1
1 −1

)
w(τ) , (24)

then Equation (23) might seem to imply the asymptotic statements

w(σ1)(τ) ∼ Φ̂(2πiτ), w(σ2)(τ) ∼ −i Φ̂(−2πiτ) (25)

to all orders in both quarter-planes S1 and S2. In any case, the passage from g to w has
several other nice consequences. The first is a very simple formula for the index, namely

Ind41(e
2πiτ ) = w(σ1)(τ)2 − w(σ2)(τ)2 (26)

(combine Equations (17) and (24)), which when combined with Observation 6 gives the
asymptotics of the 3D index when τ tends to zero on the vertical axis. The second, ob-
tained by combining Equation (14) with Observation 3 as τ → 0, and using the fact that
g0(τ̃) ∼ G0(0) = 1 and g1(τ̃) ∼ G1(0) = 1, is the asymptotic formula

−(q̃/q)1/24 Z41(τ) ∼ Φ̂(−2πiτ) (τ → 0+) . (27)

In other words, the state integral as τ → 0 exponentially decays with the fastest possible
rate and with an asymptotic expansion matching to all orders that of the Kashaev invariant
at q = 1. This is a version of the Volume Conjecture for the state integral which has recently
been established for knot complements with suitable ideal triangulations in [2].
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However, Equation (25) is not quite true. Instead, we find that it is true in a wide
neighborhood of the imaginary axis, but fails when τ approaches 0 from very near the
positive or negative real axis. More precisely, what we find numerically is the following

Observation 6. The first asymptotic equation in (25) holds to all orders in τ as τ tends
to 0 along a ray with argument between 0 and π−0.11, but fails when the argument is larger,
while the second equation holds to all orders if τ tends to 0 along a ray with argument between
0.11 and π, but fails for small arguments.

As an illustration, for τ = −10+i
100000

we find

w(σ1)(τ) ≈ (−3.656− 4.937i)× 10−1313, Φ̂(2πiτ) ≈ (4.351 + 2.821i)× 10−1390,

w(σ2)(τ) ≈ (−6.057− 9.343i)× 101388, −i Φ̂(−2πiτ) ≈ (−6.057− 9.343i)× 101388,

so that w(σ2)(τ) is indeed asymptotically close to −iΦ̂(−2πiτ) (and in fact their ratio equals 1

numerically to over 200 digits), but w(σ1)(τ) is not at all close to Φ̂(2πiτ). On the other hand,
the ratio of w(σ1)(τ) to w(σ2)(τ) is extremely close to 3 q̃, where q̃ := e−2πi/τ , and the corrected

value w(σ1)(τ) − 3q̃ w(σ2)(τ) now coincides with Φ̂(2πiτ) with a relative accuracy of more
than 200 digits. In other words, in this region w(σ1)(τ) is always asymptotically very close to

Φ̂(2πiτ)+3i q̃ Φ̂(−2πiτ), but there is a phase transition on the line arg(τ) = arctan(V/2π2) =
0.10247 . . . where the two terms in this new approximation have the same order of magnitude
as τ → 0. If we continue further to the left, then there is a new phase transition at arg(τ) =
arctan(V/4π2) = 0.05137 . . . where we need a further correction term 18 q̃2w(σ2)(τ) and
similarly if we go further we find phase transitions whenever arg(τ) = arctan(V/2π2m),

where q̃mΦ̂(−2πiτ) and Φ̂(−2πiτ) are of the same order of magnitude, the correction needed
at τ = −40+i

100000
for instance being (3q̃ + 18q̃2 + 99q̃3 + 555q̃4)w(σ2)(τ), which makes w(σ1) agree

with Φ̂(2πiτ) with a relative error of 10−148 as opposed to the huge 10+531 that we obtain
without any correction. Note that we cannot find these higher-order corrections in q̃ by

looking for a q̃-power series linear combination of Φ̂(−2πiτ) and Φ̂(−2πiτ) that is very close

to w(σ1)(τ), because even with improved optimal truncation we cannot evaluate q̃mΦ̂(−2πiτ)
to the required degree of precision, but since w(σ1)(τ) and w(σ2)(τ) are given in terms of
convergent power series that can be computed to any desired precision, we can find successive

terms of a power series a = a±(q) making w(σ1) − aw(σ2) agree with Φ̂(−2πiτ) to all orders
τ approaches the real line with any argument between 0 and π, and similarly (by studying
the power series near the positive real axis) another Z[[q̃]]-power series linear combination of

w(σ1) and w(σ2) that agrees to all orders with Φ̂(2πiτ) in the entire upper half-plane. Both
linear combinations are determined by these requirements only up to multiplication of the
whole expression by a power series in q̃ starting with 1. We will see later in Section 4 why
this happens and how to find canonical Z[[q̃]]-linear combinations of τ−1/2g0 and τ 1/2g1–see
Equation (66) below.

3.2. From divergent to convergent power series. The third interesting corollary of
Observations 1 and 4 is obtained by combining them with equation (14) and the fact that
Z41(τ) is holomorphic in the cut plane C′, since this leads to startling predictions regarding
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the factorially divergent formal power series Φ(h) ∈ R[[h]]. Specifically, using the factoriza-
tion of the state integral given in (14), the fact that each w(σj)(τ) is a linear combination
of the functions τ−1/2g0(τ) and τ 1/2g1, and the fact that g0 and g1 are 1-periodic, we can
re-express the state integral in terms of w as follows:

(q̃/q)1/24 Z41(τ) = −w(σ1)(τ − 1)w(σ2)
(τ − 1

τ

)
+ w(σ2)(τ − 1)w(σ1)

(τ − 1

τ

)
. (28)

The fact that the state integral is holomorphic in C′ implies that the right-hand side of (28)
has a Taylor expansion around τ = 1 with radius of convergence 1. However, this is wasteful
because it uses only the holomorphy of Z41 in the disk |τ − 1| < 1. If we use its holomorphy,
first in {Re(τ) > 0} and then in all of C′, then by making the changes of variables

τ = 1 + u =
1 + v

1− v
=
(1 + w

1− w

)2

, (29)

which give biholomorphic maps between the unit u-, v- and w-disks and the sets {|τ−1| < 1},
{Re(τ) > 0} and C′, respectively, we find:

Corollary. Let C = V/2π = 0.3230659 · · · and Φ(x) ∈ R[[x]] be given by (5). Each of
the three formal power series Q(u) ∈ R[[u]], R(v) ∈ R[[x2]] and S(w) ∈ R[[w2]] defined by

Q(u) = e−CΦ(2πiu)Φ

(
− 2πiu

1 + u

)
− eCΦ

(
2πiu

1 + u

)
Φ(−2πiu) , (30a)

R(v) = e−CΦ

(
4πiv

1− v

)
Φ

(
− 4πiv

1 + v

)
− eCΦ

(
− 4πiv

1− v

)
Φ

(
4πiv

1 + v

)
, (30b)

S(w) = e−CΦ

(
8πiw

(1− w)2

)
Φ

(
− 8πiw

(1 + w)2

)
− eCΦ

(
− 8πiw

(1− w)2

)
Φ

(
8πiw

(1 + w)2

)
(30c)

has radius of convergence 1.

Note that the original formulas obtained from (28) would have had Φ̂’s instead of Φ’s and
would not have had the scalar factors e±C , which arise from a cancellation of an exponentially
large and an exponentially small prefactor. This also means that each of the three power
series Q, R and S has coefficients in the ring Q(π,

√
−3, eC).

What the corollary says is that, although the original power series Φ(x) occurring in the
asymptotic expansion of the Kashaev invariant 〈41〉N was factorially divergent, each of the
combinations Q, R and S defined by (30a)-(30c) are convergent power series with radius of
convergence 1. This can be seen dramatically in following table showing the growth of the
coefficients (rounded), part of which was already given in [32] (equations (35) and (83)):

k 0 50 100 150

[hk]Φ(h) 0.75 6.7 · 1071 3.1 · 10174 7.4 · 10283

[vk]Q(v) −0.379 0.012 −0.007 0.002
[uk]R(u ) −0.380 −0.037 0.009 −0.001
[wk]S(w) −0.379 −52068.5 −43932564.0 −75312313899.2

Note that the fact that the coefficients of S, although very much smaller than those of Φ,
are much larger than those of Q and R, does not mean that S is the worst of these three
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series, but actually the best one, since the larger growth reflects the fact that the unit w-disk
corresponds to the entire domain of holomorphy C′ of the state integral rather than a subset
like the two other series, and that consequently this power series has essential singularities
on the entire unit circle rather than at only one or two points. (This observation was already
made in [32].)

3.3. The asymptotics of G0(q) and G1(q) at roots of unity. Observations 1 and 4
express the asymptotics of the functions G0(q) and G1(q) at q = 1 in terms of the series

Φ̂41(h) which appears in the asymptotics of the Kashaev invariant at q = 1. We now extend
the above observation to all roots of unity using the series Φ41

α (h) that appear in the quantum
modularity theorem of the Kashaev invariant of the 41 knot [32]. Let us briefly recall the
latter. Let

J : Q→ Q ⊂ C
denote the extension of the Kashaev invariant of 41 [40] to Q where J(−1/N) = 〈K〉N . The
quantum modularity theorem for the 41 knot asserts that for every matrix γ =

(
a b
c d

)
∈

SL2(Z) we have

J
(aX + b

cX + d

)
∼ (cX + d)3/2 Φ̂a/c

( 2πi

c(cX + d)

)
J(X) (31)

to all orders in 1/X as X →∞ in Q with bounded denominator where α = a/c,

Φ̂α(h) = eiV/c
2h Φα(h) (32)

and Φα(h) is a power series with algebraic coefficients. Various refinements of the quantum
modularity conjecture were discussed in detail in [32]. Since J is 1-periodic (i.e., defined for

α ∈ Q/Z), it follows that the series Φ̂α(h) depends on α ∈ Q/Z.
The reflection of the quantum modularity statement (31) for the power series g0 and g1 is

the following extension of Equation (23), in which we have set τ = α + ε/c :

Observation 7. For a rational number α = a/c, we have:

g0(α + ε/c) ∼
√
ε
(
Φ̂−α(2πiε) − i Φ̂α(−2πiε)

)
, (33a)

g1(α + ε/c) ∼ 1√
ε

(
Φ̂−α(2πiε) + i Φ̂α(−2πiε)

)
(33b)

to all orders in ε as ε ∈ CrR tends to 0 in a cone in the interior of the upper half-plane.

