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Abstract
The AJ Conjecture relates a quantum invariant, a minimal order recursion for the
colored Jones polynomial of a knot (known as the Â polynomial), with a classical
invariant, namely the defining polynomial A of the PSL2(C) character variety of a
knot. More precisely, the AJ Conjecture asserts that the set of irreducible factors
of the Â-polynomial (after we set q = 1, and excluding those of L-degree zero)
coincides with those of the A-polynomial. In this paper, we introduce a version of the
Â-polynomial that depends on a planar diagram of a knot (that conjecturally agrees
with the Â-polynomial) andweprove that it satisfies onedirection of theAJConjecture.
Our proof uses the octahedral decomposition of a knot complement obtained from a
planar projection of a knot, the R-matrix state sum formula for the colored Jones
polynomial, and its certificate.
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1 Introduction

1.1 The colored Jones polynomial and the AJ Conjecture

The Jones polynomial of a knot [20] is a powerful knot invariant with deep connections
with quantum field theory, discovered by Witten [36]. The discoveries of Jones and
Witten gave rise to QuantumTopology. An evenmore powerful invariant is the colored
Jones polynomial JK (n) ∈ Z[q±1] of a knot K , a sequence of Laurent polynomials
that encodes the Jones polynomial of a knot and its parallels. Since the dependence
of the colored Jones polynomial JK (n) on the variable q plays no role in our paper,
we omit it from the notation. The colored Jones polynomial determines the Alexander
polynomial [4], is conjectured to determine the volumeof a hyperbolic knot [21,28,31],
is conjectured to select two out of finitely many slopes of incompressible surfaces of
the knot complement [11], and is expected to determine the SL(2,C) character variety
of the knot, viewed from the boundary [9]. The latter is the AJ Conjecture, which is
the focus of our paper.

The starting point of the AJ Conjecture [9] is the fact that the colored Jones poly-
nomial JK (n) of a knot K is q-holonomic [15], that is, it satisfies a nontrivial linear
recursion relation

d∑

j=0

c j (q, qn)JK (n + j) = 0, for all n ∈ N, (1)

where c j (u, v) ∈ Z[u, v] for all j . We can write the above equation in operator form
as follows P JK = 0where P = ∑

j c j (q, Q)E j is an element of the ringZ[q, Q]〈E〉
where EQ = qQE are the operators that act on sequences of functions f (n) by:

(E f )(n) = f (n + 1), (Q f )(n) = qn f (n). (2)
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Observe that the set

Ann( f ) = {P ∈ Z[q, Q]〈E〉 | P f = 0} (3)

is a left ideal of Z[q, Q]〈E〉, nonzero when f is q-holonomic. Although the lat-
ter ring is not a principal left ideal domain, its localization Q(q, Q)〈E〉 is, and
cleaning denominators allows one to define a minimal E-order, content-free element
ÂK (q, Q, E) ∈ Z[q, Q]〈E〉 which annihilates the colored Jones polynomial.

On the other hand, the A-polynomial of a knot [5] AK (L, M) ∈ Z[L, M] is the
defining polynomial for the character variety of SL(2,C) representations of the bound-
ary of the knot complement that extend to representations of the knot complement.

The AJ Conjecture asserts that the irreducible factors of ÂK (1, Q, E) of positive
E-degree coincide with those of AK (Q, E−2). The AJ Conjecture is known for most
2-bridge knots, and some 3-strand pretzel knots; see [25] and [27].

Let us briefly now discuss the q-holonomicity of the colored Jones polynomial
[15]: this follows naturally from the fact that the latter can be expressed as a state-sum
formula using a labeled, oriented diagram D of the knot, placing an R-matrix at each
crossing and contracting indices as described for instance in Turaev’s book [34]. For
a diagram D with c(D) crossings, this leads to a formula of the form

JK (n) =
∑

Zc(D)+1

wD(n, k) (4)

where the summand wD(n, k) is a q-proper hypergeometric function and for fixed n,
the support of the summand is a finite set. The fundamental theoreom of q-holonomic
functions of Wilf–Zeilberger [37] concludes that JK (n) is q-holonomic. Usually this
ends the benefits of (4), aside from its sometimes use as a means of computing some
values of the colored Jones polynomial for knots with small (eg 12 or less) number of
crossings and small color (eg, n < 10).

