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Abstract. We construct knot invariants from solutions to the Yang–Baxter equation as-
sociated to appropriately generalized left/right Yetter–Drinfel’d modules over a braided
Hopf algebra with an automorphism. When applied to Nichols algebras, our method repro-
duces known knot polynomials and naturally produces multivariable polynomial invariants
of knots. We discuss in detail Nichols algebras of rank 1 and an example of rank 2. In the
latter case, we compute the associated invariants for selected knots and pose some questions
about their structure.
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1. Introduction

Jones’s discovery of his famous polynomial of knots had an enormous influence in knot
theory and connected the subject of low dimensional topology and hyperbolic geometry to
mathematical physics, giving rise to quantum topology [Jon87, Thu77, Wit89].

The Jones polynomial was originally defined by thinking of a knot as the closure of a
braid, and by taking the (suitably normalized) trace of representations of the braid groups
(with an arbitrary number of strands), which themselves were determined by a vector space
V and an automorphism R ∈ Aut(V ⊗ V ) that satisfies the Yang–Baxter equation

R1R2R1 = R2R1R2 ∈ End(V ⊗ V ⊗ V ) , (1)

where R1 = R⊗ I, R2 = I ⊗R.
It was soon realized that representations of simple Lie algebras and their deformations,

known as quantum groups, were a natural source of solutions to the Yang–Baxter equations.
This led to a plethora of polynomial invariants of knots; see for example Turaev [Tur88,
RT90].

Another source of polynomial invariants (one for every complex root of unity) came from
the work of Akutsu–Deguchi–Ohtsuki [ADO92]. It was conjectured by Habiro [Hab08,
Conj.7.4] and later shown by Willets in [Wil22] that the collection of the colored Jones
polynomials of a knot (colored by the irreducible representations of sl2) determines and is
determined by the collection of ADO invariants at roots of unity.

The definition of the above invariants requires an R-matrix together with a (ribbon)
enhancement of it which, roughly speaking, is an endomorphism of V required to define
the quantum trace, and hence the knot invariant. This comes from the Reshetikhin–Turaev
functor which forms the basis of knot/link invariants in arbitrary 3-manifolds [RT90].

An R-matrix alone is in principle sufficient to define knot invariants. This was clarified
by the second author by constructing invariants of knots from an R-matrix that satisfies
some non-degeneracy conditions, called rigidity in [Kas21]. Rigid R-matrices indeed allow
one to define state-sum invariants of planar projections of knots without any extra data. A
description of how these invariants are defined is given in Section 2 below.

One can construct rigidR-matrices from any Hopf algebra with invertible antipode through
Drinfel’d’s quantum double construction which can be put into pure algebraic setting of
multilinear algebra without finiteness assumptions of the Hopf algebra [Kas23].

In this paper, we propose a different approach of producing rigid R-matrices that does not
use the quantum double of a Hopf algebra. The construction of these R-matrices, and the
corresponding knot invariants, is schematically summarized in the following steps:{

Braided
Hopf algebras
with autos

}
→

{
Braided

left/right YD modules
with automorphisms

}
→ {R-matrices} → {Knot invariants} (2)

The last arrow in (2) is the well-known Reshetikhin–Turaev functor reviewed in Section 2.
The first and the second arrows are discussed in Sections 3.1 and 3.2 below. These sections
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are written in the maximum level of abstraction, using the language of category theory, for
potential future applications to braided categories not coming from vector spaces.

The knot invariants defined by the steps in (2) require as input a braided Hopf algebra
with automorphisms. A concrete source of braided Hopf algebras with a rich group of
automorphisms are the Nichols algebras discussed in detail in Section 5. Rougly speaking, a
Nichols algebra is the quotient of a naturally graded tensor algebra of a braided vector space
by a suitable grading preserving maximal Hopf ideal. Any choice of an automorphism gives
rise to appropriately generalized left and right Yetter–Drinfel’d module structures over the
Nichols algebra. It turns out that the underlying Nichols algebra as a braided vector space
admits natural quotient space in the case of the left generalized Yetter–Drinfel’d module and
a natural submodule in the case of the right generalized Yetter–Drinfel’d module. In a sense,
the choice of the braided Hopf algebra automorphism seems to correspond to the choice of
a quantum double representation in the traditional approach.

In Sections 6 and 7 we study these generalized Yetter–Drinfel’d modules of Nichols algebras
of diagonal type in the cases when the input braided vector space is of dimension one and
two, which gives rise respectively to one and two-variable polynomial invariants of knots.

We end this introduction with some further comments.
1. An important feature of our construction is a braided Hopf algebra with an automorphism.
The nontriviality of the automorphism is an essential part for constructing nontrivial knot
invariants. In a sense the group of automorphisms replaces the representation theory.
2. Our approach unifies previous constructions of knot invariants (notably the colored Jones
and the ADO polynomials, the Links-Gould and the Harper polynomials) coming from su-
per/quantum groups, but also leads to a systematic construction of multivariable polynomial
invariants of knots beyond the quantum groups.
3. A feature of the knot polynomials that we construct is that they depend on variables
coming both from the braiding and the automorphism of the braided Hopf algebra. It
is likely that some of our polynomial invariants of knots coincide with conjectured knot
invariants that are discussed in the physics literature; see for instance the work of Gukov et
al [GHN+21].
4. We expect that some of these invariants come from finite type invariants of knots [BN95],
though we have not investigated this at the moment.
5. We expect that our polynomial invariants give lower bounds for the Seifert genus of a knot
(as is known for the classical Alexander polynomial, but also in some other cases already,
see [NvdV, KT]).
6. Regarding q-holonomic aspects, we expect our invariants to satisfy the analogous q-
holonomic properties (that is, linear q-difference equations), as those that come from quan-
tum groups (such as the colored Jones polynomials associated to a simple Lie algebra and
parametrized by weights of irreducible representations [GL05]) or those defined at roots of
unity (such as the ADO invariant [BDGG]).
7. Finally, regarding asymptotic aspects, we expect that our invariants satisfy versions of
the Volume Conjecture, analogous to those of the colored Jones polynomials [Kas97, MM01]
and the ADO invariants [Mur08].
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2. From R-matrices to knot invariants

In this section we briefly describe the Reshetikhin–Turaev functor which allows to con-
struct knot invariants from R-matrices. These invariants are defined by state-sums [RT90],
using a variation of the construction from the second author’s paper [Kas21]. There are three
ingredients involved in this construction, namely suitable knot diagrams, rigid R-matrices,
and the corresponding state-sums.

2.1. Knot diagrams and rigid R-matrices. We use a diagrammatic notation which is
very important for the construction of knot invariants and has a long and successful history
in knot theory [RT90, Tur94]. Basically, knots are represented by generic planar projections
composed of local pieces which correspond to structural morphisms of a braided vector space,
while the compatibility conditions ensure invariance under changes of planar projections. The
notation leads naturally to the concept of a braided monoidal category, not necessarily in an
abelian category, that vastly generalizes the notion of a braided vector space [TV17].