Finally, we reformulate the asymptotic expansions given in Equations (33a) and (33b)
in a way that resembles the Quantum Modularity Conjecture. Consider the vector-valued
holomorphic function g =

(
g0
g1

)
on CrR where g0 and g1 are declared to have weights −1/2

and 1/2, and define the corresponding vector-valued “slash operator” by(
g
∣∣γ)(τ) =

(
(cτ + d)1/2 g0(γτ)

(cτ + d)−1/2 g1(γτ)

)
for γ =

(
a b
c d

)
∈ SL2(R), where γτ = aτ+b

cτ+d
as usual. Then Equations (33a) and (33b) can be

written in the equivalent form
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Observation 8. For any γ =
(
a b
c d

)
in SL2(Z) we have(

g|γ
)
(τ) ∼

(
1 −1
1 1

)
Φ̂·α

( 2πi

c(cτ + d)

)
(τ ∈ CrR, |Im(τ)| → ∞) (34)

to all orders in 1/τ , where Φ̂·α(h) =
(

Φ̂α(h)

i Φ̂α(−h)

)
.

Notice that Observation 8 has a corollary generalizing the one given in Section 3.2, giving
linear combinations of two products of a Φa-series and a Φ−1/α-series with radius of conver-
gence 1 for any rational number α, and not just for α = 1 as before. We leave the details to
the reader.

3.4. The quadratic relation. We now describe some new phenomena that we observed
using other knots. The knot 41 was amphicheiral and hence special: in general one should
expect an r-tuple of pairs of q-series, one on each half-plane, hence a total of 2r q-series.
(We will see in a later section 5.4 the topological meaning of this number r). However, in
the case of the 41 knot, the four q-series are actually two, each appearing twice, due to the
amphicheirality of the 41 knot. On the other hand, the factorization integral for the 52 knot
and for the (−2, 3, 7) pretzel knot gives a total of 6 and 12 q-series. For each knot, the
collection of these q-series satisfies one quadratic relation, which is trivial for the case of the
41 knot.

Let us illustrate the quadratic relation using the 52 knot as an example. The Andersen-
Kashaev state integral of the 52 knot is given by [4, Eqn.39]

Z52(τ) =

∫
R+iε

Φ√τ (x)3 e−2πix2dx (τ ∈ C′) . (35)

In [27], by the same type of residue calculation as in the 41 case, it is shown that Z52 has
the decomposition

2e3iπ/4(q̃/q)1/8 Z52(τ) = τ h2(τ)h0(τ−1) + 2h1(τ)h1(τ−1) +
1

τ
h0(τ)h2(τ−1) (36)

for τ ∈ CrR, where

hj(τ) = (±1)j H±j
(
e±2πiτ

)
for ±Im(τ) > 0 (37)

are holomorphic functions in a half-plane and H±j (q) ∈ Z[[q]] are q-series with coefficients in
1/6Z defined by

(qeε; q)3
∞

(q; q)3
∞

∞∑
m=0

qm(m+1)e(2m+1)ε

(qeε; q)3
m

= H+
0 (q) + εH+

1 (q)

+
ε2

2

(
H+

2 (q) +
1

6
E2(q)H+

0 (q)
)

+ O(ε)3

(q; q)3
∞

(qe−ε; q)3
∞

∞∑
n=0

(−1)n
qn(n+1)/2e(n+1/2)ε

(qeε; q)3
n

= H−0 (q) + εH−1 (q)

+
ε2

2

(
H−2 (q) +

(1

4
− 1

6
E2(q)

)
H−0 (q)

)
+O(ε)3

(38)
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whose first few terms are given by

H+
0 (q) = 1 + q2 + 3q3 + 6q4 + 10q5 + · · · H−0 (q) = 1− q − 3q2 − 5q3 − 7q4 − 6q5 + · · ·

H+
1 (q) = 1− 3q − 3q2 + 3q3 + 6q4 + 12q5 + · · · H−1 (q) = 1

2

(
1− 9q − 21q2 − 19q3 − 9q4 + 54q5

)
+ · · ·

H+
2 (q) =

5

6
− 5q +

53

6
q2 +

117

2
q3 + 117q4 +

601

3
q5 + · · · H−2 (q) =

1

6
−

37

6
q −

17

2
q2 +

115

6
q3 +

389

6
q4 + · · ·

(39)

and whose further properties are given in Section A.4. Here, E2(q) = 1− 24
∑

n≥1
qn

(1−qn)2

is the weight 2 Eisenstein series and (x; q)∞ =
∏∞

k=0(1− qkx).
The index of the 52 knot is given by the following expression:

Ind52(q) =
∑

k1, k2, k3∈Z

I∆(−k1, k1 − k2)I∆(−k1, k1 − k2 − k3)I∆(2k1 − 2k2 − k3,−k1)

= 1− 12q + 3q2 + 74q3 + 90q4 + 33q5 − 288q6 − 684q7 − · · · ,

The next observation (a proof follows from results of Section 5.3 of [23]) was expected given
what we knew from the case of the 41 knot.

Observation 9. The q-series Hj are related to the index by

Ind52(q) = 2H+
1 (q)H−1 (q) . (40)

The next observation, a quadratic relation among the 3 pairs of q-series was unexpected
and found by accident. This relation could not be seen in the case of the 41 knot, since it
reduces to the empty equation G0(q)G1(q) − G1(q)G0(q) = 0, as a consequence of the fact
that the 41 knot is amphicheiral.

Observation 10. The q-series Hj satisfy the quadratic relation

H+
0 (q)H−2 (q) − 2H+

1 (q)H−1 (q) + H+
2 (q)H−0 (q) = 0 . (41)

We now discuss the asymptotics of the six q-series of the 52 knot. Just as in the case of the
41 knot, the asymptotics of hj(τ) as τ ∈ CrR tends to zero in a ray are given by a rational

linear combination of three asymptotic series Φ̂(σ)(h) that appear in the quantum modularity
conjecture of the 52 knot [32], where σ denotes one of the three embeddings of the trace field
of the 52 knot (the cubic field of discriminant −23 generated by ξ with ξ3−ξ2 +1 = 0). Each
embedding corresponds to a boundary parabolic SL2(C) representations of the fundamental
group of the complement of the knot, with the convention that σ1, σ2 and σ3 denotes the
geometric embedding, (corresponding to Im(ξ) < 0, its complex conjugate, and the real
embedding of the trace field). When τ approaches zero in a fixed generic ray, the three

asymptotic series Φ̂(σj)(h) have different growth rates and this divides each of the upper and
lower half-plane into four sectors shown in Figure 2.

Just as in the case of the 41 knot, the refined optimal truncation of [32] finds in each

sector R a unique matrix MR such that h(τ) ∼ MR Φ̂(2πiτ) as τ ∈ R and τ → 0, where

h =
(
τ−1h0
h1
τh2

)
and Φ̂ =

(
Φ̂(σ1)

Φ̂(σ3)

Φ̂(σ2)

)
. Using 108 exact coefficients of the power series Φ̂ and refined

optimal truncation we found the following.
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Figure 2. A plot of the growth rates Re(VolC(ρj)/2πiτ) of w(σj)(x) defined in
Equation (45) for j = 1, 2, 3 where arg(τ) = πθ and θ ∈ (0, π). The branches
cross at 0.19, 0.5, 0.81 and partition the interval [0, 1] in four sectors.

Observation 11. We have

h(τ) ∼

{
N+ Φ̂(2πiτ) when arg(τ) ∈ (0, 0.19)

N− Φ̂(2πiτ) when arg(τ) ∈ (−π/2, 0)
(42)

where

N+ =

 1/2 1/2 1
0 1/2 1/2

−1/12 5/12 −2/3

 , N− =

 −1/2 −1/2 1/2
3/4 −1/4 −1/4
−13/12 −1/12 1/12

 . (43)

Inverting the matrices N± we obtain a vector w =
(
w(σ1)

w(σ3)

w(σ2)

)
of holomorphic functions on

CrR

w(τ) =

{
N−1

+ h(τ) when arg(τ) ∈ (0, 0.19)

N−1
− h(τ) when arg(τ) ∈ (−π/2, 0)

(44)

that express Equation (42) in the equivalent form

w(σj)(τ) ∼ Φ̂(σj)(2πiτ), (τ → 0) (45)

when arg(τ) ∈ (−π/2, 0.19) r {0} and j = 1, 2, 3. Since the functions h and w are related
by a linear transformation, it follows that the state integral, the index and the quadratic
identity can be expressed in terms of the function w as follows:

0 =
3∑
j=1

w(σj)(τ)w(σj)(−τ) (46)

2Z52(τ) =
3∑
j=1

w(σj)(τ − 1)w(σj)(τ−1 − 1) . (47)

4Ind52(e
2πiτ ) = w(σ3)(τ)w(σ3)(−τ)− w(σ1)(τ)w(σ2)(−τ)− w(σ2)(τ)w(σ1)(−τ) . (48)

In terms of the Φ(σj) series, Equation (46) and (45) implies the quadratic identity∑
σ

Φ(σ)(x)Φ(σ)(−x) = 0 , (49)
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(where we are summing over σ ∈ {σ1, σ2, σ3}) whereas Equation (47) and (45) implies that
the expansion of Z52(τ) around τ = 1 when τ is given by (29) is a power series

∑
σ

e−CσΦ(σ)

(
2x

1− x

)
Φ(σ)

(
− 2x

1 + x

)
(50)

convergent when |x| < 1. Here, Cσ = VolC(ρ)/(2πi) where VolC(ρ) is the complexified
volume of the corresponding boundary parabolic SL2(C)-representation ρ of the fundamental
group of the complement of the 52 knot.

3.5. Higher level and weight spaces. In this section we describe a new phenomenon,
the level of a knot, and examples where the weight spaces have higher multiplicity. For
the (−2, 3, 7) pretzel knot, there are 6 pairs of q-series, and the weight spaces are not one-
dimensional; there are weights 0, 1 and 2 with dimensions 1, 4 and 1 respectively. The 6
pairs of q-series involve power series in integer powers of q1/2, meaning level N = 2, and so
we should introduce the level of a knot, presumably the same as the one coming from the
periodicy of the degree of the colored Jones polynomial [19, 18]. This q1/2 will be upgraded
to a whole SL2(Z) and Γ(2) story in Section 4. As an added complexity for the (−2, 3, 7)
knot, the 6 asymptotic series come in two Galois orbits of size 3 defined over the cubic field
of discriminant −23 (the trace field) and over the abelian field Q(cos(2π/7)) of discriminant
49. Moreover, the 3 complex volumes of the latter Galois orbit are rational multiples of π2.

To illustrate the new phenomenon we begin by introducing the 6 pairs of q-series for the
(−2, 3, 7) pretzel knot. The state integral of the (−2, 3, 7) pretzel knot was given in [26,
App.B]. Using the functional equation for Faddeev’s quantum dilogarithm [26, Eqn.(78)],
and ignoring some prefactors, the state integral is given by

Z(−2,3,7)(τ) =

(
q

q̃

)− 1
24
∫
R+icb/2+iε

Φ√τ (x)2Φ√τ (2x− cb) e−πi(2x−cb)
2

dx (τ ∈ C′) (51)

with small positive ε, where b =
√
τ and cb = i

2
(b + b−1). Using the method of [27], we can

express the above state integral in terms of 6 q-series as follows.