Aside from quantum topology, and key to the results of our paper, is the fact that a
planar projection D of a knot K gives rise to an ideal octahedral decomposition of its
complement minus two spheres, and thus to a gluing equations variety GD and to an
A-polynomial AD reviewed in Sect. 2 below. In [22], Kim–Kim–Yoon prove that AD

coincides with the A-polynomial of K , and in [24] Kim–Park prove that GD is, up to
birational equivalence, invariant under Reidemeistermoves, and forms a diagrammatic
model for the decorated PSL(2,C) character variety of the knot.

The aim of the paper is to highlight the fact that formulas of the form (4) lead to
further knot invariants which are natural from the point of view of holonomic modules
and form a rephrasing of the AJ Conjecture that connects well with the results of [22]
and [24].

1.2 q-holonomic sums

To motivate our results, consider a sum of the form
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f (n) =
∑

k∈Zr

F(n, k) (5)

where n ∈ Z and k = (k1, . . . , kr ) ∈ Zr and F(n, k) is a proper q-hypergeometric
function with compact support for fixed n. Then f is q-holonomic but more is true.
The annihilator

Ann(F) ⊂ Q[q, Q, Qk]〈E, Ek〉

of the summand is a q-holonomic left ideal where Ek = (Ek1 , . . . , Ekr ) and Qk =
(Qk1 , . . . , Qkr ) are operators, each acting in one of the r + 1 variables (n, k) with the
obvious commutation relations (operators acting on different variables commute and
the ones acting on the same variable q-commute). Consider the map

ϕ : Q[q, Q]〈E, Ek〉 → Q[q, Q]〈E〉, ϕ(Eki ) = 1, i = 1, . . . , r . (6)

It is a fact (see Proposition 3.2 below) that

ϕ(Ann(F) ∩ Q[q, Q]〈E, Ek〉) ⊂ Ann( f ) (7)

and that the left hand side is nonzero. Elements of the left hand side are usually
called “good certificates”, and in practice one uses the above inclusion to compute a
recursion for the sum [30,39]. If Âc

F (q, Q, E) and Â f (q, Q, E) denotes generators of
the left and the right hand side of (7), it follows that Â f (q, Q, E) is a right divisor of
Âc
F (q, Q, E). We will call the latter the certificate recursion of f obtained from (5).
In a sense, the certificate recursion of f ismore natural than theminimal order recur-

sion and that is the case for holonomic D-modules and their push-forward, discussed
for instance by Lairez [26].

What is more important for us is that if one allows presentations of f of the form (5)
where F is allowed to change by for instance, consequences of the q-binomial identity,
then one can obtain an operator Âc

f (q, Q, E) which is independent of the chosen
presentation.

1.3 Our results

Applying the above discussion to (4) with F = wD , allows us to introduce the
certificate recursion Âc

D(q, Q, E) ∈ Z[q, Q]〈E〉 of the colored Jones polynomial,
which depends on a labeled, oriented planar diagram D of a knot. We can also define
Âc
K (q, Q, E) ∈ Z[q, Q]〈E〉 to be the left gcd of the elements Âc

D in the local ring
Q(q, Q)〈E〉, lifted back to Z[q, Q]〈E〉.

We now have all the ingredients to formulate one direction of a refined AJ Con-
jecture. Our proof uses the octahedral decomposition of a knot complement obtained
from a planar projection of a knot, the R-matrix state sum formula for the colored
Jones polynomial, and its certificate.

Theorem 1.1 For every knot K ,
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(a) ÂK divides Âc
K .

(b) Every irreducible factor of AK (Q, E−2) of positive E-degree is a factor of
Âc
K (1, Q, E).

Remark 1.2 The ÂK -polynomial has only been computed in a handful of cases, see
[13,18,19] and [14]. In all cases where ÂK is known, it is actually obtained from
certificates and in that case Âc

K = ÂK .

Question 1.3 Is it true that for any knot K , one has Âc
K = ÂK ?