Following [Kas21], we now explain concretely the knot diagrams used. An (oriented) long
knot diagram K is an oriented knot diagram in R2 with two open ends called “in” and “out”:

K = K

out

in

Examples : K = , K = .

A long knot diagram can be closed to a planar projection of a knot: K 7→ K .

The vertical direction plays a preferred role for long knot diagrams.
The normalization K̇ of K is the diagram obtained from K by the replacements of local

extrema oriented from left to right

7→ and 7→ (3)

at all posible locations of K. We say that K is normal if K = K̇.
The building blocks of normal diagrams are given by four types of segments

, , , (4)

and eight types of crossings (four positive and four negative ones)

, , , , , , , . (5)

We next define R-matrices and their rigid version. An R-matrix over a vector space V is
an automorphism r ∈ Aut(V ⊗V ) of V ⊗V that satisfies the quantum Yang–Baxter relation

r1r2r1 = r2r1r2, r1 := r ⊗ idV , r2 := idV ⊗r . (6)

Let V ∗ denote the dual vector space and ⟨·, ·⟩ : V ∗ ⊗ V → F denote the natural evaluation
map. Assume that V is a finite-dimensional, and fix a basis B of V and the corresponding
dual basis {b∗}b∈B of V ∗.
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Given f ∈ End(V ⊗ V ), we define its partial transpose f̃ : V ∗ ⊗ V → V ⊗ V ∗ by

f̃(a∗ ⊗ b) =
∑
c,d∈B

⟨a∗ ⊗ c∗, f(b⊗ d)⟩c⊗ d∗, f 7→ f̃ = f . (7)

We call an R-matrix r rigid if r̃±1 are invertible.

2.2. State-sum invariants of knots. We now have all the ingredients to define the state-
sum invariants of normal knot diagrams. Fix a rigid R-matrix r over a finite dimensional
vector space V , equipped with a basis B. For a normal long knot diagram K, let EK and
CK denote its sets of edges and crossings, respectively.
A state s of K is a map s : EK → B that assigns an element of B to each edge of K. The

weight ws(K) of the state s of K is the product of local weights

ws(K) =
∏
c∈CK

ws(c) , (8)

where the local weights are defined by

a b

c d

,
c a

d b

,
d c

b a
ws7−→ ⟨c∗ ⊗ d∗, r(a⊗ b)⟩,

b d

a c
ws7−→

〈
a⊗ c∗, (r̃−1)−1(b⊗ d∗)

〉
(9)

and likewise for negative crossings with the replacements r ↔ r−1.
The main theorem of this construction is the topological invariance of the state-sum;

see [Res89, RT90, Tur94] and also [Kas21].

Theorem 2.1. Let a normal long knot diagram K have an equal number of negative and
positive crossings. Then, the linear map

Jr(K) : V → V, Jr(K)a =
∑

s∈BEK , sin=a

ws(K)sout (10)

is a knot invariant.

Note that this construction can be extended to the context of arbitrary monoidal categories
with duality.

3. From braided Hopf algebras with automorphisms to R-matrices

3.1. From Hopf f-objects to left/right Yetter–Drinfel’d f-objects. In this section
we discuss the left arrow of (2). We deliberately phrase our results in the language of
braided monoidal (not-necessarily abelian) categories to allow versatility of future appli-
cations. A detailed discussion of the concepts of a monoidal category, braided monoidal
category, rigid monoidal category, category of functors, algebra and coalgebra objects in
monoidal categories, modules over algebra objects and comodules over coalgebra objects
and their morphisms can be found in the Turaev–Virelizier [TV17, Sec.1.6].

All monoidal categories that we consider are assumed to be strict. In writing compositions
of morphisms g : X → Y and f : Y → Z in a category, we will suppress the composition
symbol, so that we write fg instead of f ◦g. Moreover, in the case of monoidal categories, we



6 STAVROS GAROUFALIDIS AND RINAT KASHAEV

assume the preference of the composition over the monoidal product, so that, for example,
fg ⊗ h will mean (fg)⊗ h.

When a functor F : D → C is considered as an object of the functorial category CD, it will
be called functorial object or just f-object for brevity.
Let C be a braided monoidal category. Denote by CZ the braided monoidal category of

functors F : Z → C where the additive group of integers Z is viewed as a category with one
object ∗ whose automorphism group is Z. We denote by τ : ⊗ → ⊗op the braiding of CZ

which assigns to any pair of f-objects F and G a functorial morphism τF,G : F ⊗G→ G⊗F
that at the unique object ∗ of Z evaluates to the morphism of C

(τC)F (∗),G(∗) : F (∗)⊗G(∗) → G(∗)⊗ F (∗)
where τC is the braiding in C.

Remark 3.1. Given the fact that the group Z is freely generated by one element 1, an
object G of the functor category CZ is uniquely determined by the pair (A, ϕ) where A is
the object of C obtained as the image by G of the unique object ∗ of Z, and ϕ : A → A
is the automorphism of A obtained as the image by G of the generating element 1 of Z.
With this interpretation, a morphism from (A, ϕ) to (B,ψ) is a morphism f : A → B in C
such that ψf = fϕ. The monoidal product of two pairs (A, ϕ)⊗ (B,ψ) is given by the pair
(A⊗B, ϕ⊗ ψ).

Definition 3.2. A Hopf f-object is an f-object H : Z → C together with functorial morphisms
(natural transformations)

∇ : H ⊗H → H, η : I → H, ∆: H → H ⊗H, ϵ : H → I, S : H → H (11)

such that (H,∇, η) is an algebra f-object, (H,∆, ϵ) is a coalgebra f-object and

(∇⊗∇)(idH ⊗τH,H ⊗ idH)(∆⊗∆) = ∆∇, (12)

∇(S ⊗ idH)∆ = ηϵ = ∇(idH ⊗S)∆. (13)

We will always assume that S is an invertible (functorial) morphism. As in the theory of
Hopf algebras, the functorial morphisms ∇, η, ∆, ϵ and S are respectively called product,
unit, coproduct, counit and antipode.

Definition 3.3. Let H : Z → C be a Hopf f-object. A left Yetter–Drinfel’d f-object over H
is a triple (Y, λ, δ) where Y : Z → C is an f-object of CZ, and λ : H ⊗Y → Y , δ : Y → H ⊗Y
are morphisms of CZ such that (Y, λ) is a left H-module f-object, (Y, δ) is a left H-comodule
f-object, and

(∇⊗ idY )(idH ⊗τY,H)(δλ⊗ ϕH)(idH ⊗τH,Y )(∆⊗ idY )

= (∇⊗ λ)(idH ⊗τH,H ⊗ idY )(∆⊗ δ)
(14)

where ϕH : H → H is the functorial isomorphism that at the unique object ∗ of Z evaluates
as

(ϕH)∗ = H(1) : H(∗) → H(∗).