Proposition 12. We have:

2 e
πi
4 (q/q̃

)1/24
Z(−2,3,7)(τ) = − 1

2τ
h0(τ)h2(τ−1) + h1(τ)h1(τ−1) − τ

2
h2(τ)h0(τ−1) (52)

+
1

τ

(
h3(τ)h4(τ−1)− h4(τ)h3(τ−1) + h5(τ)h5(τ−1)

)
for τ ∈ C r R, with the same convention as in (37), but with (±1)j replaced by (±1)δj

where (δ0, . . . , δ5) = (0, 1, 2, 0, 0, 0) denotes the ε-deformation degree and where the H±j (q)
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are power series in q1/2 whose first few terms are given by

H+
0 (q) = 1 + q3 + 3q4 + 7q5 + 13q6 + · · · H+

3 (q) = q + 3q2 − 2q5/2 + 8q3 − 8q7/2 + · · ·

H−0 (q) = 1 + q2 + 3q3 + 7q4 + 13q5 + · · · H−3 (q) = q + 4q3/2 + 9q2 + 18q5/2 + 31q3 + · · ·

H+
1 (q) = 1− 4q − 8q2 − 3q3 + 3q4 + · · · H+

4 (q) = 1 + 4q + 12q2 + 33q3 + 79q4 + · · ·

H−1 (q) = 1− 4q − 5q2 + q3 + 7q4 + · · · H−4 (q) =
1

4
− q +

5

4
q2 −

5

4
q3 +

15

4
q4 + · · ·

H+
2 (q) =

2

3
− 6q + 6q2 +

242

3
q3 + 200q4 + · · · H+

5 (q) = q + 3q2 + 2q5/2 + 8q3 + 8q7/2 + · · ·

H−2 (q) =
5

6
− 10q +

17

6
q2 +

141

2
q3 +

971

6
q4 + · · · H−5 (q) = q − 4q3/2 + 9q2 − 18q5/2 + 31q3 + · · ·

(53)

and whose precise definition and properties are given in the appendix (Section A.6).

The vector space 〈H〉 spanned by (H0, . . . , H5) has the (ε-deformation) weight decompo-
sition

〈h〉 = W0 ⊕W1 ⊕W2, W0 = 〈H0, H3, H4, H5〉, W1 = 〈H1〉, W2 = 〈H2〉 . (54)

There is a representation ρ of SL2(Z) on 〈H〉 which is the identity on W1 and W2 and has
kernel Γ(2) on W0. Thus, the action of ρ on W0 comes from a representation ρ′ of the
quotient group S3 = Γ/Γ(2). The latter decomposes as the direct sum of the 2-dimensional
irreducible representation of S3 and two copies of the trivial representation of S3.

The index of the (−2, 3, 7) pretzel knot is given by the following expression:

Ind(−2,3,7)(q) =
∑

k1, k2, k3∈Z

(−q
1
2 )k1−2k2I∆(2k2, k1 − 2k2 − k3)

× I∆(−k1 + k2, k1 − 2k2)I∆(k1 − 2k2 − 2k3, k2)

= 1− 8q + 3q2 + 50q3 + 58q4 + 13q5 − 196q6 − 456q7 − · · ·
Observation 13. The relation with the index is given by

Ind(−2,3,7)(q) = H+
1 (q)H−1 (q) (55)

and the following quadratic relation holds:
1

2
H+

0 (q)H−2 (q)−H+
1 (q)H−1 (q) +

1

2
H+

2 (q)H−0 (q)

−H+
3 (q)H−3 (q) +H+

4 (q)H−4 (q)−H+
5 (q)H−5 (q) = 0 .

(56)

Just in the case of the 41 knot and the 52 knots, the asymptotics of hj(τ) as τ ∈ CrR tends

to zero in a ray are given by a rational linear combination of the asymptotic series Φ̂(σ)(h)
that appear in the quantum modularity conjecture of the (−2, 3, 7) knot [32]. However, this
knot has 6 boundary parabolic SL2(C) representations, arranged in two Galois orbits of size
3, one defined over the trace field of the (−2, 3, 7) pretzel knot (the cubic field of discriminant
−23 generated by ξ with ξ3 − ξ2 + 1 = 0) and another defined over the real abelian field
Q(2 cos(2π/7)). Let {σ1, σ2, σ3} denote the three embeddings of the trace field corresponding
to Im(ξ) < 0, Im(ξ) > 0 and Im(ξ) = 0, and let {σ4, σ5, σ6} denote the three embeddings of
Q(η) with η3 + η2 − 2η − 1 = 0 (the abelian cubic field with discriminant 49) into C given
by sending η to 2 cos(2π/7), 2 cos(4π/7) and 2 cos(6π/7), respectively. When τ approaches

zero in a fixed generic ray, the six asymptotic series Φ̂(σj)(h) have different growth rates, and
the ordering of the growth rates in each ray is dictated by Figure 3.
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Figure 3. A plot of the growth rates Re(VolC(ρj)/2πiτ) of w(j)(x) for j =
0, . . . , 5 where arg(τ) = πθ and θ ∈ (0, π). The two Galois orbits are 1, 2, 4
and 0, 3, 5 for the number fields of discriminant 49 and -23. The branches cross
at 0., 0.16, 0.19, 0.22, 0.28, 0.5, 0.71, 0.77, 0.81, 0.84, 1 and partition the interval
[0, 1] in 10 sectors.

Let Φ̂α(h) = (Φ̂(σj)(h))6
j=1 denote the vector of asymptotic series, and let h(τ) = (hj(τ))5

j=0

denote the vector of holomorphic functions on CrR with weight (−1, 0, 1,−1,−1,−1). As
before, if we let X →∞ in a fixed sector and γ ∈ SL2(Z), we can fit the asymptotic expansion

of the vector h|γ(X) with the asymptotic series Φ̂α(2πi/(cX + d)) after multiplication by a
matrix. There is an additional subtlety which is absent in the case of the 41 and 52 knots,
namely the fact that some of the q-series H±j (q) are power series in q1/2, which implies that
the functions hj(τ) are 2-periodic, but not 1-periodic. This implies that the matrices that
determine the linear combinations depend on the cosets of Γ(2) in SL2(Z).

Observation 14. As X ∈ C r R in a sector near the positive real axis and X → ∞, we
have:

h|γ(X) ∼ ρ(γ)


0 1 −1 0 −1 −1/2
0 1 1 0 0 0
0 2/3 −2/3 0 4/3 1/6
0 −1 1 0 1 −1/2
0 0 0 −1/2 −1 0
2 0 0 −1/2 −1 0

 Φ̂α

( 2πi

cX + d

)
(57)

to all orders in 1/X.

Inverting the matrix in Equation (57), allows one to define holomorphic lifts w(σ) in CrR
of the asymptotic series Φ(σ)(h). This gives a practical method for computing the coefficients
of the 6 asymptotic series Φ(σ)(h). Indeed, a numerical computation of the series w(σ) at cusps
and the Galois invariant of the series Φ(σ)(h) reduces the computation of their coefficient to
the recognition of rational numbers with prescribed denominators. We used this method to
compute 37 terms of the six Φ(σ)(h), and to compare the results with the asymptotics of the
Kashaev invariant in [32].

4. From vector-valued to matrix-valued q-series

So far, we used the state integral of a knot to define a vector of q-series for |q| 6= 1 whose
asymptotics were found to be related to the r-vector of asymptotic series of the knot from
our earlier paper [32]. In this section we report a recent discovery, descendants, which places
the vector as the first column of an invertible r by r matrix of q-series for |q| 6= 1. It turns out
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that asymptotic series [32], q-series and state integrals [22, 23] all have descendants. We will
explain the notion of descendants in Section 4.1 for the 41 knot, where there will be infinitely

many descendants G
(m)
0 (q) and G

(m)
1 (q) (Laurent series in q with integer coefficients) with

m ranging over Z, and then we will construct the matrix Q(q) whose second column is
1
2
(qG

(1)
j − q−1G

(−1)
j ) for j = 0, 1. (We will explain in Section 5.3 below why we choose this

particular linear combination.) In Section 4.2 we discuss the asymptotic properties of these
descendants, and in Section 4.3 we state the analogous results for the 52 knot.

4.1. Descendant q-series. In this section we will focus on the 41 knot following the work
of the first author, Gu and Mariño [22] (with detailed proofs provided in [23, Sec.3.1]) but

using a slightly different notation. Consider the pair G
(m)
0 (q) and G

(m)
1 (q) of q-series from [22]

for integers m

G
(m)
0 (q) =

∞∑
n=0

(−1)n
qn(n+1)/2+mn

(q; q)2
n

(58a)

G
(m)
1 (q) =

∞∑
n=0

(−1)n
qn(n+1)/2+mn

(q; q)2
n

(
2m+ E1(q) + 2

n∑
j=1

1 + qj

1− qj

)
, (58b)

for |q| < 1 and extended to |q| > 1 by G
(m)
j (q−1) = (−1)jG

(m)
j (q). Observe that G

(0)
j (q) =

Gj(q) for j = 0, 1, with G0(q) and G1(q) given in (8) and (12), respectively. Consider the
matrix

wm(q) =

(
G

(m)
0 (q) G

(m)
1 (q)

G
(m+1)
0 (q) G

(m+1)
1 (q)

)
, (|q| 6= 1) . (59)

The properties of these functions are given in [23, Sec.3.1].

Theorem ([23]). The matrix wm(q) is a fundamental solution of the linear q-difference
equation

ym+1(q)− (2− qm)ym(q) + ym−1(q) = 0 (m ∈ Z) . (60)

It has constant determinant

det(wm(q)) = 2 (61)

and satisfies the symmetry and orthogonality properties

wm(q−1) = w−m(q)

(
1 0
0 −1

)
, (62)

1

2
wm(q)

(
0 1
1 0

)
wm(q−1)T =

(
0 1
−1 0

)
(63)

for all integers m and for |q| 6= 1.

The descendant series G
(m)
j (q) arise from a factorization of the “descendant state integral”

Z41,m,m′(τ) =

∫
R+i0

Φ√τ (v)2 e−πiv
2+2π(mτ1/2−m′τ−1/2)v dv (m,m′ ∈ Z) (64)
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introduced in [22]. This is a holomorphic function of τ ∈ C′ that coincides with Z41(τ) when

m = m′ = 0 and can be expressed bilinearly in terms of G
(m)
j (q) and G

(m′)
j (q̃) as follows [22,

Eqn.(69)]

Z41,m,m′(τ) = (−1)m−m
′+1 i

2
q
m
2

+ 1
24 q̃

m′
2
− 1

24

(√
τ G

(m′)
0 (q̃)G

(m)
1 (q)− 1√

τ
G

(m′)
1 (q̃)G

(m)
0 (q)

)
.