Question 1.4 Is it true that the certificate recursion Âc
D of a planar projection of a

knot is invariant under Reidemester moves on D?

A positive answer to the latter question is a quantum analogue of the fact that the
gluing equation variety GD associated to a diagram D is independent of D, a result
that was announced by Kim and Park [24]. We believe that the above question has a
positive answer, coming from the fact that the Yang–Baxter equation for the R-matrix
follows from a q-binomial identity, but we will postpone this investigation to a future
publication.

1.4 Sketch of the proof

To prove Theorem 1.1, we fix a planar projection D of an oriented knot K . On the one
hand, the planar projection gives rise to an ideal decomposition of the knot complement
(minus two points) using one ideal octahedron per crossing, subdividing further each
octahedron to five ideal tetrahedra. This ideal decomposition gives rise to a gluing
equations variety, discussed in Sect. 2. On the other hand, the planar projection gives
a state-sum for the colored Jones polynomial, by placing one R-matrix per crossing
and contracting indices. The summand of this state-sum is q-proper hypergeometric
and its annihilator defines an ideal in a quantum Weyl algebra, discussed in Sect. 4.
The annihilator ideal is matched when q = 1 with the gluing equations ideal in the
key Proposition 5.1. This matching, implicit in the Grenoble notes of Thurston [33],
combined with a certificate (which is a quantum version of the projection map from
gluing equations variety toC∗×C∗), and with the fact that the gluing equation variety
sees all components of the PSL(2,C) character variety [22], conclude the proof of
our main theorem.

Our method of proof for Theorem 1.1 using certificates to show one direction of the
AJ Conjecture is general and flexible and can be applied in numerous other situations,
in particular to a proof of one direction of the AJ Conjecture for state-integrals, and
to one direction of the AJ Conjecture for the 3Dindex [1,8]. This will be studied in
detail in a later publication. For a discussion of the AJ Conjecture for state-integrals
and for a proof in the case of the simplest hyperbolic knot, see [1].

Finally, our proof of Theorem 1.1 does not imply any relation between the Newton
polygon of the ÂK (q, Q, E) polynomial and that of AK (1, Q, E). If the two Newton
polygons coincided, the Slope Conjecture of [11] would follow, as was explained in
[10]. Nonetheless, the Slope Conjecture is an open problem.
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Fig. 1 The dual spine to the triangulation and the shape parameters associated to corners of the spine

2 Knot diagrams, their octahedral decomposition and their gluing
equations

2.1 Ideal triangulations and their gluing equations

Given an ideal triangulation T of a 3-manifold M with cusps, Thurston’s gluing
equations (one for each edge of T ) give a way to describe the hyperbolic structure
on M and its deformation if M is hyperbolic [29,32]. The gluing equations define
an affine variety GT , the so-called gluing equations variety, whose definition we now
recall. The edges of each combinatorial ideal tetrahedron get assigned variables, with
opposite edges having the same variable as in the left hand side of Fig. 1. The triple
of variables (often called a triple of shapes of the tetrahedron)

(z, z′, z′′) =
(
z,

1

1 − z
, 1 − 1

z

)

satisfies the equations

zz′z′′ = −1, zz′′ − z + 1 = 0 (8)

and every solution of (8) uniquely defines a triple of shapes of a tetrahedron. Note
that the shapes of the tetrahedron z, z′, or z′′ lie in C∗∗ = C\{0, 1}, and that they
are uniquely determined by z ∈ C∗∗. When we talk about assigning a shape z to a
tetrahedron below, it determines shapes z′ and z′′ as in Fig. 1.

Given an ideal triangulation T with N tetrahedra, assign shapes zi for i = 1, . . . , N
to each tetrahedron. If e is an edge of T the corresponding gluing equation is given
by

∏

�∈N (e)

z� = 1,

where N (e) is the set of all tetrahedra that meet along the edge e, and z� is the shape
parameter corresponding to the edge e of �. The gluing equation variety GT is the
affine variety in the variables (z1, . . . , zN ) ∈ (C∗∗)N defined by the edge gluing
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equations, for all edges of T . Equivalently, it is the affine variety in the variables
(z1, z′1, z′′1, . . . , zN , z′N , z′′N ) ∈ C3N defined by the edge equations and the Eq. (8),
one for each tetrahedron.