Taking into account the self-dual nature of Hopf objects, it is useful to have the dual
version of Definition 3.3 which reads as follows.
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Definition 3.4. A right Yetter–Drinfel’d f-object over a Hopf f-object H : Z → C is a triple
(Y, λ, δ) where Y : Z → C is an f-object of CZ, and λ : Y ⊗ H → Y , δ : Y → Y ⊗ H are
functorial morphisms of CZ such that (Y, λ) is a right H-module f-object, (Y, δ) is a right
H-comodule f-object, and

(idY ⊗∇)(τH,Y ⊗ idH)(ϕH ⊗ δλ)(τY,H ⊗ idH)(idY ⊗∆)

= (λ⊗∇)(idY ⊗τH,H ⊗ idH)(δ ⊗∆) .
(15)

We will return and give further clarifications to these definitions later in Subsection 4.2
after introducing the graphical notation of string diagrams.

For a Hopf f-object H : Z → C, we denote by ∆(2) and ∇(2) the twice iterated coproduct
and product, respectively, defined by

∇(2) : H ⊗H ⊗H → H, ∇(2) = ∇(∇⊗ idH)

∆(2) : H → H ⊗H ⊗H, ∆(2) = (∆⊗ idH)∆ .
(16)

The following theorem provides constructions of left/right Yetter–Drinfel’d f-objects over
a Hopf f-object H : Z → C.
Theorem 3.5. For any Hopf f-object H : Z → C,
(a) the triple (H,∇, δ) is a left Yetter–Drinfel’d f-object over H, where

δ := (∇⊗ idH)(idH ⊗τH,H)(idH⊗H ⊗SϕH)∆
(2); (17)

(b) the triple (H, λ,∆) is a right Yetter–Drinfel’d f-object over H, where

λ := ∇(2)(SϕH ⊗ idH⊗H)(τH,H ⊗ idH)(idH ⊗∆) . (18)

3.2. From left/right Yetter–Drinfel’d f-objects to R-matrices. The next theorem
constructs R-matrices from left/right Yetter–Drinfel’d f-objects corresponding to the second
arrow in (2).

Theorem 3.6. Let H : Z → C be a Hopf f-object and (Y, λ, δ) be a left, respectively a right,
Yetter–Drinfel’d f-object over H. Then

Lρ = (λ⊗ idY )(idH ⊗τY,Y )(δ ⊗ ϕY ), (19)

respectively
ρR = (ϕY ⊗ λ)(τY,Y ⊗ idH)(idY ⊗δ), (20)

is an R-matrix, that is a solution of the following braid group type Yang–Baxter relation in
the automorphism group Aut(Y ⊗ Y ⊗ Y ):

(ρ⊗ idY )(idY ⊗ρ)(ρ⊗ idY ) = (idY ⊗ρ)(ρ⊗ idY )(idY ⊗ρ). (21)

Moreover, this R-matrix is rigid if the f-object Y is rigid.

The proof of these theorems is given in the next section, using a diagrammatic calculus.
A corollary of Theorem (3.6) gives an invariant of knots.

Theorem 3.7. Fix a rigid left or a right Yetter–Drinfel’d f-object Y over a Hopf f-object H.
Then, there exists a knot invariant

{Knots in S3} → End(Y ), K 7→ W Y
K . (22)
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4. Proofs

4.1. Diagrammatics of braided Hopf algebras with automorphisms. The Hopf f-
objects introduced in Section 3 are categorical versions of pairs (H,ϕ) where H is a braided
Hopf algebra and ϕ is an automorphism of H. At around the same time of the Reshetikhin–
Turaev construction of knot invariants via diagrammatics, there was a parallel intense ac-
tivity in the theory of Hopf algebras motivated in part by the theory of quantum groups
developed by Drinfel’d and Jimbo [Jim86]. There is a string diagrammatic calculus designed
to prove tensor identities in Hopf algebras that avoids using explicit coordinate formulas for
the tensors involved.

This string diagrammatic calculus extends to the case of braided Hopf algebras, introduced
by Majid around 1990 [Maj94, Maj95], and used extensively by many authors including
Radford, Kuperberg and Kauffman [Rad12, Kup91, KR95]. A survey of the various directions
of braided Hopf algebras around 2000 is given by Takeuchi in [Tak00].

The string diagrammatics of the generators and relations of a Hopf algebra are given
in [Maj95]. For a recent treatement, see [Kas23], namely, Eqns. (1.81)-(1.85) for the gen-
erators, Eqns. (1.86)-(1.91) for the relations and Eqns. (1.68)-(1.73) for the diagrammatic
notation. For the convenience of the reader, we recall below the definitions of these mor-
phisms, relations, and the string diagrammatic notation.

Let C be a category. To any morphism f : X → Y in C, we associate a graphical picture

f =: f

X

Y

. (23)

If f : X → Y and g : Y → Z are two composable morphisms, then their composition is
described by the vertical concatenation of graphs

g ◦ f = g ◦ f

Z

X

=

g

Z

f

X

Y (24)

In particular, for the identity morphism idX it is natural to use just a line

idX = idX

X

X

=

X

X

. (25)

The string diagrams are especially useful in the case when C is a strict monoidal cat-
egory, because the tensor (monoidal) product can be drawn by the horizontal juxtapo-
sition. Namely, for two morphisms f : X → Y and g : U → V , their tensor product
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f ⊗ g : X ⊗ U → Y ⊗ V is drawn as follows:

f ⊗ g = f ⊗ g

Y ⊗ V

X ⊗ U

= f ⊗ g

VY

UX

= g

V

U

f

Y

X

. (26)

For example, the graphical equalities

g

V

U

f

Y

X

=
g

V

U

f

Y

X

=
g

V

U

f

Y

X

(27)

correspond to the well known relations in the tensor calculus

f ⊗ g = (f ⊗ idV )(idX ⊗g) = (idY ⊗g)(f ⊗ idU). (28)

By taking into account the distinguished role of the identity object I, it is natural to
associate to it the empty graph.

Let C be a symmetric monoidal category with tensor product ⊗, the opposite tensor
ptoduct ⊗op, unit object I and symmetry σ : ⊗ → ⊗op. Recall that a Hopf object in C is an
object H endowed with five structural morphisms

∇ : H ⊗H → H, η : I → H, ∆: H → H ⊗H, ϵ : H → I, S : H → H (29)

called, respectively, product, unit, coproduct, counit and antipode, that satisfy the following
relations or axioms

associativity : ∇(∇⊗ idH) = ∇(idH ⊗∇) (30a)

coassociativity : (∆⊗ idH)∆ = (idH ⊗∆)∆ (30b)

unitality : ∇(η ⊗ idH) = idH = ∇(idH ⊗η) (30c)

counitality : (ϵ⊗ idH)∆ = idH = (idH ⊗ϵ)∆ (30d)

invertibility : ∇(idH ⊗S)∆ = ηϵ = ∇(S ⊗ idH)∆ (30e)

compatibility : (∇⊗∇)(idH ⊗σH,H ⊗ idH)(∆⊗∆) = ∆∇. (30f)