(65)
(Here q̃ = e(−1/τ) as usual.) This implies that the matrix-valued function

Wm,m′(τ) = (wm′(q̃)
T )−1

(
1/τ 0
0 1

)
wm(q)T , (66)

which is originally defined only for τ ∈ C r R, extends holomorphically to τ ∈ C′ for all
integers m and m′. A similar story of descendants for the 52 knot was given in [23], Section
4.1k, and will be reproduced in Subsection 4.3 below.

4.2. The asymptotics of the descendants. In [32], studying the refined quantum mod-
ularity conjecture for the 41 knot, we found a 2 by 2 matrix of asymptotic series

Φ̂(x) =

(
Φ̂(x) Ψ̂(x)

i Φ̂(−x) −i Ψ̂(−x)

)
(67)

where Ψ̂(x) = eC/hΨ(x) where Ψ(x) is the series

Ψ(x) =
∞∑
j=0

Bjx
j , Bj = i

4
√

3

2

( 1

72
√
−3

)j bj
j!

(68)

with bj ∈ Q, the first values being given by

j 0 1 2 3 4 5 6

bj −1 37 1511 1211729/5 407317963/5 331484358355/7 1471507944921541/35

Naturally, we looked into the asymptotics of its descendant holomorphic blocks. Since any
three consecutive are related by the recursion (60), so are their asymptotics. For consistency,
and for symmetry, we looked into the asymptotics of the descendant holomorphic blocks for

m = −1, 0, 1. Naturally, we expected that the series Ψ̂ as well as the series Φ̂ would show
up, and indeed we found the following asymptotics for the matrix of q-series defined by

Q(τ) = w0(q)T
(

1 −1
2

0 1

)
=

(
G

(0)
0 (q) 1

2

(
G

(1)
0 (q)−G(−1)

0 (q)
)

G
(0)
1 (q) 1

2

(
G

(1)
1 (q)−G(−1)

1 (q)
)) (q = e(τ)) (69)

Observation 15. As τ → 0 in the upper half-plane, we have:(
1/
√
τ 0

0
√
τ

)
Q(τ) ∼

(
1 −1
1 1

)
Φ̂(2πiτ) . (70)

Note that Equation (61) implies that det(Q(τ)) = 2 for all τ , and combined with the

above, it follows that the function Φ̂(x) satisfies

det(Φ̂(x)) = 1 (71)
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as well as the orthogonality property

Φ̂(−x)Φ̂(x)t =

(
0 i
i 0

)
. (72)

4.3. The case of the 52 knot. Consider the linear q-difference equation

ym(q)− 3ym+1(q) + (3− q2+m)ym+2(q)− ym+3(q) = 0 (m ∈ Z) , (73)

In [23, Sec.3.2] it was shown that it has a fundamental solution sets given by the columns of
the following matrix

wm(q) = w52
m (q) =

H
(m)
0 (q) H

(m+1)
0 (q) H

(m+2)
0 (q)

H
(m)
1 (q) H

(m+1)
1 (q) H

(m+2)
1 (q)

H
(m)
2 (q) H

(m+1)
2 (q) H

(m+2)
2 (q)

 , (m ∈ Z, |q| 6= 1) (74)

where for |q| < 1

H
(m)
0 (q) =

∞∑
n=0

qn(n+1)+nm

(q; q)3
n

,

H
(m)
1 (q) =

∞∑
n=0

qn(n+1)+nm

(q; q)3
n

(
1 + 2n+m− 3E(n)

1 (q)
)
,

H
(m)
2 (q) =

∞∑
n=0

qn(n+1)+nm

(q; q)3
n

(
(1 + 2n+m− 3E(n)

1 (q))2 − 3E(n)
2 (q)− 1

6
E2(q)

)
,

(75)

and

H
(−m)
0 (q−1) =

∞∑
n=0

(−1)n
q

1
2
n(n+1)+nm

(q; q)3
n

,

H
(−m)
1 (q−1) =

∞∑
n=0

(−1)n
q

1
2
n(n+1)+nm

(q; q)3
n

(
1

2
+ n+m− 3E(n)

1 (q)

)
,

H
(−m)
2 (q−1) =

∞∑
n=0

(−1)n
q

1
2
n(n+1)+nm

(q; q)3
n

((1

2
+ n+m− 3E(n)

1 (q)
)2 − 3E(n)

2 (q)− 1

12
E2(q)

)
(76)

with E (n)
k (q) defined in Equation (138) below. Note that when m = 0, H

(0)
j (q±1) = H±j (q)

where H±j (q) are the six q-series of the 52 knot (38) that appear in the factorization of its
state-integral.

Theorem. ([23]) The function wm(q) defined by (74) is a fundamental solution of the linear
q-difference equation (73) that has constant determinant

det(wm(q)) = 2 , (77)

satisfies the orthogonality property

1

2
wm−1(q)

0 0 1
0 2 0
1 0 0

w−m−1(q−1)T =

1 0 0
0 0 1
0 1 3− qm

 . (78)
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as well as

1

2
wm(q)

0 0 1
0 2 0
1 0 0

w`(q
−1)T ∈ SL(3,Z[q±]) (79)

for all integers m, ` and for |q| 6= 1.

The series H(m)(q) for |q| 6= 1 appear in the factorization of the descendant state integral
of the 52 knot

Z52,m,m′(τ) =

∫
R+i0

Φ√τ (v)3 e−2πiv2+2π(mτ1/2−m′τ−1/2)v dv (m,m′ ∈ Z, τ ∈ C′) (80)

of [22]. It is a holomorphic function of τ ∈ C′ that coincides with Z52(τ) when m = m′ = 0
and can be expressed bilinearly in terms of H(m)(q) as follows

Z52,m,m′(τ) =(−1)m−m
′+1 e

πi
4

2
q
m
2 q̃

m′
2

(
q

q̃

) 1
8

(81)(
τ h

(m)
2 (τ)h

(m′)
0 (τ−1) + 2h

(m)
1 (τ)h

(m′)
1 (τ−1) +

1

τ
h

(m)
0 (τ)h

(m′)
2 (τ−1)

)
where

h
(m)
j (τ) := (−1)jH

(m)
j (e2πiτ ), (τ ∈ C \R) (82)

for j = 0, 1, 2 and m ∈ Z. It follows that the matrix-valued function

Wm,m′(τ) = (wm′(q̃)
T )−1

τ−1 0 0
0 1 0
0 0 τ

wm(q)T (83)

defined for τ = CrR, has entries given by the descendant state integrals (up to multiplication
by a prefactor of (81)) and hence extends to a holomorphic function of τ ∈ C′ for all integers
m and m′. Using this for m = −1 and m′ = 0 and the orthogonality relation (78), it follows
that we can express the Borel sums of Φ(τ) in a region R in terms of descendant state
integrals and hence, as holomorphic functions of τ ∈ C′ as follows.

5. The matrix-valued cocycle of a knot

In this section we extend the observations of the previous sections to matrix-valued analytic
functions which naturally give rise to a cocycle on on the set of matrix-valued piece-wise
analytic functions on P1(R). What’s more, we conjecture (and in the case of the 41, prove)
that this cocycle, restricted to the rational numbers, exactly agrees with the cocycle of our
previous work [32], which naturally binds the two works together and naturally leads to the
concept of a matrix-valued holomorphic quantum modular form.

5.1. An equivariant state integral. We return to the 41 knot. The factorization of the
state-integral (9) given in Equation (14) in terms of the pair (g0(τ), g1(τ)) motivates us to
consider the following function

Z41(γ; τ) =
i

2
(q̃/q)1/24

(
(cτ + d)−1/2g0(τ)g1(γ(τ))− (cτ + d)1/2g1(τ)g0(γ(τ))

)
(84)
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for an element γ of SL2(Z) and for τ ∈ C r R, where now q̃ denotes e(γτ). A priori, this
function is not defined for any real value of the argument. However, experimentally (by
looking at the asymptotics of the function as we approach real points vertically) we found
the following.

Observation 16. For every γ = ( a bc d ) ∈ SL2(Z), the function Z41(γ; τ) extends to the cut
plane Cγ := Cr {τ | cτ + d ≤ 0}.

To explain and prove this observation, we introduced an SL2(Z)-version of the state-
integral using an SL2(Z)-version of Faddeev’s quantum dilogarithm (where the latter function
corresponds to γ =

(
0 −1
1 0

)
) that satisfies a pentagon identity. The functional properties of

this quantum dilogarithm implies that the corresponding state-integral extends on Cγ, and
its factorization coincides, up to elementary factors, with the function Z41(γ; τ) for the case
of the 41 knot. This is discussed in current joint work with Kashaev [28], where in particular
a proof of the above observation is given.

5.2. A matrix-valued cocycle. The state integral Z41(τ) is just one component of a 2× 2
matrix closely related to the matrix W0,0(τ) defined in Equation (66), and similarly the
equivariant state integral (84), up to elementary factors, becomes just one component of a
2× 2 matrix-valued function

Wγ(τ) = Q(γτ)−1 diag
(
(cτ + d)−1, 1

)
Q(τ) (τ ∈ Cr R) . (85)

Observation 16 now generalizes to the statement that the function Wγ extends holomorphi-
cally from the upper and lower half-planes to Cγ . Its restriction to CrR is a matrix-valued
holomorphic cocycle there, meaning that it satisfies

Wγγ′(τ) = Wγ(γ
′τ)Wγ′(τ) (86)

because the diagonal matrix appearing as the middle factor in (85) is a cocycle, so that
the function γ 7→ Wγ is a “twisted coboundary”. If Wγ extended to the whole plane, then
this cocycle property would automatically extend to the real line by continuity. This doesn’t
quite work since Wγ does not extend to the whole real line, but only to a subset of it, namely
the set of x with cx + d > 0, depending on γ. To solve this problem, we pass from SL2(Z)
to its quotient PSL2(Z) = SL2(Z)/{±1} and define a PSL2(Z)-cocycle γ 7→ WR

γ with values

in the group of piecewise-analytic invertible matrix-valued functions on P1(R) by setting

WR
γ (x) = Wγ(τ)

∣∣
τ=x

for cx+ d > 0, (87)

observing that for any element γ of PSL2(Z) and x ∈ Rr {−d/c} we can lift γ to a unique
element γ ∈ SL2(Z) with cx + d positive. Of course the new cocycle on P1(R) is no longer
a coboundary in any sense. But this is a bonus rather than a defect, since non-trivial
cohomology classes are more interesting than trivial ones.

In the paper [32] we had also found a cocycle on piecewise analytic functions on R with
a completely different definition, in terms of the asymptotics near rational numbers of gen-
eralized Habiro-like functions. The two cocycles turn out to agree, provably for the 41 knot
and conjecturally in general. We discuss this next.
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5.3. The two cocycles agree. We now show that the cocycle (87) and the one from our
prior paper [32] agree for the case of the 41 knot.