Wenext discuss the relationbetween a solution to thegluing equations anddecorated
(or sometimes called, augmented) PSL(2,C) representations of the fundamental group
of the underlying 3-manifold M . The construction of decorated representations from
solutions to the gluing equations appears for instance in Zickert’s thesis [40] and also in
[12]. Below, we follow the detailed exposition byDunfield given in [2, Sec.10.2–10.3].

A solution of the gluing equations gives rise to a developing map M̃ → H3 from
the universal cover M̃ to the 3-dimensional hyperbolic spaceH3. Since the orientation
preserving isometries ofH3 are in PSL(2,C), this in turn gives rise to a PSL(2,C) rep-
resentation of the fundamental group π1(M), well-defined up to conjugation. What’s
more, we get a decorated representation (those were called augmented representa-
tions in Dunfield’s terminology). Following the notation of [2, Sec.10.2–10.3], let
X(M,PSL(2,C)) denote the augmented character variety of M . Thus, we get a map:

GT → X(M,PSL(2,C)). (9)

So far, M can have boundary components of arbitrary genus. When the boundary
∂M consists of a single torus boundary component, and γ is a simple closed curve
on ∂M , the holonomy of an augmented representation gives a regular function hγ :
X(M,PSL(2,C)) → C∗. Note that for a decorated representationρ, the set of squares
of the eigenvalues of ρ(γ ) ∈ PSL(2,C) is given by {hγ (ρ), hγ (ρ)−1}. Once we fix a
pair of meridian and longitude (μ, λ) of the boundary torus, then we get a map

(hμ, hλ) : X(M,PSL(2,C)) → C∗ × C∗. (10)

The defining polynomial of the 1-dimensional components of the above map is the
A-polynomial of the 3-manifold M . Technically, this is the PSL(2,C)-version of the
A-polynomial and its precise relation with the SL(2,C)-version of the A-polynomial
(as defined by [5]) is discussed in detail in Champanerkar’s thesis [7]; see also [2,
Sec.10.2–10.3].

We should point out that although (9) is amap of affine varieties, its imagemaymiss
components of X(M,PSL(2,C)), and hence the gluing equations of the triangulation
may not detect some factors of the A-polynomial. In fact, when the boundary of M
consists of tori, the image of (9) always misses the components of abelian SL(2,C)

representations (and every knot complement has a canonical such component), but it
may also miss others. For instance, there is a 5-tetrahedron ideal triangulation of the
41 knot with an edge of valency one, and for that triangulation, GT is empty.

For later use, let us record how to compute the holonomy of a peripheral curve on
the gluing equations variety. Given a path γ in a component of ∂M that is normal
with respect to this triangulation, it intersects the triangles of ∂M in segment joining
different sides. Each segmentmay go fromone side of the triangle to either the adjacent
left side or right side. Also it separates one corner of the triangle from the other two;
this corner correspond to a shape parameter which we name zle f t or zright depending
whether the segment goes left or right. The holonomy of γ is then:
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Fig. 2 A segment γi of a peripheral loop γ intersecting a region of the spine. The boundary component 	
to which γ belongs lies above the region. In this example, hγi = −z1z2z3 = − 1

z4z5z6

hγ =
∏

le f t segments

zle f t
∏

right segments

z−1
right .

2.2 Spines and gluing equations

The ideal triangulations that we will discuss in the next section come from a planar
projection of a knot, and it will be easier to work with their spines, that is the the
dual 2-skeleton. Because of this reason, we discuss the gluing equations of an ideal
triangulation T in terms of its spine. In that case, edges of T are dual to 2-cells of the
spine, and give rise to gluing equations. Recall that a spine S of M is a CW-complex
embedded in M , such that each point of S has a neighborhood homeomorphic to
either D2, Y ×[0, 1] where Y is the Y -shaped graph or to the cone over the edges of a
tetrahedron, and such that M\S is homeomorphic to ∂M × [0, 1). Points of the third
type are vertices of the spine, points of the second type form the edges of the spines
and points of the first type form the regions of the spine.