Let us introduce the following graphical notation for the structural maps of H (all lines
correspond to the object H)

∇ = ∇ = (product), ∆ = ∆ = (coproduct), (31)

η = η = (unit), ϵ = ϵ = (counit), (32)

S = S = (antipode). (33)
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We complete this with the graphical notation for the symmetry

σH,H = σH,H = . (34)

The relations or axioms of a Hopf object take the following graphical form:

= (associativity), = = (unitality), (35)

= (coassociativity), = = (counitality), (36)

= = (invertibility), (37)

= (compatibility). (38)

Our first refinement is the notion of a braided Hopf algebra in a braided monoidal category.
It generalizes the notion of a Hopf object (defined in the context of a symmetric monoidal
category) by replacing the symmetry σH,H in the compatibility axiom (30f) by the braiding
τ = τH,H : H ⊗H → H ⊗H that satisfies the Yang–Baxter equation

(τ ⊗ idH)(idH ⊗τ)(τ ⊗ idH) = (idH ⊗τ)(τ ⊗ idH)(idH ⊗τ). (39)

In other words, a braided Hopf object (in a braided monoidal category) is defined by the
same set of structural maps (29) that satisfy relations (30a)–(30e), while in the compatibility
relation (30f) the symmetry σ is replaced by the braiding τ

compatibility : (∇⊗∇)(idH ⊗τH,H ⊗ idH)(∆⊗∆) = ∆∇. (40)

One can show that in any braided Hopf algebra, the antipode satisfies the relations

S∇ = ∇τH,H(S ⊗ S), ∆S = (S ⊗ S)τH,H∆ (41)

which can be proven, for example, following the same line of reasoning as in Section 1.9
of [Kas23].

In the diagrammatic language, we denote the braiding morphism by

τH,H = (42)

so that the compatibility relation (40) takes the graphical form

= (43)
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and relations (41) become

= , = . (44)

The second refinement that we need is the notion of a Hopf f-object or Hopf f-algebra
which corresponds to a pair (H,ϕ) composed of a braided Hopf algebra H and a braided
Hopf algebra automorphism ϕ : H → H. In addition to the axioms of a braided Hopf
algebra for H, the pair (H,ϕ) satisfies the extra compatibility conditions between ϕ and all
the structural morphisms of H:

∇(ϕ⊗ ϕ) = ϕ∇, (ϕ⊗ ϕ)∆ = ∆ϕ, (45)

Sϕ = ϕS, ϕη = η, ϵϕ = ϵ. (46)

In the diagrammatic notation, we denote the automorphism ϕ by

ϕ = (47)

so that the additional compatibility relations (45) and (46) take the form

= , = , (48)

= , = , = . (49)

4.2. Diagrammatics of Yetter-Drinfel’d f-objects. In this section we recall the def-
initions for Yetter–Drinfel’d f-objects over Hopf f-objects and provide the diagrammatic
notation for them.

The original Yetter–Drinfel’d modules were defined by Yetter [Yet90] and they are es-
sentially modules over Drinfel’d’s quantum double of a Hopf algebra (hence the name of
Drinfel’d). In the early literature, they were also called crossed modules; see eg. [Rad12,
p. 385]. A detailed definition of these modules, their properties in the setting of braided
Hopf algebras is given in Takeuchi [Tak00].

A left Yetter-Drinfel’d f-object over a Hopf f-objectH is a triple (Y, λ, δ) where λ : H⊗Y →
Y and δ : Y → H ⊗ Y satisfy the left module and left comodule equations

left action : λ(idH ⊗λ) = λ(∇⊗ idY ) (50a)

left action of unit : λ(η ⊗ idY ) = idY (50b)

left coaction : (idH ⊗δ)δ = (∆⊗ idY )δ (50c)

left coaction of counit : (ϵ⊗ idY )δ = idY (50d)
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In the diagrammatic setting, we will color the left f-objects by the blue color and the right
f-objects by the red color. Using this coloring scheme, the morphisms λ and δ of the left
Yetter-Drinfel’d f-objects are drawn graphically as

λ = , δ = , (51)

so that we obtain the graphical form of Equations (50a)–(50b)

= , = , (52)

of Equations (50c)–(50d)

= , = (53)

and the compatibility relation (14)

= . (54)

Likewise, a right Yetter-Drinfel’d f-object over a Hopf f-object H is a triple (Y, λ, δ) where
λ : Y ⊗H → Y and δ : Y → Y ⊗H satisfy the right module and right comodule equations

right coaction : (δ ⊗ idH)δ = (idY ⊗∆)δ (55a)

right coaction of counit : (idY ⊗ϵ)δ = idY (55b)

right action : λ(λ⊗ idH) = λ(idY ⊗∆) (55c)

right action of unit : λ(idY ⊗η) = idY (55d)

The corresponding maps λ and δ of the right Yetter-Drinfel’d f-objects are denoted by

λ = , δ = , (56)

so that we have graphical form of Equations (55a) and (55b)

= , = , (57)
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Equations (55c) and (55d)

= , = , (58)

and the compatibility relation (15)

= . (59)

Note that the diagrammatic form of morphisms and relations for right Yetter-Drinfel’d f-
objects are obtained from those of the left Yetter-Drinfel’d f-objects after rotating the dia-
gram by 180 degrees and replacing the blue color by the red color.

4.3. Proof of Theorem 3.5. In this section we prove Theorem 3.5 using the diagrammatic
language that we have already described. Before doing so, we need the following diagram-
matic notation for the double-iterated coproduct (16)

∆(2) = = = . (60)

We will use similar multivalent vertices for higher-iterated coproducts and products.
Using the following graphical representation of the left coaction (17)

δ = = , (61)

we can prove the left coaction property

= (62)

as follows:

= = = = = = . (63)
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Similarly, we can prove the compatibility property (14), see (54) for its graphical form, which
in this case takes the form

= . (64)

Indeed, with a bit longer graphical calculation, we have

= = = = =

= = = = = . (65)

This completes the proof of part (a) of Theorem 3.5. The proof of part (b) is analogous,
and is omitted. □

4.4. Proof of Theorem 3.6. In this section we show that the R-matrix (19) satisfies the
Yang–Baxter equation (21), and omit the analogous proofs that the R-matrix (20) also
satisfies the Yang–Baxter equation.

To begin with, the diagrammatic notation for the R-matrices Lρ and ρR is given as follows

Lρ = , ρR = . (66)
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The proof of Theorem 3.6 is now given as follows:

= ⇔ = ⇔ =

⇔ = ⇐ = ⇐ = (67)

where the last equality is the compatibility Equation (54). This completes the proof of
Theorem 3.5 for left Yetter–Drinfel’d f-objects. The proof of the right Yetter–Drinfel’d f-
objects is obtained by rotating the above diagrams by 180 degrees, followed by replacing the
blue color by the red color. □

5. Braided tensor algebras and Nichols algebras

5.1. Braided tensor algebras. In this section we specialize the abstract language of Hopf
f-objects and the Yetter–Drinfel’d f-objects to the context of a braided category C which, as
a monoidal category, is a subcategory of the category VectF of vector spaces over a field F
with the monoidal structure given by the tensor product ⊗F. The objects of C will be called
braided vector spaces. In this case, a Hopf f-object and a Yetter–Drinfel’d f-object will be
respectively called a Hopf f-algebra and Yetter–Drinfel’d f-module.