We first recall from [32, Sec.7.1] the periodic function J = J (41) on Q defined by

J(x) =

(
J1,1(x) J1,2(x)
J2,1(x) J2,2(x)

)
(88)

where

J1,1(x) =
1

√
c 4
√

3

∑
Zc=ζ6

c∏
j=1

∣∣1 − qjZ
∣∣2j/c

J2,1(x) =
i

√
c 4
√

3

∑
Zc=ζ−1

6

c∏
j=1

∣∣1 − qjZ
∣∣2j/c

J1,2(x) =
1

2
√
c 4
√

3

∑
Zc=ζ6

(
Zq − Z−1q−1

) c∏
j=1

∣∣1 − qjZ
∣∣2j/c

J2,2(x) =
i

2
√
c 4
√

3

∑
Zc=ζ−1

6

(
Zq − Z−1q−1

) c∏
j=1

∣∣1 − qjZ
∣∣2j/c .

(89)

with q = e(x) and c = denom(x) being the denominator of x. (Actually, the periodic function
defined in [32], and denoted there by J = J(41), was a 3× 3 matrix with first column (1 0 0)T

and bottom 2 × 2 piece J , but we will only need this part of it.) The matrix J defines a
cocycle [32, Sec.5]

WHab
γ (x) = J(γx)−1 diag

(
eCλγ(x), e−Cλγ(x)

)
J(x) , (90)

where C is 1/2π times the volume of the figure 8 knot and γ 7→ λγ is the Q-valued cocycle
defined in Equation (24) of [32]

λγ(x) :=
1

den(x)2(x− γ−1(∞))
=

c

s(cr + ds)
= ± c

den(x)den(γx)
. (91)

One of the main discoveries of [32], conjectural in general but proved for the 41 knot, is that
this coboundary extends smoothly from Qr {−d/c} to Rr {−d/c}. (Actually, in [32] only
a somewhat weaker statement was discussed, namely, that the function on Q has a power
series to all orders in x−x0 as the argument x tends to a fixed rational number x0, with the
stronger statement with smoothness, or even real-analyticity, being mentioned there as an
consequence of the results in the current paper.)

The next theorem links the cocycle of our paper [32] with the one of the current paper
and explains the bond between our two papers.

Theorem 17. The cocycles WR and WHab coincide.

Because SL2(Z) is generated by S =
(

0 −1
1 0

)
and T =

(
1 1
0 1

)
, and both of the functions

under consideration are cocycles and are trivial on T , and because both are continuous
on Rr {0}, it is enough to prove the equality

WHab
S (x) = WS(x) for x ∈ Q∗ . (92)
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The proof of this identity, given in Appendix A.3, uses a “factorization” of state integrals
at positive rational points (i.e., a bilinear expression of a vector of functions of τ ∈ Q and
−1/τ) established by Kashaev and the first author [26], similar to the “factorization” of state
integrals when τ ∈ C r R of the first author and Kashaev [27]. These two “factorization”
properties of state integrals, one in the upper-half plane and another in the positive rational
numbers, are separate (in the sense that we do not know how to deduce one from the other)
but closely-related facts.

5.4. Matrix-valued holomorphic quantum modular forms. We believe that the re-
sults we have been describing for the 41 knot will apply to all hyperbolic knots (possibly
with the disclaimers given in the introduction to [32] about the behavior of character vari-
eties of general knots). Some part of the story, the matrix of “descendant” functions and
the factorization formula (81), was carried out for the 52 knot in [22] and described in Sub-
section 4.3, and another part, the asymptotics (analogue of Observation 15) was carried out
for the same knot in [30]. For the (−2, 3, 7)-pretzel knot, only a part of the story, concerning
what should be the upper left-hand of the matrix WS(τ) for this knot, was given in Sub-
section 3.5. We have not done the corresponding calculations for any other knots, but the
expected pattern is clear and will be told here. These examples will also lead to a new notion
of “matrix-valued holomorphic quantum modular forms” which we expect will be of interest
also in areas that are unrelated to quantum topology.

To each hyperbolic knot we are going to assign various r×r matrices, where r is the number
of non-trivial boundary parabolic SL2(C)-representations. (Some of them, and perhaps all,
extend to square matrices of size r+ 1 including also the trivial representation, as discussed
in [32] and [52], but we will not go into this here. These larger matrices were denoted by
boldface letters there and we will use non-boldface names here to distinguish them.) Some
of these will be periodic functions (on either Q or C r R), but with the property that the
corresponding coboundaries lead to the same cocycleWγ with values in the group of invertible
matrices of piecewise analytic functions on P1(R). The periodic functions on Q are either
the generalized Habiro functions J(K)(α) or the related matrices of power series Φ(α) of
the previous paper [32], whereas the matrix-valued functions in C r R are the functions
Q = QK(τ) studied here. They have the following properties and interrelations:

(i) The matrix Q = QK is a holomorphic and periodic in C r R and meromorphic at
infinity, meaning that each of its entries is a power series in some rational power of q = e(τ)
in the upper half-plane and in q−1 in the lower half-plane. We also have “weight” k =
(k1, . . . , kr) ∈ Zr and a representation ρ : SL2(Z)→ GLr(C) which factors through Γ(N) for
some integer N (called the level of the knot) which are compatible in the sense that the map

γ 7→ jγ(τ) := ρ(γ)diag((cτ + d)ki) for γ = ( a bc d )

is a cocycle on SL2(Z). (The representation ρ is a minor technical point that arose in [32] for
the (−2, 3, 7)-pretzel knot but was trivial for both the 41 and 52 knots and can be ignored.)
The key property, which is the one that says that Q is a holomorphic quantum modular
form, is that the matrix-valued function

Wγ(τ) = Q(γτ)−1 jγ(τ)Q(τ) (τ ∈ CrR) (93)



KNOTS AND THEIR RELATED q-SERIES 27

extends holomorphically from CrR to Cγ for each γ ∈ SL2(Z), just as we saw above for the
41 knot. This map automatically satisfies Equation (86), and therefore leads to a PSL2(Z)-
cocycle wR, with values in the ring of invertible piecewise analytic matrix-valued functions
on P1(R), by the same formula (87) as before.

(ii) Secondly, we associate to the knot K a collection α 7→ Φ̂α(h) of matrices, indexed by
numbers α ∈ Q/Z) (or equivalently, by roots of unity), which are the generalized Habiro
invariants whose existence was conjectured, and in some cases extensively checked numeri-
cally, in [32]. The entries of these matrices are completed power series in an formal variable
h, where “completed” means that they belong to ev/hC[[h]] for some v, which in fact will
depend only the column of the matrix in which the entry lies and will be the appropriate

complexified hyperbolic volume. We think of Φa(h) as the value of some formal function Φ̂
at x = α + i~, defined in infinitesimal neighborhoods of all rational points α. The group
PSL2(Z) acts on the space of such formal functions, so that we again get a coboundary

Φ̂(γx)−1Φγ(x), and this turns out to become a smooth function WHab
γ (x) of γ and of a real

variable x ∈ Rr {γ−1(∞))}. (For a more precise statement, see equation (78) of [32].) This
new function is then of course a cocycle, and the conjectural general statement is that it
simply coincides with WR. The relation with what we said for the 41 knot in Subsection 5.3

is that, if we write the completed power series-valued matrix Φ̂a(h) as the product on the

left of a true power series-valued matrix Φa(h) by the diagonal matrix with entries eVj/c
2h

(i = 1, . . . , r, c =denom(α)) and then define J(α) to be the constant term Φα(0) of this ma-
trix, then we have yet another coboundary defined by the obvious analogue of Equation (90).
The latter is now a GLr(C)-valued function on rational numbers, that again extends con-
tinuously to the same smooth cocycle Wγ as before. It is this latter statement that directly
generalizes Theorem 17 above, but the statement that we want to emphasize is that the same
cocycle γ 7→ Wγ trivializes (i.e., becomes a coboundary) in each of three larger spaces than
the space of piecewise real-analytic functions on P1(R) in which it is originally defined. We

can think of each of these trivializations (given by Q, Φ̂ and J) as realizations of the same
object in different spaces, similar to the various realizations of motives in differently defined
cohomology groups.

(iii) Finally, and in some sense quite amazingly, the cocycle W is not only determined by
the completed power series-valued matrix-valued function α 7→ Φα as its coboundary, but
conversely determines this function uniquely by the asymptotic property.

Wγ(X)−1 ∼ Φ̂γ(∞)

( 2πi

c(cX + d)

)
. (94)

The matrices we have been discussing have a number of further interesting properties,
some of which we list in no particular order.

Orthogonality. There exists a matrix B ∈ GLr(C) such that

Q(−τ)tBQ(τ) = I . (95)

q-holonomicity. This property was discussed for the Habiro-like matrix invariants in [32],
while its q-series analogue, of which Equation (60) is a special case, was the starting point
of [29].
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Unimodularity. In the cases that we have looked at, all of the matrices we have been
discussing were unimodular. We do not know whether to expect this property in general.

Bilinearity. Property (95) implies that W can be expressed bilinearly in terms of the
entries of Q by

Wγ(τ) = (Q|εγε)t(ετ)BQ(τ) (96)

where ε =

(
−1 0
0 1

)
.

Taylor series. The cocycle property of Wγ allows one to compute the Taylor series
expansion of the smooth function Wγ at every rational point and express them bilinearly in

terms of the matrix Φ̂ as was done in [32, Prop. 5.2].

6. Final remarks

In this paper we discussed the properties of a 2 by 2 matrix Q of periodic functions on
CrR associated to the 41 knot (see equation (69)). On the other hand, in our companion
paper [32], we constructed a 3 by 3 matrix Q+ of periodic functions on Q (see equation (88)).
Wheeler [52] has found an extension of our 2 by 2 matrix Q (with one boring column (1, 0, 0)t

and one interesting row) using the ε-deformation series (11).
Another aspect of the matrix Q of q-series associated to a knot appears to be in connection

to the resurgence, i.e., analytic continuation, of the the factorially divergent series Φ̂(h) in
the complex Borel plane. In fact the matrix Q appears to completely describe this problem
of analytic continuation as found by the first author and Gu and Mariño [22, 23]. The
so-called Stokes constants of the analytic continuation problem are integers, multiplied by
integer powers of q̃ = e−2πi/τ that assemble into power series with integer coefficients which
are none other than the matrix Q(−1/τ). This approach to resurgence of asymptotic series
is similar to the one proposed abstractly by Kontsevich-Soibelman [45, 44, 43, 46, 47].

It is clear from the data that is used to define a state integral that the proposed holomor-
phic quantum modular forms are not only associated to knots, but more generally to suitable
half-symplectic matrices introduced in [32], or alternatively to combinatorial gadgets often
called K2 Lagrangians.

The proposed quantum holomorphic modular forms that appear here presumably corre-

spond to the partition functions Z(h) and Ẑ(q) predicted by the ongoing program of Gukov
and collaborators [37, 36, 35, 16] for general 3-manifolds.

