# Manifold: Rolfsen Knot 9_31 # Number of Tetrahedra: 12 # Number Field x^7 + 2*x^5 + 2*x^4 + 4*x^3 + x^2 + 2*x - 1 # Approximate Field Generator None # Shape Parameters -2/11*y^6 - 1/11*y^5 + 1/11*y^4 - 9/11*y^3 - 7/11*y^2 + 7/11 7/44*y^6 - 1/22*y^5 + 13/44*y^4 + 15/44*y^3 + 2/11*y^2 + 25/44 1/11*y^6 + 6/11*y^5 + 5/11*y^4 + 10/11*y^3 + 20/11*y^2 + 2*y + 13/11 -13/11*y^6 - 1/11*y^5 - 21/11*y^4 - 31/11*y^3 - 51/11*y^2 - y - 15/11 7/44*y^6 - 1/22*y^5 + 13/44*y^4 + 15/44*y^3 + 2/11*y^2 + 25/44 2/11*y^6 + 1/11*y^5 - 1/11*y^4 + 9/11*y^3 - 4/11*y^2 - 7/11 2/11*y^6 + 1/11*y^5 - 1/11*y^4 + 9/11*y^3 - 4/11*y^2 - 7/11 5/11*y^6 - 3/11*y^5 + 14/11*y^4 + 6/11*y^3 + 12/11*y^2 + y + 10/11 -2/11*y^6 + 9/22*y^5 - 9/22*y^4 + 2/11*y^3 - 3/22*y^2 + 1/2*y + 3/22 1/11*y^6 + 6/11*y^5 + 5/11*y^4 + 10/11*y^3 + 20/11*y^2 + 2*y + 13/11 -2/11*y^6 - 1/11*y^5 + 1/11*y^4 - 9/11*y^3 - 7/11*y^2 + 7/11 -2/11*y^6 + 9/22*y^5 - 9/22*y^4 + 2/11*y^3 - 3/22*y^2 + 1/2*y + 3/22 # A Gluing Matrix {{0,0,-1,1,0,0,0,0,0,0,0,0},{0,0,0,1,-1,1,1,0,1,0,-1,1},{-1,0,0,0,0,0,0,0,0,0,0,0},{1,0,0,2,0,1,1,1,1,0,-1,1},{0,-1,0,1,0,1,1,0,1,0,-1,1},{0,0,0,1,0,1,1,0,1,0,-1,1},{0,0,0,1,0,1,1,0,1,0,-1,1},{0,0,0,1,0,0,0,1,0,0,0,0},{0,-1,0,1,-1,1,1,0,2,0,-2,2},{0,0,0,0,0,0,0,0,0,0,-1,0},{0,0,0,0,0,0,0,0,0,-1,0,0},{0,-1,0,1,-1,1,1,0,2,0,-2,2}} # B Gluing Matrix {{1,0,0,0,0,0,0,0,0,0,0,0},{0,1,0,0,0,0,0,0,0,0,0,2},{0,0,1,0,0,0,0,0,0,0,0,0},{0,0,0,1,0,0,0,0,0,0,0,1},{0,0,0,0,1,0,0,0,0,0,0,2},{0,0,0,0,0,1,0,0,0,0,0,1},{0,0,0,0,0,0,1,0,0,0,0,1},{0,0,0,0,0,0,0,1,0,0,0,0},{0,0,0,0,0,0,0,0,1,0,0,2},{0,0,0,0,0,0,0,0,0,1,0,0},{0,0,0,0,0,0,0,0,0,0,1,1},{0,0,0,0,0,0,0,0,0,0,0,3}} # nu Gluing Vector {0, 2, 0, 3, 2, 2, 2, 1, 2, 0, 0, 2} # f Combinatorial flattening {0, 0, 1, 1, 0, 1, 0, 0, 0, 0, 0, 0} # f' Combinatorial flattening {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0} # 1 Loop Invariant -13/22*y^6 + 65/22*y^5 + 67/22*y^4 + 35/22*y^3 + 79/11*y^2 + 11/2*y - 103/22 # 2 Loop Invariant -2094690392529703933/481523066150293493634*y^6 + 52509244504885604349/321015377433528995756*y^5 - 27742673947209054331/963046132300586987268*y^4 + 55916543932325186708/240761533075146746817*y^3 + 61008024540299069493/321015377433528995756*y^2 + 29893791830313424655/87549648390962453388*y - 352892106141021897349/1926092264601173974536 # 3 Loop Invariant 33681525213313910472995363478452/640993683623915571117083295464161*y^6 + 4158566595609111735427478860/91570526231987938731011899352023*y^5 + 74164268478663804563558877503693/640993683623915571117083295464161*y^4 + 77501918978537014687045916277910/640993683623915571117083295464161*y^3 + 158409244975681622357937503400349/640993683623915571117083295464161*y^2 + 636634645009216933667011592123/8324593293817085339182899941093*y + 103654370166002075723880591746408/640993683623915571117083295464161 # 4 Loop Invariant -398383965715096253483173836981651355333823917617779/56118771622101635788837119699477369158748476787027468*y^6 + 2769986355671118614222286902031380667074086353965644/210445393582881134208139198873040134345306787951353005*y^5 - 2509343790741054274224895233605107959546641722445023/112237543244203271577674239398954738317496953574054936*y^4 + 994266864354418110246455078153451547031510851868431/70148464527627044736046399624346711448435595983784335*y^3 - 1485171360431034288624770799687092827480811732752763/210445393582881134208139198873040134345306787951353005*y^2 + 726355785764165764067684619208878790566369323404241/30610239066600892248456610745169474086590078247469528*y + 3826104186749167939291124163513285094323503386775203/210445393582881134208139198873040134345306787951353005