Recall that it follows from the definition that a Hopf f-algebra is a pair (H,ϕ) of a braided
Hopf algebra and an automorphism ϕ of it. There is an elementary universal construction
of such pairs (H,ϕ) that we now discuss.

Fix a braided vector space V of finite dimension n and a basis B of V . Then, the tensor
algebra T (V ) has a unique structure of a braided Hopf algebra determined by declaring all
elements of V to be primitive. We define the rank of T (V ) to be the dimension of V , and
call the braided Hopf algebra T (V ) to be of diagonal type if the braiding on V with respect
to the basis B is diagonal.

In this case, T (V ) is Zn
≥0-graded and admits a rich Abelian group of braided Hopf algebra

automorphisms. Namely, any map t : B → F ̸=0 corresponds to a braided Hopf algebra
automorphism ϕt of T (V ) uniquely determined by

ϕtb = tbb, ∀b ∈ B, (68)

where we denote by tb the image t(b). We call such automorphisms scaling automorphisms.
Summarizing, a finite dimensional vector space V with a diagonal braiding with respect

to a basis B of V , together with a map t : B → F ̸=0 determines a pair (T (V ), ϕt) of a
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braided Hopf algebra and an automorphism of it. Using Theorems 3.5–3.6, we obtain multi-
parameter infinite-dimensional R-matrices over the vector space T (V ). Our interest is to
find rigid R-matrices which correspond to finite-dimensional Yetter–Drinfel’d f-modules. We
discuss this next.

5.2. Nichols algebras. It turns out that the braided tensor algebras T (V ) defined above
have a canonical quotient called Nichols algebra which is a braided Hopf algebra. It can be
finite or infinite dimensional.

Recall that a Nichols algebra over a braided vector space V is the quotient braided Hopf
algebraB(V ) = T (V )/J of the tensor algebra T (V ) over the maximal (braided) Hopf algebra
ideal J intersecting trivially the part F ⊕ V ⊂ T (V ). In the case when the braiding is of
diagonal type, the scaling automorphism ϕt of T (V ) decends to an automorphism of the
braided Hopf algebra B(V ) = T (V )/J leading thereby to a Hopf f-algebra which we will call
Nichols f-algebra. Thus, finite dimensional Nichols f-algebras can be used as an input to the
construction of multiparameter knot invariants in (2).

Examples of finite dimensional Nichols algebras are the nilpotent Borel parts of Lustig’s
small quantum groups. A detailed description of finite dimensional Nichols algebras can
be found for example in [AS00, AS02]. Like quantum groups, Nichols algebras have PBW
bases [Kha99] and the ones of diagonal braiding have been classified by Heckenberger [Hec06,
Hec09] building on the work of Kharchenko [Kha99] and Andruskiewitsch–Schneider [AS00].
The list of diagonal Nichols algebras of rank (that is, dimension of V ) at most 3 is given in
Tables 1 and 2 of [Hec06], and from this, it follows that the majority of finite rank Nichols
algebras do not come from quantum groups. A presentation of Nichols algebras of diagonal
type in terms of generators and relations is given by Angiono [Ang15].

5.3. Sub/quotient Yetter–Drinfel’d f-modules of Nichols f-algebras. If a Nichols
algebra is infinite dimensional, we cannot immediately proceed to the construction of knot
invariants.

It turns out that a Nichols f-algebra B(V ) has a canonical quotient LB(V ) and a canonical
subspace B(V )R which are left and right Yetter–Drinfel’d f-modules over B(V ) respectively.
The construction of these f-modules is as follows:

LB(V ) = B(V )/B(V )Wδ, Wδ = {x ∈ B(V ) \ F | δx = 1⊗ x} (69)

where elements of Wδ are nothing else but the coinvariant elements in degree ≥ 1 with
respect to the left coaction δ, see [Rad12, Def. 8.2.1]; and

B(V )R = Uλ (70)

where Uλ ⊂ B(V ) is the smallest subspace of B(V ) that satisfies

∆Wλ ⊂ Uλ ⊗B(V ), Wλ = {x ∈ B(V ) | λ(x⊗ y) = 0, for all y ∈ B(V )} (71)

where, by taking into account the fact that ϵx = 0 for all x ∈ V , elements of Wλ are nothing
else but invariant elements with respect to the right action λ, see [Rad12, Def. 11.2.3].

If any one of the B(V ) f-modules LB(V ) or B(V )R is finite dimensional, then it can be
used in (2) to construct polynomial knot invariants.

In the next sections we illustate the quotients and the subspaces of a braided tensor algebra
T (V ) when the dimension of V is 1 or 2.
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6. The rank 1 tensor algebra

6.1. Definition. In this section we compute from first principles the R-matrices of The-
orem 3.5 for the rank 1 tensor algebra, with no reference to Lie theory. As we will find
out, the corresponding knot invariants are none other than the colored Jones and the ADO
polynomials.

The rank 1 tensor algebra T (F) is identified with the polynomial algebra F[x] in one
indeterminate. It is an infinite dimensional F-vector space with basis B = {xk | k ∈ Z≥0}.
The Hopf algebra structure and the braided structure of T (F) are determined by

∆x = x⊗ 1 + 1⊗ x, τ(x⊗ x) = q x⊗ x . (72)

The above equation, together with the axioms of a braided Hopf algebra, and the choice of
the basis, uniquely determines the braided Hopf algebra structure. The formulas involve the
q-Pochhammer symbol (x; q)n and the q-binomial coefficients

[
k
m

]
q
defined by

(x; q)n :=
n−1∏
i=0

(1− xqi),

[
k

m

]
q

:=
(q; q)k

(q; q)k−m(q; q)m
. (73)

Explicitly, we have the following.

Lemma 6.1. The coproduct, the antipode and the scaling automorphism ϕt of T (F) are
given by

∆xk =
k∑

m=0

[
k

m

]
q

xk−m ⊗ xm (74)

Sxk = (−1)kqk(k−1)/2xk (75)

ϕtx
k = tkxk (76)

respectively.