In the present paper we do not study the dependence of the invariants on Jacobi variables,
but postpone this for a later study. An example of such invariants with the Jacobi variable
corresponding to the holonomy of the meridian of a knot complement was given in [23].

Appendix A. Complements and proofs

In this appendix we provide proofs of some of the observations, in particular regarding the
41 knot, that were made in Section 2 and Section 3.



KNOTS AND THEIR RELATED q-SERIES 29

A.1. q-series identities. We begin by giving the proof of the two identities of Equation (8),
as communicated to us by Sander Zwegers. We will use the identity (145) and

1

(q)m(q)n
=

∑
r,s,t≥0

r+s=m,s+t=n

qrt

(q)r(q)s(q)t
(97)

which may be found for instance in [53], where we abbreviate (q)n = (q; q)n. If we sum over
m using (145) we find∑
m,n≥0

(−1)m+n q
1
2
m2+mn+ 1

2
n2+ 1

2
m+ 1

2
n

(q)m(q)n
=
∑
n≥0

(−1)n
q

1
2
n2+ 1

2
n

(q)n
(qn+1)∞ = (q; q)∞

∑
n≥0

(−1)n
q

1
2
n2+ 1

2
n

(q)2
n

.

Equation (97) with m = n gives

1

(q)2
n

=
∑
r,s,t≥0

r+s=n,s+t=n

qrt

(q)r(q)s(q)t
=
∑
r,s≥0
r+s=n

qr
2

(q)2
r(q)s

,

and so ∑
m,n≥0

(−1)m+n q
1
2
m2+mn+ 1

2
n2+ 1

2
m+ 1

2
n

(q)m(q)n
= (q; q)∞

∑
n≥0

(−1)nq
1
2
n2+ 1

2
n
∑
r,s≥0
r+s=n

qr
2

(q)2
r(q)s

which we can also write as

(q; q)∞
∑
r,s≥0

(−1)r+s
q

3
2
r2+rs+ 1

2
s2+ 1

2
r+ 1

2
s

(q)2
r(q)s

.

Summing over s and using (145) with x = qr we get that this equals to

(q; q)∞
∑
r≥0

(−1)r
q

3
2
r2+ 1

2
r

(q)2
r

(qr+1)∞ = (q; q)2
∞

∑
r≥0

(−1)r
q

3
2
r2+ 1

2
r

(q)3
r

.

This concludes the proof of (8). �

A.2. Asymptotics at roots of unity. For the comparison of the results of this paper and
those of [32], we need to understand the asymptotics of our q-series near roots of unity. This
is not the main theme of the paper and we will not go into detail, but as an indication of
the method we prove Observation 1 giving the asymptotics (to all orders) of the two q-series
G0(q) and G1(q) associated to the 41 knot at q = 1. For this purpose we will use the formula
for G0(q) given in the second part of equation (8).

To find the asymptotics of G0(q), we use the “Meinardus trick” as explained on pp. 54–55
of [53]. This would work using either identity in equation (8), but since the first would lead
to a double rather than a single integral, we use only the second one. From the second
representation of G0(q) in equation (8) and the standard expansion

1

(x; q)∞
:=

∞∏
i=0

1

1 − qix
=

∞∑
n=0

xn

(q; q)n
(q, x ∈ C, |q| < 1)

we get the integral representation
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(q; q)∞G0(q) = c.t.

(
Θq(x)

(x; q)2
∞

)
=

∫
iε+R/Z

Θq(e(u))

(e(u); q)2
∞
du (98)

where ε > 0 is a small and positive, “c.t.” means “constant term” with respect to x, and
Θq(x) is defined by

Θq(x) =
∞∑

n=−∞

(−1)n q(
n+1
2 ) x−n (q, x ∈ C, |q| < 1) . (99)

From the transformation law θ(τ, u) =
√
i/τ e(−u2/iτ)θ(−1/τ, u/τ) of the Jacobi theta

function θ(τ, u) = e(τ/8 + u/2)Θq(e(u)) we get

Θq(e(u)) =

√
i

τ

∑
λ∈u− 1+τ

2
+Z

e
(λ2τ̃

2

)
(q = e(τ), τ̃ = −1/τ) .

Inserting this into the integral representations of G0(q) and unfolding in the usual way gives√
τ

i
G0(q) =

1

(q; q)∞

∫
iε+R

e( τ̃
2
(u− 1+τ

2
)2)

(e(u); q)2
∞

du .

We now apply the method of stationary phase to this integral, deforming the path of in-
tegration to pass through a point where the derivative of the integrand vanishes and then
expanding as a Gaussian integral around this point to get the desired asymptotic expansion.
We use the standard (and easy) expansion

1

(x; e−h)∞
= exp

(Li2(x)

h
+

1

2
log
( 1

1− x

)
+

x

1− x
h

12
+ O(h2)

)
(h→ 0),

where Li2(x) is the dilogarithm function, to find that the logarithm of the integrand has an
asymptotic expansion of the form

∑∞
n=−1 An(u)hn, where

A−1(u) = −2π2(u− 1

2
)2 + 2 Li2(e(u)) .

The function A−1(u) has two local maxima at u = 1
2
± 1

3
. A careful analysis of each of the

local maxima, whose details we omit, reproduces each of the two terms in the asymptotic
expansion (7). A similar analysis can be done for the asymptotics of the series G1(q) at
q = 1 using Equation (19). All of this was sketched for q = 1 (q = e−h, h ↘ 0), however it
can be extended to the case of q = ζe−h following ideas similar to those discussed in [33].
Finally, we mention that in principle the formulas we have given for 52 would allow us to
compute the asymptotics for this case too, but we have not done this.

A.3. The two matrix-valued cocycles for the 41 knot agree. In this section we give
the proof of Theorem 17. Let us begin by explaining the choice of matrix Q(q) of q-series
for the 41 knot given in Equation (69), using the matrix-valued function J on the rational
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numbers from [32, Eqn.(95)] whose first row is 1, J0(x) and 1
2
(qJ1(q) − q−1J−1(q)) when

q = e(x) where

Jm(q) =
∞∑
n=0

(q; q)n(q−1; q−1)nq
mn (100)

is a sequence of elements of the Habiro ring for integers m that satisfies the linear q-difference
equation

Jm+1(q)− (2− qm)Jm(q) + Jm−1(q) = 1, (m ∈ Z) . (101)

It follows that the first row of J is a basis for the Q[q±]-module spanned by {Jm(q) | m ∈ Z}.
The recursion (101) is an inhomogeneous analogue of (60) and the first row of J above
explains the choice for the second column of the matrix (69).

Observe next that the elements of the matrix J given in (89) can be written in the form

J1,1(x) =
1√
c
√
−3

∑
Zc=ζ6

Dq(Z)Dq−1(Z−1),

J2,1(x) =
1√
c
√
−3

i
∑

Zc=ζ−1
6

Dq(Z)Dq−1(Z−1),

J1,2(x) =
1

2
√
c
√
−3

∑
Zc=ζ6

(qn+1 − q−n−1)Dq(Z)Dq−1(Z−1),

J2,2(x) =
1

2
√
c
√
−3

i
∑

Zc=ζ−1
6

(qn+1 − q−n−1)Dq(Z)Dq−1(Z−1),

(102)

where c = den(x) and q = e(x) where Dζ(x) is the renormalized version of the cyclic quantum
dilogarithm Dζ(x) given by

Dζ(x) = e−1/2s(a,c)Dζ(x), Dζ(x) = e−1/2s(a,c) exp
( c−1∑
j=1

j

c
log(1− ζjx)

)
(103)

when ζ = e(a/c), where s(a, c) is the Dedekind sum [49] and where the logarithm is the
principal one away from the cut at the negative real axis and equals to the average one on
the cut. The cyclic quantum dilogarithm appears in the expansion of Faddeev’s quantum
dilogarithm at roots of unity (see for example [42, 26]) and plays a key role in the definition
of the near units associated to elements of the Bloch group [8].

With the notation of Section 5.3, The 2× 2 matrix J from (89) has determinant 1, hence

its inverse is given by J−1 =
( J2,2 −J1,2
−J2,1 J1,1

)
. Since λS(α) = 1

den(α)num(α)
[32, Sec.3.1] (where

num(α) and den(α) > 0 denote the numerator and the denominator of a rational number),
it follows that when γ = S, the cocycle (90) is given by

WHab
S (α) =

(
J2,2(−1/α) −J1,2(−1/α)
−J2,1(−1/α) J1,1(−1/α)

)e C
den(α)num(α) 0

0 e
− C

den(α)num(α)

(J1,1(α) J1,2(α)
J2,1(α) J2,2(α)

)
(104)
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for α a positive rational number and C = V/(2π) = 0.32 · · · with V as in (4), On the
other hand, the 2× 2 matrix Q(τ) of Equation (69) has determinant 1, and when γ = S, the
cocycle WR

S of Equation (87) is given by

WR

S (τ) =

(
Q2,2(−1/τ) −Q1,2(−1/τ)
−Q2,1(−1/τ) Q1,1(−1/τ)

)(
τ−1 0
0 1

)(
Q1,1(τ) Q1,2(τ)
Q2,1(α) Q2,2(τ)

)
. (105)

This and the factorization (14) of the state-integral implies that WR

S (τ)σ2,σ1 equals to the
state-integral Z41(τ), up to multiplication by elementary factors that involve a (q/q̃)1/24, a
root of unity, a rational number and a square root of τ .

To identify the two cocycles (104) and (105), we use a “factorization” property of state
integrals at positive rational points (i.e., a bilinear expression of a vector of functions of
τ ∈ Q and −1/τ) of the first author and Kashaev [26], similar to the “factorization” of
state integrals when τ ∈ CrR of the first author and Kashaev [27]. These two factorization
properties of the state-integral are related, but we not know how to deduce one from the other.
Note also that Theorem 1.1 of [26] proves the needed factorization for all 1-dimensional state
integrals at positive rational numbers, and this covers the case of all three knots (namely,
the 41, 52 and (−2, 3, 7) pretzel knots) and all of their descendant state-integrals of interest
to us.

We need to show that for all positive rational numbers α, we have:

WS(α) = WHab
S (−α) . (106)

We will focus on the equality of the (σ2, σ1) entries in the above equality, in which case

WS(α)
·

= Z41(α), where
·

= means equality up to elementary factors. The proof also
matches those elementary factors, and moreover works for the remaining three entries of the
above equation, since they are all given by descendant state-integrals.

