# Manifold: Rolfsen Knot 9_37 # Number of Tetrahedra: 12 # Number Field x^8 - 2*x^7 + 3*x^6 - 2*x^5 + 4*x^4 - 5*x^3 + 6*x^2 - 3*x + 2 # Approximate Field Generator 0.821509851582118 - 0.756487881787650*I # Shape Parameters -y^2 + y -y^2 + y 1/4*y^7 - 3/4*y^6 + 1/2*y^5 - 5/4*y^2 + 3/4*y + 1/2 -1/4*y^7 - 1/4*y^6 - y^3 - 3/4*y^2 + 1/4*y + 1 1/2*y^7 - y^6 + y^5 - y^4 + y^3 - 5/2*y^2 + 2*y - 1 11/56*y^7 - 5/7*y^6 + 45/56*y^5 - 4/7*y^4 + 5/14*y^3 - 103/56*y^2 + 23/14*y - 13/56 1/2*y^7 - y^6 + 1/2*y^5 + y^3 - 5/2*y^2 + y + 1/2 1/2*y^7 - y^6 + 1/2*y^5 - y^4 + y^3 - 5/2*y^2 + y - 1/2 1/2*y^7 - y^6 + y^5 - y^4 + y^3 - 5/2*y^2 + 2*y - 1 -1/2*y^6 + 1/2*y^5 - y^4 - 2*y^2 + 3/2*y - 3/2 -1/2*y^7 + 1/2*y^6 - y^5 - 2*y^3 + 3/2*y^2 - 5/2*y -1/2*y^6 + 1/2*y^5 - y^4 - 2*y^2 + 3/2*y - 3/2 # A Gluing Matrix {{1,1,0,1,0,0,0,0,0,0,0,0},{1,1,0,1,0,0,0,0,0,0,0,0},{0,0,1,1,0,-1,1,1,0,0,-1,0},{1,1,1,1,0,1,0,0,0,0,0,0},{0,0,-1,0,1,0,-1,0,0,1,-1,1},{0,0,-1,1,1,-1,0,0,1,0,0,0},{0,0,1,0,0,0,1,1,0,0,-1,0},{0,0,1,0,0,0,1,1,0,0,0,0},{0,0,-1,0,0,0,-1,0,1,1,-1,1},{0,0,-1,0,1,-1,-1,0,1,1,-1,1},{0,0,-1,0,0,0,-1,0,0,0,0,0},{0,0,-1,0,1,-1,-1,0,1,1,-1,1}} # B Gluing Matrix {{1,0,0,0,0,0,0,0,0,0,0,0},{0,1,0,0,0,0,0,0,0,0,0,0},{0,0,1,0,0,0,0,0,0,0,0,1},{0,0,0,1,0,0,0,0,0,0,0,0},{0,0,0,0,1,0,0,0,0,0,0,2},{0,0,0,0,0,1,0,0,0,0,0,1},{0,0,0,0,0,0,1,0,0,0,0,1},{0,0,0,0,0,0,0,1,0,0,0,0},{0,0,0,0,0,0,0,0,1,0,0,2},{0,0,0,0,0,0,0,0,0,1,0,2},{0,0,0,0,0,0,0,0,0,0,1,1},{0,0,0,0,0,0,0,0,0,0,0,3}} # nu Gluing Vector {1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1} # f Combinatorial flattening {-14, 0, 7, 4, 4, 4, -7, 1, 4, -3, 0, 0} # f' Combinatorial flattening {11, 11, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0} # 1 Loop Invariant -7*y^7 - 4*y^6 - y^5 - 16*y^4 - 21*y^3 - 45/2*y^2 - 5*y - 67/2 # 2 Loop Invariant 276634124844323213/3507232501411108512*y^7 - 382275800457273851/1169077500470369504*y^6 + 686815396776263677/1753616250705554256*y^5 - 139037259486493899/292269375117592376*y^4 + 241864297103592911/876808125352777128*y^3 - 3340986402573540713/3507232501411108512*y^2 + 2517611276245317949/3507232501411108512*y + 30823478781019466495/1753616250705554256 # 3 Loop Invariant -373166757695453926160119721/88976534025136270306775488304*y^7 + 123996107029804886531874935/4138443443029593967756999456*y^6 - 10223124395565416815759375233/177953068050272540613550976608*y^5 + 13457111789725243018970131887/177953068050272540613550976608*y^4 - 18727431728989542502460343597/177953068050272540613550976608*y^3 + 19696106964791046392889391933/177953068050272540613550976608*y^2 - 7348169828271404476488004731/88976534025136270306775488304*y - 327496347025374931528844999/22244133506284067576693872076 # 4 Loop Invariant -18239697332523228470230847942188624923172091753/668702982848291332885361519513533763182994664960*y^7 + 877393593360671110759523070671762953778478649/7775616079631294568434436273413183292825519360*y^6 - 24234182913196825731594177050692993033192471939/111450497141381888814226919918922293863832444160*y^5 + 83057816668138621304815400665322237319355578799/334351491424145666442680759756766881591497332480*y^4 - 60323824011877351401044873510950890393330233891/334351491424145666442680759756766881591497332480*y^3 + 27931921860332011148766824954809577260589905309/222900994282763777628453839837844587727664888320*y^2 - 4290487575925238022489809978976307774517964271/55725248570690944407113459959461146931916222080*y + 2158124027875837843308940685962874893626157673/55725248570690944407113459959461146931916222080