Proof. The primitivity of x implies that

∆x = x1 + x2, x1 := x⊗ 1, x2 := 1⊗ x, (77)

and the braiding implies that
x2x1 = qx1x2 . (78)

This, combined with the q-binomial formula, gives

∆xk = (x1 + x2)
k =

k∑
m=0

[
k

m

]
q

xk−m
1 xm2 =

k∑
m=0

[
k

m

]
q

xk−m ⊗ xm . (79)

This proves (74). To prove (75), apply (41) for xk ∈ T (F), use η ϵ xk = δk,0 and compute

∇(idH ⊗S)∆xk = ∇(idH ⊗S)
( k∑

m=0

[
k

m

]
q

xk−m ⊗ xm
)

= ∇
( k∑

m=0

[
k

m

]
q

xk−m ⊗ Sxm
)
=

k∑
m=0

[
k

m

]
q

xk−mSxm .
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This is a linear system of equations that uniquely determines Sxk by induction on k. Since

k∑
m=0

[
k

m

]
q

(−1)mqm(m−1)/2 = δk,0 (80)

Equation (75) follows. Finally (76) is clear since ϕt is an automorphism and ϕtx = tx. □

6.2. The left and right Yetter–Drinfel’d f-modules. In this section we compute the
R-matrices of Theorem 3.6 explicitly. We first compute the doubly iterated coproduct (16),
the coaction (17) and the R-matrix (19). The formulas involve the q-multinomial coefficients
defined by [

k

m, n

]
q

:=
(q; q)k

(q; q)k−m−n(q; q)m(q; q)n
. (81)

Lemma 6.2. The doubly iterated coproduct ∆(2), the coaction δ and the R-matrix (19) Lρ
are given by

∆(2)xk =
k∑

m=0

k−m∑
n=0

[
k

m, n

]
q

xk−m−n ⊗ xm ⊗ xn (82)

δxk =
k∑

m=0

[
k

m

]
q

(tqm; q)k−mx
k−m ⊗ xm (83)

Lρ(xk ⊗ xl) =
k∑

m=0

[
k

m

]
q

(tqk−m; q)m(tq
k−m)lxl+m ⊗ xk−m . (84)

Proof. We compute

∆(2)xk =
k∑

m=0

[
k

m

]
q

xk−m ⊗∆xm =
k∑

m=0

[
k

m

]
q

xk−m ⊗
m∑

n=0

[
m

n

]
q

xm−n ⊗ xn

=
∑

0≤n≤m≤k

[
k

m

]
q

[
m

n

]
q

xk−m ⊗ xm−n ⊗ xn

=
k∑

n=0

k−n∑
m=0

[
k

m+ n

]
q

[
m+ n

n

]
q

xk−m−n ⊗ xm ⊗ xn

=
k∑

n=0

k−n∑
m=0

[
k

m, n

]
q

xk−m−n ⊗ xm ⊗ xn =
k∑

m=0

k−m∑
n=0

[
k

m, n

]
q

xk−m−n ⊗ xm ⊗ xn

(85)
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and, using Equations (76) and (75),

δxk =
k∑

m=0

k−m∑
n=0

[
k

m, n

]
q

(∇⊗ idH)(idH ⊗τ)(xk−m−n ⊗ xm ⊗ Sϕt x
n)

=
k∑

m=0

k−m∑
n=0

qmn

[
k

m, n

]
q

(∇⊗ idH)(x
k−m−n ⊗ Sϕtx

n ⊗ xm)

=
k∑

m=0

k−m∑
n=0

qmn

[
k

m, n

]
q

xk−m−nSϕtx
n ⊗ xm

=
k∑

m=0

k−m∑
n=0

qmn(−t)nqn(n−1)/2

[
k

m, n

]
q

xk−m ⊗ xm

=
k∑

m=0

[
k

m

]
q

k−m∑
n=0

[
k −m

n

]
q

(−tqm)nqn(n−1)/2xk−m ⊗ xm

=
k∑

m=0

[
k

m

]
q

(tqm; q)k−mx
k−m ⊗ xm

(86)

where the last equality follows from the q-binomial theorem. Thus, the R-matrix (19) for
Y = H is given by

Lρ(xk ⊗ xl) = (∇⊗ idH)(idH ⊗τH,H)(δ ⊗ ϕH)(x
k ⊗ xl)

=
k∑

m=0

[
k

m

]
q

(tqm; q)k−mt
l(∇⊗ idH)(idH ⊗τH,H)(x

k−m ⊗ xm ⊗ xl)

=
k∑

m=0

[
k

m

]
q

(tqm; q)k−m(tq
m)lxk+l−m ⊗ xm

=
k∑

m=0

[
k

m

]
q

(tqk−m; q)m(tq
k−m)lxl+m ⊗ xk−m .

(87)

□

We next compute the doubly iterated product (16), the right action (18) and the R-
matrix (20).

Lemma 6.3. The doubly iterated product ∇(2), the action δ and the R-matrix (19) ρ are
given by

∇(2)(xk ⊗ xl ⊗ xm) = xk+l+m (88)

λ(xk ⊗ xl) = (tqk; q)lx
k+l (89)

ρR(xk ⊗ xl) =
l∑

m=0

[
l

m

]
q

(tqk)l−m(tqk; q)mx
l−m ⊗ xk+m . (90)
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Proof. Equation (88) is clear. To calculate the right action λ(xk⊗xl), we start with the case
l = 1:

λ(xk ⊗ x) = ∇(2)(Sϕt ⊗ idH⊗H)(τ ⊗ idG)(x
k ⊗ x⊗ 1 + xk ⊗ 1⊗ x)

= ∇(2)(Sϕt ⊗ idH⊗H)(q
kx⊗ xk ⊗ 1 + 1⊗ xk ⊗ x)

= ∇(2)(−tqkx⊗ xk ⊗ 1 + 1⊗ xk ⊗ x) = −tqkxk+1 + xk+1

= (1− tqk)xk+1 .

(91)

Now, we have

λ(xk ⊗ xl) = λ(λ(xk ⊗ x)⊗ xl−1) = (1− tqk)λ(xk+1 ⊗ xl−1)

= (1− tqk)(1− tqk+1)λ(xk+2 ⊗ xl−2) = · · · = (tqk; q)kλ(x
k+l ⊗ xl−l)

= (tqk; q)lx
k+l .

(92)

Thus, the R-matrix (20) for Y = H is given by

ρR(xk ⊗ xl) =
l∑

m=0

[
l

m

]
q

(ϕH ⊗ λ)(τH,H ⊗ idH)(x
k ⊗ xm ⊗ xl−m)

=
l∑

m=0

[
l

m

]
q

qkmtm(tqk; q)l−mx
m ⊗ xk+l−m

=
l∑

m=0

[
l

m

]
q

(tqk)l−m(tqk; q)mx
l−m ⊗ xk+m .

(93)

□

The R-matrices (84) and (90) depend on two variables t and q, and using the basis B =
{xk | k ∈ Z≥0}, their entries are in Z[t±1, q±1] and satisfy the Yang–Baxter equation on an
infinite dimensional space T (F).

However, to define knot invariants as state-sums, we need to have rigid R-matrices over
finite dimensional vector spaces. In the remaining subsections we give several solutions to
this problem and identify the corresponding knot invariants.

6.3. Finite dimensional Nichols f-algebra: the ADO polynomials. The Nichols f-
algebra B(F) is finite-dimensional if and only if q is a root of unity of order N > 1. Indeed,
when q is a root of unity of order N ∈ Z>1, it follows that

[
N
k

]
q
= 0 for 0 < k < N and

Equation (74) implies that xN is primitive and thus generates a Hopf ideal of F[x] with
finite-dimensional Nichols algebra F[x]/(xN). (The converse is also true).