We write α = M/N with M and N fixed coprime positive integers, and let C = V/(2π),
where V = 2.02... is the volume of the 41 knot. In Theorem 1.1 of [26] it was shown that

Z41(M/N) =ζ
5−6N+3(M+N+1)2

24MN × (107)(
e−

C
MN ζ−1

MNPM/N(z+, θ
+
N , θ

+
M)GM,N(θ+

N , θ
+
M)

− e
C
MN ζMNPM/N(z−, θ

−
N , θ

−
M)GM,N(θ−N , θ

−
M)
)

where

z+ = e(1/6) θ+
N = e(1/(6N)) θ+

M = e(1/(6M))

z− = e(5/6) θ−N = e(5/(6N)) θ−M = e(5/(6M)) ,
(108)

Dζ(x) =
∏c−1

k=1(1− ζkx)k/c where ζ is a c-th root of unity, ζN = e(1/N),

PM/N(z+, θ
+
N , θ

+
M) =

1√
−3

(1− z+)2+1/M+1/N+1/(2MN)

(1− θ+
N)2(1− θ+

M)2DζMN
(θ+
N)2DζNM

(θ+
M)2

(109)
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and

GM,N(θ+
N , θ

+
M) =

1√
MN

MN−1∑
k=0

1

(ζMN θ
+
N ; ζMN )Pk(ζ

−M
N (θ+

N)−1; ζ−MN )Pk
× (110)

1

(ζNMθ
+
M ; ζNM)Qk(ζ

−N
M (θ+

M)−1; ζ−NM )Qk
(111)

and P and Q are integers with MP +NQ = 1 (GM,N is independent of the choice of P and
Q). Likewise, we can define PM/N(z+, θ

+
N , θ

+
M) and GM,N(θ−N , θ

−
M). Define

Sσ1(α) =
1√

N
√
−3

1

|Dζα(θ+
N)|2

N−1∑
k=1

1

|(ζαθ+
N ; ζα)|2

Sσ2(α) =
1√

N
√
−3

1

|Dζα(θ−N)|2
N−1∑
k=1

1

|(ζαθ−N ; ζα)|2

(112)

where N is the denominator of α and λ(x) is the tweaking function from Section 3.1 of [32].
Moving the quantum factorials from the denominator to the numerator and using Equa-
tion (102), it follows that

Sσ1(α) = eλ(α)CJ1,1(α), Sσ2(α) = e−λ(α)CJ2,1(α) . (113)

Lemma 18. Up to a prefactor, for every α ∈ Q with α > 0, we have:

Z41(α) = e−C/(MN)J1,1(−1/α)J2,1(α)− eC/(MN)J1,1(α)J2,1(−α−1) . (114)

Proof. Let α = M/N with M,N coprime positive integers as before. As was observed in [26],
when M = 1 we can choose P = 1 and Q = 0 and then P1/N and G1,N are independent of
θ+
M and given by

P1/N(z+, θ
+
N) =

1√
−3

(1− z+)1+3/(2N)

(1− θ+
N)2DζN (θ+

N)2
(115)

and

G1,N(θ+
N) =

1√
N

N−1∑
k=0

1

(ζNθ
+
N ; ζN)k(ζ

−1
N (θ+

N)−1; ζ−1
N )k

. (116)

Now, the proof of [26, Lem.2.2] implies the following factorization of GM,N

GM,N(θ+
N , θ

+
M) = G1,N(θ+

N)GM,1(θ+
M) (117)

which was unfortunately not stated explicitly in [26]. The key observation, using the notation
of [26, Lem.2.2], is that in the context of [26, Thm.1.1], we have g+

N(x; q+) = g−N(y; q−) =
(−x)A(1 − x)B = 1, which implies that g+

k+N(x+; q+) = g+
k (x+; q+) and g−k+N(x−; q−) =

g−k (x−; q−). This, together with Equation (107) and the fact that the tweaking function λ
satisfies λ(x) − λ(−1/x) = 1/(den(x)num(x)) (where num(x) and den(x) > 0 denotes the
numerator and denominator of a rational number) concludes the proof of the lemma. �

On the other hand, Equation (104) implies that

WHab
S (α)σ2,σ1 = e−C/(MN)J1,1(−1/α)J2,1(α)− eC/(MN)J1,1(α)J2,1(−α−1) . (118)
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This and the previous lemma completes the proof of the (σ2, σ1)-entry of (106). �
We may say that equations (118) and (114) syntactically agree.
More generally, in [26] the evaluation of the 1-dimensional state integrals

ZA,B(τ) =

∫
R+iε

Φb(x)Be−Aπix
2

dx (τ = b2 ∈ C′) (119)

at rational points was given, where A and B are integers with B > A > 0. Following the
notation of [26, Sec.1.3] fix a pair of coprime positive integers M and N and define

b =
√
M/N, s =

√
MN (120)

and

g(z) = (−z)A(1− z)−B ∈ Q[z±1] (121)

and

S = {w | g(e2πsw) = 1, 0 < s Im(w)− λ < 1}, (122)

where λ is a generic real number such that

− (M +N)/2 < λ < 0 . (123)

Note that if w ∈ S, then e2πsw is an algebraic number with a fixed choice of N and M -th
roots. For α = M/N and w ∈ S define

Sw(α) =
(1− z)

B
2N

+λ(α)B
4√

Nzg′(z)

e−
λ(α)B
2πi

R(z)

Dζα(θ+)B

∑
k mod N

(−θ+)Ak
ζ
A
2
k(k+1)

α

(ζαθ+; ζa)Bk
(124)

where R(z) is the Rogers dilogarithm, and let S(α) = (Sw(α))w∈S and Sop(α) = (Sw(α))w∈S .
Then, using the factorization (117), Theorem 1.1 of [26] takes the form

ZA,B(α) = pαS
op(−α)tS(α−1) = pα

∑
w∈S

Sw(−α)Sw(α−1) (125)

where pα = e((B + 3A(M +N + 1)2 − 6MN)/(24MN)).

A.4. The six q-series for the 52 knot. The six q-series of the 52 knot are given by q-
hypergeometric sums and their ε-deformations (see (38)), and this allows for an efficient
recursive computation of their coefficients similar to the one for the 41 knot given in (15).
Explicitly, the six q-series are given by

H+
j (q) =

∞∑
m=0

tm(q) p(j)
m (q) , H−j (q) =

∞∑
m=0

Tm(q)P (j)
m (q) (j = 0, 1, 2) (126)

with

tm(q) =
qm(m+1)

(q; q)3
m

, Tm(q) =
(−1)mqm(m+1)/2

(q; q) 3
m

, (127)
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and

p(0)
m (q) = 1 , p(1)

m (q) =
1 + 3E1(q)

4
+

m∑
j=1

2 + qj

1− qj
, p(2)

m (q) = p(1)
m (q)2 − 3 + E2(q)

24
+

m∑
j=1

3qj

(1− qj)2
,

P (0)
m (q) = 1 , P (1)

m (q) =
3E1(q)− 1

4
+

m∑
j=1

1 + 2qj

1− qj
, P (2)

m (q) = P (1)
m (q)2 − E2(q)− 3

24
+

m∑
j=1

3qj

(1− qj)2
.

Here E1(q) and E2(q) are the weight 1 and weight 2 Eisenstein series defined by (13) and

E2(q) = 1−24
∑

n≥1
qn

(1−qn)2
, respectively. Since each of tm, Tm, p

(j)
m and P

(j)
m can be obtained

from its predecessor in just O(1) operations, we can use the formulas (126) to compute a
several thousand coefficients of H±j efficiently.

Remark 19. Our notation (p
(0)
m , p

(1)
m , p

(2)
m ), (P

(0)
m , P

(1)
m , P

(2)
m ), (H+

0 , H
+
1 , H

+
2 ) and (H−0 , H

−
1 , H

−
2 )

coincide with the quantities denoted (p3,m, p2,m, p1,m), (P1,m,
1
2
P2,m,−P3,m), (g3, g2, g1+ 1

6
E2g3)

and (G1,
1
2
G2,−G3− 1

6
E2G1) of Sec.1.4 of [27]. Our formula (36) matches with Cor. 1.8 of [27]

using the above translation of notation combined with the quasi-modularity property

E2(τ̃) = τ 2E2(τ)− 6iτ

π
(128)

of E2(τ) := E2(e2πiτ ) (see Proposition 6 of [7]). Note also that if we define the functions
E1(q) and E2(q) for |q| > 1 by Ek(q) = −Ek(q−1) (k = 1, 2), then Tm(q) = tm(q−1) and

P
(j)
m (q) = (−1)jp

(j)
m (q−1). It follows that both of the above q-hypergeometric formulas are

convergent for |q| 6= 1 and that they are related by

H−j (q) = (−1)jH+
j (q−1) (j = 0, 1, 2) . (129)

A.5. ε-deformation and the factorization of the state integral. In this section we
comment further between a connection of the factorization proof of state integrals taken
from [27] and the ε-deformations of difference/differential equations. Whereas only finitely
many q-series appear in the factorization of a state integral (via the residue theorem), their
ε-deformation leads to a sequence of q-series that contains further information, as Wheeler
has recently found out [52]. Consider the one-dimensional state integral

ΨA,A+Ã(τ) =

∫
R+iε

Φ√τ (x)A+Ã e−Aπix
2

dx (z ∈ C′) (130)

from [27] (which was denoted IA,A+Ã(
√
z) in ibid) for positive integers A, Ã > 0. Let us

briefly recall its factorization following [27] and their notation. Since A, Ã > 0, it follows
that the integral is absolutely convergent. The idea (when τ = b1/2 is in the upper half-plane)
is to move the contour of integration upwards, and collect the residues from the poles of the
integrand. The quantum dilogarithm is a meromorphic function of x with poles given by

xm,n = cb + ibm+ ib−1n = ib
(
m+

1

2

)
+ ib−1

(
n+

1

2

)
m,n ∈ N . (131)
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The quasi-periodicity of Φb(x)

Φb(x+ cb + ib)

Φb(x+ cb)
=

1

1− qe2πbx

Φb(x+ cb + ib−1)

Φb(x+ cb)
=

1

1− q̃−1e2πb−1x
= − q̃e−2πb−1x

1− q̃e−2πb−1x

implies that

Φb(x+ xm,n) = Φb(x+ cb)
1

(qe2πbx; q)m

(−1)nq̃
n(n+1)

2 e−2πb−1xn

(q̃e−2πb−1x; q̃)n

= Φb(x+ cb)
1

(qeε; q)m

(−1)nq̃
n(n+1)

2 eε̃n

(q̃eε̃; q̃)n
, (132)

where q = e2πib2 , q̃ = e−2πib−2
, ε = 2πbx and ε̃ = −2πb−1x. Moreover, the formula Φb(x) =

(e2πb(x+cb); q)∞/(e
2πb−1(x−cb); q̃)∞ implies that

Φb(x+ cb) =
1

1− e2πb−1x

(qe2πbx; q)∞
(q̃e2πb−1x; q̃)∞

=
1

1− e−ε̃
(qeε; q)∞

(q̃e−ε̃; q̃)∞
. (133)

Combining, we find a product that decouples

Φb(x+ xm,n) =
(qeε; q)∞

(q̃e−ε̃; q̃)∞

1

eε̃/2 − e−ε̃/2
(−1)nq̃

n(n+1)
2 e(n+ 1

2
)ε̃

(qeε; q)m(q̃eε̃; q̃)n
(134)

and an exponential that also decouples

e−πi(x+xm,n)2 = e
πi
2

(
q

q̃

) 1
8

q
m(m+1)

2 q̃−
n(n+1)

2 (−1)m+nei
εε̃
4π

+ε(m+ 1
2

)−ε̃(n+ 1
2

) . (135)

A similar computation works when Im(τ) < 0, and the result is the following.

