# Manifold: H T Link Exterior K9a18 # Number of Tetrahedra: 12 # Number Field x^8 - 2*x^7 + 9*x^6 - 12*x^5 + 24*x^4 - 23*x^3 + 22*x^2 - 15*x + 4 # Approximate Field Generator -0.102604520954908 - 1.24292449498209*I # Shape Parameters 1/4*y^7 - 1/2*y^6 + 5/2*y^5 - 3*y^4 + 7*y^3 - 19/4*y^2 + 11/2*y - 3/2 -1/4*y^6 + 3/4*y^5 - 2*y^4 + 3*y^3 - 3*y^2 + 11/4*y - 1/4 5/4*y^7 - 11/4*y^6 + 9*y^5 - 12*y^4 + 15*y^3 - 55/4*y^2 + 29/4*y - 1 3/4*y^7 - 5/4*y^6 + 6*y^5 - 6*y^4 + 13*y^3 - 33/4*y^2 + 31/4*y - 3 -1/28*y^7 + 3/28*y^6 - 3/7*y^5 + 6/7*y^4 - 12/7*y^3 + 71/28*y^2 - 65/28*y + 20/7 1/4*y^7 + y^5 + y^4 + 9/4*y^2 - 2*y + 2 5/4*y^7 - 17/4*y^6 + 12*y^5 - 22*y^4 + 27*y^3 - 111/4*y^2 + 79/4*y - 5 5/8*y^7 - 7/8*y^6 + 9/2*y^5 - 4*y^4 + 9*y^3 - 43/8*y^2 + 41/8*y - 3/2 3/28*y^7 - 9/28*y^6 + 11/14*y^5 - 11/7*y^4 + 8/7*y^3 - 45/28*y^2 - 1/28*y + 13/14 1/8*y^7 - 3/8*y^6 + 3/2*y^5 - 2*y^4 + 4*y^3 - 23/8*y^2 + 21/8*y - 1/2 9/28*y^7 - 13/28*y^6 + 20/7*y^5 - 19/7*y^4 + 52/7*y^3 - 135/28*y^2 + 151/28*y - 19/7 1/4*y^7 - 5/4*y^6 + 4*y^5 - 8*y^4 + 13*y^3 - 47/4*y^2 + 47/4*y - 4 # A Gluing Matrix {{1,0,0,1,0,0,0,0,0,0,0,0},{0,1,-1,0,1,0,1,0,0,0,0,0},{0,-1,1,1,0,0,-1,0,0,0,0,0},{1,0,1,1,0,0,0,0,0,0,0,0},{0,1,0,0,0,0,0,0,-1,-1,0,0},{0,0,0,0,0,0,0,0,-1,-1,0,0},{0,1,-1,0,0,0,1,1,0,0,0,0},{0,0,0,0,0,0,1,0,0,-1,0,-1},{0,0,0,0,-1,-1,0,0,-1,-2,0,0},{0,0,0,0,-1,-1,0,-1,-2,-1,1,0},{0,0,0,0,0,0,0,0,0,1,1,0},{0,0,0,0,0,0,0,-1,0,0,0,0}} # B Gluing Matrix {{1,0,0,0,0,0,0,0,0,0,0,0},{0,1,0,0,0,0,0,0,0,0,0,0},{0,0,1,0,0,0,0,0,0,0,0,0},{0,0,0,1,0,0,0,0,0,0,0,0},{0,0,0,0,1,0,0,0,0,0,0,0},{0,0,0,0,0,1,0,0,0,0,0,0},{0,0,0,0,0,0,1,0,0,0,0,0},{0,0,0,0,0,0,0,1,0,0,0,0},{0,0,0,0,0,0,0,0,1,0,0,0},{0,0,0,0,0,0,0,0,0,1,0,0},{0,0,0,0,0,0,0,0,0,0,1,0},{0,0,0,0,0,0,0,0,0,0,0,1}} # nu Gluing Vector {1, 1, 1, 1, 0, 0, 1, 0, -1, -1, 1, 0} # f Combinatorial flattening {-1, 0, 0, 2, 0, 2, 1, 0, 1, -1, 2, 2} # f' Combinatorial flattening {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0} # 1 Loop Invariant -11/2*y^7 + 27/2*y^6 - 47*y^5 + 63*y^4 - 91*y^3 + 117/2*y^2 - 29*y - 27/2 # 2 Loop Invariant 593010282194086609/3507232501411108512*y^7 - 524619651307597225/1753616250705554256*y^6 + 1277821845573457909/876808125352777128*y^5 - 1380901047507179675/876808125352777128*y^4 + 3081942222235859299/876808125352777128*y^3 - 7789212779792443075/3507232501411108512*y^2 + 4250074594314214861/1753616250705554256*y - 379297094366300975/438404062676388564 # 3 Loop Invariant -13765581778952931238522224443/355906136100545081227101953216*y^7 + 15773646462398124394360212361/355906136100545081227101953216*y^6 - 32823986798406881330046531497/177953068050272540613550976608*y^5 + 16320592910033715146738547927/177953068050272540613550976608*y^4 - 11806785907742876579902943187/177953068050272540613550976608*y^3 + 1459695914020735571740820515/355906136100545081227101953216*y^2 + 73409631225251510871764164195/355906136100545081227101953216*y - 14255959187530804248852156057/88976534025136270306775488304 # 4 Loop Invariant 14770701803672831079134443860577713250150108339/534962386278633066308289215610827010546395731968*y^7 + 163596490884017636579414972289067161542923517849/891603977131055110513815359351378350910659553280*y^6 - 52515294012238586369768389816719665539912400383/222900994282763777628453839837844587727664888320*y^5 + 214319804211492422041707884022442760252211846361/167175745712072833221340379878383440795748666240*y^4 - 50090420339022488820248238371229685041734298823/37150165713793962938075639972974097954610814720*y^3 + 312159920708600693109943811141221002651408725873/178320795426211022102763071870275670182131910656*y^2 - 4296068564974666436223163613692991588909703383677/2674811931393165331541446078054135052731978659840*y + 35879589961984192671838335940504962606481512727/74300331427587925876151279945948195909221629440