For any ideal triangulation of M , the dual spine is obtained as shown in Fig. 1.
Shape parameters that were assigned to tetrahedra are now assigned to vertices of the
spine. At each vertex, two opposite corners bear the same shape parameter z, and the
other bear the parameters z′, z′′ according to the cyclic ordering (see Fig. 1). Edge
equations translate into region equations, the region equation associated to the region
R being:

∏

c∈corners(R)

zc = 1.

For a path γ on the spine S that is in normal position with respects to S, it intersects
each region in a collection of segments (γi )i∈I . The holonomy of the segment γi is

hγi = −
∏

c left corner

zc = −
∏

c right corner

z−1
c ,

where left and right corners are defined as in Fig. 2, and the holonomy of γ is

hγ =
∏

i∈I
hγi .

123



A diagrammatic approach to the AJ Conjecture 455

Fig. 3 Any octahedron can be split into 4 or 5 tetrahedra by adding the red dashed edges to it (color figure
online)

2.3 The octahedral decomposition of a knot diagram

In this section we fix a diagram D in S2 of an oriented knot K . By diagram, we mean
an embedded 4-valent graph in the plane, with an overcrossing/undercrossing choice
at each vertex. Let X(D) and c(D) denote the set and the number of crossings of D.
In this section as well as the remainder of the paper, an arc of D will be the segment
of the diagram joining two successive crossings of D. An overpass (resp. underpass)
will be a small portion of the upper strand (resp. lower strand) of a crossing. We will
denote the set of overpasses by O(D) and the set of underpasses byU (D). An overarc
(resp. underarc) will be the portion of the knot joining two successive underpasses
(resp. overpasses). An overarc of K may pass through some number of crossings of
K , doing so as the upper strand each time.

Given a diagram D of the knot K with c(D) crossings, let B1 be some ball lying
above the projection plane and B2 another ball lying under the projection plane. A
classical construction, first introduced by Weeks in his thesis, and implemented in
SnapPy as a method of constructing ideal triangulations of planar projections of
knots [6,35], yields a decomposition of S3\(K ∪ B1 ∪ B2) into c(D) ideal octahedra.
The decomposition works as follows: at each crossing of K , put an octahedron whose
top vertex is on the overpass and bottom vertex is on the underpass. Pull the twomiddle
vertices lying on the two sides of the overpass up towards B1 and the two other middle
vertices down towards B2. One can then patch all these octahedra together to get a
decomposition of S3\(K ∪ B1 ∪ B2). We refer to [22] as well as [33] for figures and
more details on this construction.

From the octahedral decomposition of S3\(K ∪ B1 ∪ B2), one can get an ideal
triangulation of S3\(K ∪ B1 ∪ B2) simply by splitting the octahedra further into
tetrahedra. There are two natural possibilities for this splitting, as one can cut each
octahedra into either 4 or 5 tetrahedra as shown in Fig. 3. We will be interested in
the decomposition where we split each octahedra into 5 tetrahedra, obtaining thus
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Fig. 4 The 5T -spine near a crossing of D, and the shape parameters of each corner of the spine. The arrows
specify the orientation of strands

a decomposition of S3\(K ∪ B1 ∪ B2) into 5c(D) tetrahedra. We denote this ideal
triangulation by T 5T

D , and we call it the “5T -triangulation of D”.
Since the inclusion map S3\(K ∪ B1 ∪ B2) → S3\K is an isomorphism on fun-

damental groups, a solution to the gluing equations of T 5T
D gives rise to a decorated

PSL(2,C) representation of the knot complement.

2.4 The spine of the 5T-triangulation of a knot diagram and its gluing equations

Let GD denote the gluing equation variety of T 5T
D . To write down the equations of

GD , we will work with the dual spine, and use the spine formulation of the gluing
equations introduced in Sect. 2.1. We describe this spine just below. This well-known
spine is studied in detail by several authors including [22].