Theorem. ([27]) For τ ∈ CrR, we have:

ΨA,A+Ã(τ) = 2πie
πiA
2

(
q

q̃

)A
8

(136)

· Resx=0

(
FA,Ã(q, ε)FÃ,A(q̃, ε̃)eiA

εε̃
4π

(qeε; q)A+Ã
∞

(q̃e−ε̃; q̃)A+Ã
∞

1

(eε̃/2 − e−ε̃/2)A+Ã

)
where

FA,Ã(q, ε) =
∞∑
m=0

(−1)Am
qA

m(m+1)
2 eAε(m+ 1

2
)

(qeε; q)A+Ã
m

. (137)

We can think of FA,Ã(q, ε) as a function of a Jacobi variable ε, or as a power series in ε

with coefficients rational functions in q that can be computed by expanding (qeε; q)m as a
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power series in ε. To do so, recall the q-series E (m)
` (q)

E (m)
` (q) =

∞∑
s=1

s`−1 q
s(m+1)

1− qs
=

∑
s≥1, n>m

s`−1qsn =
∑
s≥1

σ
(m)
`−1q

s, σ
(m)
`−1 =

∑
d|s, s/d>m

d`−1 .

(138)
from [27, Eqn.(29)]. The next lemma is contained in [27, Prop.2.2]. For completeness, we
state it and prove it here.

Lemma 20. We have:

1

(qeε; q)m
=

1

(q; q)m
· (q; q)∞

(qeε; q)∞
· exp

(
−
∞∑
`=1

E (m)
` (q)

ε`

`!

)
. (139)

Proof. Using (qx; q)∞ = (qx; q)∞/(q
m+1x; q)∞, it follows that

1

(qeε; q)m
=

1

(q; q)m

(q; q)m
(qeε; q)m

=
1

(q; q)m
· (q; q)∞

(qeε; q)∞
· (qm+1eε; q)∞

(qeε; q)∞
.

Finally,

(qm+1eε; q)∞
(qeε; q)∞

=
∏
n>m

1− qneε

1− qn

which implies that

log

(
(qm+1eε; q)∞

(qeε; q)∞

)
=
∑
n>m

∑
j≥1

1

j
qnj(1− ejε) = −

∞∑
`=1

ε`

`!

∑
j>0

j`−1
∑
n>m

qnj .

The result follows by summing the geometric series in n > m. �

Using the above method, we can sketch a proof of Proposition 12 which expresses the state
integral of the (−2, 3, 7) pretzel knot as a sum of products of q-series and q̃-series.

A.6. The twelve q-series for the (−2, 3, 7) pretzel knot. In this whole section, let

f(x) = Φb(x)2Φb(2x− cb) e−πi(2x−cb)
2

denote the integrand of (51), which is a meromorphic function with poles at xm/2,n/2 for
natural numbers m,n ∈ N. These poles are of third order when m and n are even and of
first order otherwise. First, we compute the contribution from the third order poles xm,n.
Using 2xm,n− cb = x2m,2n and (134) and (135) and the modularity transformation of the eta
function

(q; q)∞
(q̃; q̃)∞

= e
πi
4

(
q̃

q

) 1
24

b−1 (140)

it follows that

f(x+ xm,n) = e−πi(2x+x2m,2n)2Φb(x+ xm,n)2Φb(2x+ x2m,2n)

= e
5πi
4

ei
εε̃
π

b3(1− e−ε̃)2(1− e−2ε̃)
F (q, ε)F̃ (q̃, ε̃)
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and

F (q, ε) =
(qeε; q)2

∞(qe2ε; q)∞
(q; q)3

∞

∞∑
m=0

qm(2m+1)eε(4m+1)

(qeε; q)2
m(qe2ε; q)2m

F̃ (q, ε) =
(q; q)3

∞
(qe−ε; q)2

∞(qe−2ε; q)∞

∞∑
n=0

qn(n+1)eε(2n−1)

(qeε; q)2
n(qe2ε; q)2n

.

It follows that the third order poles contribute

2πie
5πi
4 Resx=0

(
ei
εε̃
π

b3(1− e−ε̃)2(1− e−2ε̃)
F (q, ε)F̃ (q̃, ε̃)

)
.

to the state integral. Expanding out, it follows that the contribution to the state integral is
given by

e
−πi
4

(
∗τ H+

0 (q)H−2 (q̃) + ∗H+
1 (q)H−1 (q̃) +

∗
τ
H+

2 (q)H−0 (q̃) +
∗

2πi
H+

0 (q)H−0 (q̃)
)

where ∗ are easily computable rational numbers.
Next, we compute the contribution from the first order poles. Recall that

f(x+ xm/2,n/2) = e−πi(2x+xm,n)2Φb(x+ xm/2,n/2)2Φb(2x+ xm,n)

When (m,n) are not both even, e−πi(2x+xm,n)2Φb(x + xm/2,n/2)2 is regular at x = 0 and
Φb(2x+xm,n) has a first order pole at x = 0. Note that x(2m+m′)/2,(2n+n′)/2 = xm,n+ im′b/2+
in′b−1/2 for (m′, n′) = (1, 0), (0, 1) and (1, 1). Equations (132) and (133) together with the
replacement of x by im′b/2 + in′b−1/2 imply that when (m′, n′) = (1, 0), we have

e−πi(x(2m+1)/2,2n/2)2Φb(x(2m+m′)/2,(2n+n′)/2)2 = −e
πi
2

(
q

q̃

) 1
8

q(2m+1)(m+1) (q3/2; q)2
∞

(q3/2; q)2
m

q̃−n
2

(−1; q̃)2
∞(−q̃; q̃)2

n

and

Resx=0Φb(2x+ x2m+1,2n) = ∗e
3πi
4

(
q̃

q

) 1
24 q̃n(2n+1)

(q; q)2m+1(q̃; q̃)2n

where ∗ is a constant independent of b. Likewise, we can treat the case of (m′, n′) = (0, 1)
and (1, 1). With the definition of the six q-series (inside and outside the unit circle) given
below, and whose first few terms are given in (53), the above computation concludes the
proof of proposition 12. �

The series H+
k (q) and H−k (q) for |q| < 1 and k = 0, 1, 2 are defined, respectively, by

(qeε; q)2∞(qe2ε; q)∞

(q; q)3∞

∞∑
m=0

qm(2m+1)eε(4m+1)

(qeε; q)2m(qe2ε; q)2m
= H+

0 (q) + εH+
1 (q) +

ε2

2

(
H+

2 (q) +
1

3
E2(q)H+

0 (q)
)

+O(ε)3

(q; q)3∞
(qe−ε; q)2∞(qe−2ε; q)∞

∞∑
n=0

qn(n+1)eε(2n+1)

(qeε; q)2n(qe2ε; q)2n
= H−0 (q) + εH−1 (q) +

ε2

2

(
H−2 (q) + (

1

2
−

1

3
E2(q))H−0 (q)

)
+O(ε)3 ,

(141)

where

H+
j (q) =

∞∑
m=0

tm(q) p(j)
m (q) , H−j (q) =

∞∑
m=0

Tm(q)P (j)
m (q) (j = 0, 1, 2)
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with

tm(q) =
qm(2m+1)

(q; q)2
m(q; q)2m

, Tn(q) =
qn(n+1)

(q; q)2
n(q; q)2n

, (142)

(not to be confused with (127)) and

p
(0)
m (q) = 1 , p

(1)
m (q) = 4m+ 1− 2E

(m)
1 (q)− 2E(2m)

1 (q) , p
(2)
m (q) = p

(1)
m (q)2 − 2E(m)

2 (q)− 4E(2m)
2 (q)−

1

3
E2(q) ,

P
(0)
n (q) = 1 , P

(1)
n (q) = 2n+ 1− 2E(n)1 (q)− 2E(2n)1 (q) , P

(2)
n (q) = P

(1)
n (q)2 + 12E(0)2 −

1

2
− 2E(n)2 (q)− 4E(2n)2 (q) +

1

3
E2(q) .

The remaining series H+
k (q) and H−k (q) for |q| < 1 and k = 4, 5, 6 are defined, respectively,

by

H+
3 (q) =

(q3/2; q)2∞
(q; q)2∞

∞∑
m=0

q(2m+1)(m+1)

(q3/2; q)2m(q; q)2m+1
H−4 (q) =

(q; q)2∞
(−1; q)2∞

∞∑
n=0

qn(n+1)

(−q; q)2n(q; q)2n

H+
4 (q) =

(−q; q)2∞
(q; q)2∞

∞∑
m=0

q(2m+1)m

(−q; q)2m(q; q)2m
H−3 (q) =

(q; q)2∞
(q−1/2; q)2∞

∞∑
n=0

qn(n+2)

(q3/2; q)2n(q; q)2n+1

H+
5 (q) =

(−q3/2; q)2∞
(q; q)2∞

∞∑
m=0

q(2m+1)(m+1)

(−q3/2; q)2m(q; q)2m+1
H−5 (q) =

(q; q)2∞
(−q−1/2; q)2∞

∞∑
n=0

qn(n+2)

(−q3/2; q)2n(q; q)2n+1

(143)

Note that the above q-hypergeometric series are convergent for |q| 6= 1 and satisfy the
symmetries

H+
0 (q−1) = H−0 (q) H+

1 (q−1) = −H−1 (q) H+
2 (q−1) = H−2 (q)

H+
3 (q−1) = −H−4 (q) H+

4 (q−1) = H−4 (q) H+
5 (q−1) = −H−5 (q) .

(144)

Remark 21. Despite appearances, H+
0 (q)(q; q)2

∞ (as well as H−0 (q)(q; q)2
∞ as the other 10

q-series) is a rank 3 Nahm sum. Indeed, use

(q; q)2
∞Tm(q) =

qm(2m+1)

(q; q)m
(qm+1; q)∞(q2m+1; q)∞

together with the identity

(qx; q)∞ =
∞∑
k=0

(−1)k
q
k(k+1)

2 xk

(q; q)k
(145)

to obtain that

(q; q)2
∞H

+
0 (q) =

∑
k,l,m

(−1)k+l q
1
2

(k2+l2+4m2+2km+4lm)+ 1
2

(k+l+2m)

(q; q)k(q; q)l(q; q)m
.
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