In this case, the R-matrix (84) coincides with the R-matrix of Akutsu–Deguchi–Ohtsuki
[ADO92] and the knot invariant of Theorem 3.7 is the ADO polynomial times the identity
matrix.

Remark 6.4. We remark that when q = 1, the Nichols algebra B(F) = F[x] is not finite
dimensional, thus we will exclude this classical value from our consideration of polynomial
invariants. In fact, in this case one can still define invariants of knots using unipotent
endomorphisms ϕtx = tx (i.e., assuming that t− 1 is nilpotent), and the corresponding knot
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invariant is the inverse Alexander polynomial 1/∆(t), or else one can use a ground field F of
finite characteristic.

6.4. Finite dimensional Yetter–Drinfel’d f-modules: colored Jones polynomials.
When q is not a root of unity, the Nichols f-algebra B(F) = F[x] is infinite-dimensional.
However, it turns out that one can extract finite dimensional left or right Yetter–Drinfel’d
f-modules if

t = q1−N , N ∈ Z>0 . (94)

Indeed, under this assumption for the scaling automorphism, Equation (83), implies that
xN is a coinvariant element, δxN = 1 ⊗ xN . This gives a quotient left Yetter–Drinfel’d f-
module F[x]/(xN) of dimension N . The corresponding R-matrix is the one of the N -colored
Jones polynomial.

Moreover, under the assumption (94), Equation (91) implies that xN−1 is an invariant ele-
ment, whose coproduct generates the N -dimensional space with basis xk, 0 ≤ k ≤ N−1, and
this gives an N -dimensional right Yetter–Drinfel’d f-submodule of F[x]. The corresponding
knot invariant is the identity matrix times the N -th colored Jones polynomial.

Summarising, in the rank 1 case, the corresponding matrix-valued knot invariants are the
identity times the ADO and the colored Jones polynomials.

7. A rank 2 tensor algebra

In this section we discuss the case of Nichols f-algebras of rank 2 of diagonal type. In order
to keep the construction as simple as possible, we consider the Nichols f-algebra B(V ) asso-
ciated with two-dimensional vector space V with basis B = {x1, x2} and diagonal braiding

τ(xi ⊗ xj) = qijxj ⊗ xi, (qij) =

(
−1 q12
q21 −1

)
. (95)

In Heckenberger’s list [Hec08, Table 1] the isomorphism type of this Nichols algebra is de-
termined by the parameter q := q12q21 of the generalized Dynkin diagram (see also [Hec07,
Defn.3.1]).

For generic values of q, this Nichols algebra, which we denote H̃q, is infinite-dimensional,
and it is presented by the relations x21 = x22 = 0, so that a basis of it is given by alternating
words in letters x1 and x2.

7.1. q a root of unity: two-variable knot polynomials. When q = ω is a root of unity
of order N > 1, the element cN := (x2x1)

N + (−q21x1x2)N is primitive and thus generates a
Hopf ideal. The corresponding quotient Hopf algebra is a 4N -dimensional Nichols algebra
which we denote Hω = H̃ω/I, where I := H̃ωcNH̃ω. By taking the scaling automorphism ϕt

of Hω defined by ϕtxi = tixi for i = 1, 2 where t1 and t2 are two indeterminates, we obtain
two-parameter R-matrices (not counting q12 which is irrelevant). The corresponding Nichols
f-algebra denoted as Hω,t, considered as a left Yetter–Drinfel’d f-module over itself gives rise

to an associated invariant W
Hω,t

K ∈ End(Hω,t) of a knot K illustrating Theorem 3.7. Let

QK(ω, t1, t2) ∈ Z[ω, t±1
1 , t±1

2 ] denote the (1, 1)-entry of W
Hω,t

K .

Conjecture 7.1. For every knot K, we have

W
Hω,t

K (t1, t2) = QK(ω, t1, t2) idHω,t . (96)
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7.2. ω = −1: the Harper polynomial? In this section we discuss in detail the 2-parameter
family of knot invariants defined when N = 2 (thus ω = −1). We give examples of com-
putations, compare our invariant with a known one, and list some conjectures regarding its
structure.

When ω = −1, the Nichols f-algebraH−1,t is 8-dimensional and isomorphic to the nilpotent
Borel subalgebra of the small quantum group uq(sl3) with q =

√
−1. A basis for H−1,t is

{1, x1, x2, x1x2, x2x1, x1x2x1, x2x1x2, x1x2x1x2}

and the corresponding 64× 64 R-matrix has entries in Z[t1, t2, q
±1
12 ] and has been computed

explicitly. It is a sparse matrix with 3939 zero entries, and the remaining 157 entries nonzero.
Due to its size, we do not present these entries here, but give a sample value

R(x1x2x1x2 ⊗ x2x1) = s2t2 x2x1 ⊗ x1x2x1x2 − q−1
21 s

2t(1 + t)x1x2x1 ⊗ x2x1x2

+ q221(−1 + s)st2 x2x1x2 ⊗ x1x2x1 + q−1
21 (−1 + s)st x1x2x1x2 ⊗ x2x1 ,

(97)

where for simplicity we abbreviate t1 and t2 by s and t.
For all knots for which we computed the invariant, we confirmed that Conjecture 7.1 holds,

and what is more, the Laurent polynomial QK(−1, s2, t2) coincides with Harper’s polynomial
∆sl3(s, t) [Har].

Experimentally, it appears that the polynomial QK(−1, t, s) is invariant under the invo-
lution maps

(s, t) 7→ (t, s), (s, t) 7→ (s,−1/(st)), (s, t) 7→ (1/s, 1/t) (98)

which generate a group G of order 12. The invariant polynomial ring can be identified with

Q[t±1
1 , t±1

2 ]G = Q[u, v], (99)

where

u = ⟨s⟩+ ⟨t⟩ − ⟨st⟩ − 2, v = ⟨s2t⟩+ ⟨st2⟩ − ⟨s/t⟩ − 2, ⟨x⟩ = x+ x−1 . (100)

In fact, we found that the polynomial QK is of the form

QK(−1, s, t) = PK(u, v), PK(u, v) ∈ Z[u, v] . (101)

We further found that the polynomial QK does not distinguish a knot from its mirror
image, and the special case u = 0 reproduces the Alexander–Conway polynomial ∇K(z)

PK(0, z
2) = ∇K(z). (102)

Table 1 gives the result of computer calculation for all knots of up to 6 crossings, and few
higher crossing knots.

SnapPy confirms that the knots 74 and 92 (where K is the mirror image of K) have equal
Knot Floer Homology (a well-known fact; see Manolescu [Man16]), thus have Seifert genus 1
and none is fibered [CDGW]. On the other hand, the two knots have different Q-polynomial;
see Table 1.