Figure 4 shows a picture of the spine near a crossing of D. The spine contains 5
vertices near each crossing of D and can be described as follows:

First we embed K in S3 as a solid torus sitting in the middle of the projection plane;
except for overpasses which go above the projection plane and underpasses which
go below. We let the boundary of a tubular neighborhood of K to be a subset of the
spine. At each crossing we connect the overpass and the underpass using two triangles
that intersects transversally in one point. Finally we glue the regions of the projection
plane that lie outside D to the rest of the spine. The regions of the spine are then of 3
types:

• An upper/lower triangle region for each crossing, and 2c(D) in total.
• For each region of D one gets an horizontal region in the spine; we call these big
regions, c(D) + 2 in total.

• The boundary of a neighborhood of K is cut by the triangle regions and the big
regions into regions lying over the projection plane (upper shingle region) and
some lying under the projection plane (lower shingle regions). Note that upper
shingle regions start and end at underpasses; they are in correspondance with the
overarcs of the diagram, c(D) in total. Similarly, the lower shingle regions are in
correspondance with underarcs, and there is also c(D) of them.
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Fig. 5 An overarc (resp. underarc) and the corresponding upper (resp. lower) shingle region of the spine,
with shape parameters

We now assign shape parameters to each vertex of the spine as shown in Fig. 4.
There are 5 shape parameters for each crossing c: a central one which we call wc and
4 others: zc,li , zc,lo, zc,ui , zc,uo standing for lower-in, lower-out, upper-in and upper-
out. When the crossing c we consider is clear, we will sometimes write w, zli , zlo . . .

dropping the index c.
Note that the assignment of shape parameters is such that the main version of

the parameter w, zli , . . . lies on a corner of a triangle region, while the auxiliary
w′, w′′, z′li , z′′li . . . are prescribed by the cyclic ordering induced by the boundary of
S3\(K ∪ B1 ∪ B2).

We can now write down the gluing equations coming from the 5T -spine:
• The upper/lower triangle equations are (in the notation of Fig. 4)

wzui zuo = 1, wzli zlo = 1. (11)

• The upper/lower shingle equations. Consider an upper shingle region correspond-
ing to an overarc going from some crossing labeled 1 to the crossing n, going through
crossings 1, 2, . . . , n − 1 as overpasses. Then the shingle region has one corner for
each of its ends, and 4 corners for each overpasses, as explained in Fig. 5. We get:

z1,loz
′
2,ui z

′′
2,uo . . . z′n−1,ui z

′′
n−1,uozn,li z

′
n−1,uoz

′′
n−1,ui . . . z

′
2,uoz

′′
2,ui = 1.

Lemma 2.1 The upper/lower shingle equations have the equivalent forms, respec-
tively:

zn,lo = z1,low
−1
n

n−1∏

j=2

w j , zn,li = z1,liw1

n−1∏

j=2

w−1
j . (12)

zn,ui = z1,uiw1

n−1∏

j=2

w−1
j , zn,uo = z1,uow

−1
n

n−1∏

j=2

w j . (13)
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w′′

w′w′′
w′

z′
uoz′′

uo

z′′
li

z′
li

z′′
uiz′

ui

z′
lo

z′′
lo

w′′

w′w′′
w′

z′
uoz′′

uo

z′′
lo

z′
lo

z′′
uiz′

ui

z′
li

z′′
li

w′z′′
uoz

′′
lo

w′′z′
uoz

′
li

w′z′′
uiz

′′
li

w′′z′
uiz

′
lo

w′′z′
uoz

′
lo

w′z′′
uiz

′′
lo

w′′z′
uiz

′
li

w′z′′
uoz

′′
li

Fig. 6 On the top, a top view of the 5t-spine near a positive and a negative crossing. On the bottom, the
rule describing the corner factors

Proof Grouping together shape parameters coming from the same vertex and using
zz′z′′ = −1, we get:

zn,li z1,lo =
n−1∏

j=2

z j,ui z j,uo

and then, using Eq. (11):

zn,li z1,lo =
n−1∏

j=2

w−1
j

Finally, using Eq. (11), we can rewrite this as Eq. (12) between only z′los (or only z′li s)
parameters.

Similarly for a lower shingle region corresponding to an underarc running from
crossing 1 to crossing n, one gets an equation:

z1,uoz
′′
2,li z

′
2,lo . . . z′′n−1,li z

′
n−1,lozn,ui z

′′
n−1,loz

′
n−1,li . . . z

′′
2,loz

′
2,li = 1,

which simplifies to (13). ��
• Figure 6 shows a top-view of the 5T -spine near a crossing, as well as the shape

parameters of horizontal corners of the spine. We see that each vertex of a region of
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z2,ui

z′
2,ui

z′′
2,ui

z1,loz1,lo

m

mz1,lo

z′′
2,ui

z′
2,ui

Fig. 7 The meridian positioned on top of overpass 2, and the left part of the region of the 5t spine that m
intersects

K gives rise to 3 corners in the corresponding big region. For each region Ri of K ,
we get a big region equation of the form

∏

v corner of Ri

f (v) = 1 (14)

where the corner factors f (v) are prescribed by the rule shown in Fig. 6.
Below, we will denote the triangle, region and shingle equations by ti , rk and s j

respectively. The above discussion defines the gluing equations variety GD as an affine
subvariety of (C∗∗)5c(D) defined by

GD = {(wc, zc,ui , zc,uo, zc,li , zc,lo)c∈c(D) ∈ (C∗∗)5c(D) | ti = 1, s j = 1, rk = 1}.
(15)

We now express the holonomies wμ = hμ and wλ = hλ of the meridian μ and
preferred longitude λ in terms of the above shape parameters. Note that if K is not the
unknot, it is always possible to find in the diagram of K an underpass that is followed
by an overpass that corresponds to a different crossing of K . We then name those two
crossings 1 and 2. Assume that the meridian is positioned as shown in Fig. 7. Then
the rule described in Sect. 2.1 gives us the following holonomy:

hμ = −z1,loz
′
2,ui z

′′
2,ui .

As z2,ui z′2,ui z′′2,ui = −1, we get:

wμ = hμ = z1,lo
z2,ui

. (16)

Finally, we turn to the holonomy of a longitude. We first compute the holonomy of
the longitude l̃ corresponding to the blackboard framing of the knot. We can represent
this longitude on the diagram D as a right parallel of D. We draw this longitude on
the spine in Fig. 8, we can see that it intersects each upper or lower shingle region in
one segment.
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l̃
z′′
uo

zuo

zui

z′
ui

l̃

zli
z′′
li

zuo

z′
uo

Fig. 8 The longitude l̃ on the 5t-spine, and the shape parameters to the left (resp. to the right) of it on
overpasses (resp. underpasses)

Wecompute the holonomyof each segment in an upper shingle using the convention

ha = −
∏

c left corner

zc

and each lower shingle segment using the convention

ha = −
∏

c right corner

z−1
c .

We can actually ignore the −1 signs as there are 2c(D) segments, an even number.
As Fig. 8 shows, we get:

hλ̃ =
∏

overarc a

∏

overpasses∈a
z′′uoz′ui

∏

underarc a

∏

underpasses∈a

1

z′loz′′li
=

∏

X(D)

z′′uoz′ui
z′loz′′li

.

The last product is over the set X(D) of crossings of D, and for simplicity we do
not indicate the dependence of the variables on the crossing c ∈ X(D). Let λ be the
longitude with zero winding number with K . The winding number of the blackboard
framing longitude λ̃ is the writhe wr(D) of the diagram D, which can be computed by
wr(D) = c+ −c−, where c+ and c− are the number of positive and negative crossings
of the diagram. We then have λ̃ = λμwr(D) and thus

wλ = hλ = w−wr(D)
μ

∏

X(D)

z′′uoz′ui
z′loz′′li

. (17)

2.5 Labeled knot diagrams

In this section we introduce a labeling of the crossings in a knot diagram, closely
related to the Dowker-Thistlethwaite notation of knots.

Recall that D is a planar diagram of an oriented knot K and that we have chosen two
special crossings 1 and 2 that are successive in the diagram, such that such crossing 1
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Fig. 9 A labeling of the
crossings of a figure eight knot
diagram. The 4 distinct crossings
of the diagram have labels
(1, 6), (2, 5), (3, 8) and (4, 7)

corresponds to an underpass and crossing 2 to an overpass. This choice determines a
labeling of crossings of D as follows.