The colored Jones and the ADO polynomials do not distinguish mutant pairs of knots,
since the corresponding tensor product of representations is multiplicity-free. This fact was
pointed out to us by J. Murakami and T. Ohtsuki. On the other hand, the Q-polynomial
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detects mutation, and sometimes not. In particular, it distinguishes the mutant Kinoshita–
Terasaka (11n42) and Conway (11n34) pair of knots–a fact that was pointed out by Harper
in [Har] for his polynomial ∆sl3(s, t).
On the other hand, unlike Knot Floer Homology, it does not distinguish the mutant pairs

11n74 (a fibered, Seifert genus 2 knot) and 11n73 (a non-fibered, Seifert genus 3 knot).
Finally, the knots 88 and 10129 have isomorphic Khovanov homology [BN02], yet different

Q-polynomial.

Knot K The polynomial PK(u, v)

31 1 + 4u+ u2 + v
41 1− 6u+ u2 − v
51 1 + 12u+ 19u2 + 8u3 + u4 + (3 + 7u+ 3u2)v + v2

52 1 + 10u+ 6u2 + 2v
61 1− 10u+ 6u2 − 2v
62 1− 8u− 15u2 + 2u3 + u4 + (−1− 9u+ u2)v − v2

63 1 + 2u+ 15u2 + 6u3 + u4 + (1 + 9u+ u2)v + v2

71
1 + 24u+ 86u2 + 104u3 + 53u4 + 12u5 + u6

+(6 + 35u+ 60u2 + 33u3 + 5u4)v + (5 + 10u+ 6u2)v2 + v3

74 (1 + 2u)(1 + 18u) + 4v
88 1 + 10u+ 36u2 + 28u3 + 6u4 + 2(1 + 9u+ 3u2)v + 2v2

817
1− 14u− 23u2 − 38u3 + 10u4 + 8u5 + u6

+(−1− 17u− 44u2 + 5u3 + 2u4)v + (−2− 13u+ u2)v2 − v3

92 1 + 20u+ 24u2 + 4v

102

1− 150u2 − 380u3 − 279u4 − 44u5 + 25u6 + 10u7 + u8

+(2− 55u− 260u2 − 274u3 − 58u4 + 19u5 + 5u6)v
+(−5− 62u− 91u2 − 24u3 + 5u4)v2 + (−5− 15u− 2u2)v3 − v4

10129 1 + 10u+ 32u2 + 36u3 + 6u4 + 2(1 + 8u+ 2u2)v + 2v2

11n34 1 + 12u+ 8u2 + 60u3 + 48u4 + 8u5 + 2u(1 + 2u)(−1 + 6u)v + 2u2v2

11n42 1 + 12u+ 8u2 − 12u3 − 2uv
11n73 1+20u+10u2+4u3+u4+2(1+4u+u2)v+v2
11n74

Table 1. The polynomial PK(u, v) for some knots

7.3. q generic: two-variable polynomials. In this section we classify all finite-dimensional
right Yetter–Drinfel’d f-modules by classifying all maximal vectors. Denote by H̃q,t the

Nichols f-algebra H̃q with a chosen scaling automorphism ϕt. Recall that it has a basis that
consists of all alternating words in the letters x1 and x2, where x

2
1 = x22 = 0. Thus, every

basis element is of the form

(x1x2)
a, or (x2x1)

b, or x2(x1x2)
c, or x1(x2x1)

d (103)

for a unique a, b, c, d ∈ Z≥0. Moreover, H̃q,t is Z2
≥0-graded, thus also Z≥0-graded where the

Z≥0-degree is the sum of the components of the Z2
≥0-bi-degree.
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It follows from (103) that the degree 2n−1 part of H̃q,t is the direct sum of two bi-degrees
(n, n − 1) and (n − 1, n), each of them being one-dimensional. This implies that there are
no invariant vectors of degree 2n− 1. Indeed, the only vector of bi-degree (n− 1, n) is

x := (x2x1)
n−1x2 = x2(x1x2)

n−1

which is λ-annihilated by x2 but not by x1:

λ(x⊗ x1) = (x2x1)
n + (−q21)nt1(x1x2)n (104)

which never vanishes since the vectors (x2x1)
n and (x1x2)

n are linearly independent.
Thus, invariant vectors can only be of even degree 2n which corresponds to bi-degree

(n, n). The corresponding subspace is two-dimensional with the basis vectors (x1x2)
n and

(x2x1)
n. Taking a vector of the form

vn,α = (x1x2)
n + α(x2x1)

n, α ∈ F, (105)

we calculate the λ-action on it of the generating elements:

λ(vn,α⊗x1) = (1−αt1(−q21)n)(x1x2)nx1 λ(vn,α⊗x2) = (α−t2(−q12)n)(x2x1)nx2 . (106)
Thus, vn,α is an invariant vector if and only if

α = t2(−q12)n, t1t2q
n
12 = 1 . (107)

Proposition 7.2. Assume that q is not a root of unity, and let the parameters α, t1, t2
satisfy relations (107) and the inequality (1 − t1)(1 − t2) ̸= 0. Then, the right Yetter–
Drinfel’d f-module Yn generated by the element vn,α defined in (105) is 4n-dimensional and
it is the linear span of the vector vn,α and all vectors of degree less or equal to 2n− 1.

Proof. The coproduct of vn,α always contains the term 1⊗ vn,α so that 1 ∈ Yn. The λ-action
on 1 gives

λ(1⊗ xi) = (1− ti)xi, i = 1, 2 . (108)

By the assumption on t1 and t2, we conclude that vectors x1 and x2 are both in Yn. Assume
by induction that both vectors in odd degree 2k − 1 are contained in Yn where 1 ≤ k < n.
Then, the λ-action on them of the generating elements produces two vectors in degree 2k

λ((x1x2)
k−1x1 ⊗ x2) = (x1x2)

k + t2(−q12)k(x2x1)k (109)

and

λ((x2x1)
k−1x2 ⊗ x1) = (x2x1)

k + t1(−q21)k(x1x2)k (110)

which are linearly independent provided t1t2q
k ̸= 1. Thus, the λ-action of the generating

elements on all vectors in degree 2k produces all vectors in degree 2k+1. We conclude that
all vectors in degree ≤ 2n − 1 are in Yn. Now, equations (109) and (110) at k = n imply
that both vectors are proportional to vn,α. □

Thus, for any n ∈ Z≥1 we obtain an R-matrix over the 4n-dimensional vector space Yn
which according to Theorem 3.7 produces a knot invariant W Yn

K (q, t1) ∈ End(Yn).

Conjecture 7.3. For every knot K, we have

W Yn
K (q, t1) = Qn,K(q, t1) idYn , Qn,K(q, t1) ∈ Z[q±1, t±1

1 ] . (111)
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Calculations for n = 1 indicate that Conjecture 7.3 holds true and Q1,K(q, t1) coincides
with the Links–Gould two-variable knot polynomial coming from the quantum superalgebra
Uq(gl(2|1))[LG92].
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