Following the knot, we label the other crossings 3, 4, . . . . Note that as the knot
passes through each crossing twice, each crossing c of D gets two labels j < j ′.
Exactly one of those two labels correspond to the overpass and the other one to the
underpass. Arcs of the diagram join two successive over- or underpasses labeled l and
l + 1 (or 2c(D) and 1). We write [l, l + 1] for the arc joining crossings l and l + 1.

This labeling is illustrated in Fig. 9 in the case of the figure eight knot.

2.6 Analysis of triangle and shingle relations

In this section, we show that the triangle and shingle equations allow us to eliminate
variables in the gluing variety GD . We have the following:

Proposition 2.2 InGD, each of the variableswc, zc,li , zc,lo, zc,ui , zc,uo are monomials
in the variables wc, wμ and w0 = z1,lo.

Proof Fix a labeled knot diagram D as in Sect. 2.5. Before eliminating variables, we
start by assigning to each arc [l, l + 1] of the diagram a new parameter zl,l+1. These
parameters are expressed in terms of the previous parameters by the following rules:

z1,2 = z1,lo = w0 and zl,l+1 = z1,lo
∏

j∈[[2,l]]∩O(D)

w j

∏

j∈[[2,l]]∩U (D)

w−1
j .

We recall that in the above O(D) (resp. U (D)) is the set of overpasses (resp. under-
passes) in the diagram D. Also, given integers a, b ∈ Z with a ≤ b, we denote

[[a, b]] = {a, a + 1, . . . , b}.

Note that the arc parameters zl,l+1 are all clearly monomials in w0 and the wc’s.
We claim that each of the shape parameters zc,li , zc,lo, zc,ui , zc,uo are monomials

in the zl,l+1’s and wμ. This will imply the proposition. Indeed, let [k, k + 1] be an arc
of K . Then we claim that:
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zk,k+1 =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

zk,lo if k is an underpass
1

zk+1,li
if k + 1 is an underpass

wμ

zk,uo
if k is an overpass

zk+1,ui
wμ

if k + 1 is an overpass

Note z1,2 = z1,lo by definition. If k is an underpass, the formula

zk,k+1 = z1,lo
∏

j∈[[2,k]]∩O(D)

w j

∏

j∈[[2,k]]∩U (D)

w−1
j

matches with the upper shingle equation expressing zk,lo in terms of z1,lo. Indeed, if
k is the underpass coming immediately after underpass 1, Eq. (12) says:

zk,lo = z1,low
−1
k

∏

j∈[[2,k−1]]
w j .

As crossings 2, 3, . . . k − 1 correspond to overpasses and k to an underpass, we also
have

zk,k+1 = z1,low
−1
k

∏

j∈[[2,k−1]]
w j .

By induction, we find that zk,k+1 = zk,lo for any underpass k.
The second case is then a consequence of the lower triangle equation zk+1,li =
1

wk+1zk+1,lo
, and the fact that zk,k+1 = zk+1,k+2wk+1 as k + 1 is an underpass.

Note that z2,ui = z1,lo
wμ

by Eq. (16), so the fourth case is valid for the arc [1, 2].
Similarly to case 1, we can prove case 4 for other arcs ending in an overpass from the
lower shingle equations by induction.

Finally, the third case follows as zk,uo = 1
wk zk,ui

, and zk,k+1 = wk zk−1,k . ��
In the rest of the paper, we will often use the arc parameters zk,k+1 defined above

to express equations in GD .

For instance, thanks to Proposition 2.2, we can rewrite the big region equations
rk = 1 as equations rk(w) = 1, where rk(w) is expressed in terms of the variables w

only.

Remark 2.3 Although the arc parameters zl,l+1 are just monomials in the w variables,
they are helpful for writing down the equations defining GD in a more compact way.
When the choice of a crossing c is implicit, we introduce a simplified notation for
the parameters associated to arcs neighboring c. We will write za, zb, za′ , zb′ for the
parameters associated to the inward half of the overpass, inward half of underpass,
outward half of underpass and outward half of underpass.

With this convention, at any crossing we have:

zui = za
wμ

, zli = 1

zb
, zuo = wμ

za′
, and zlo = zb′ .
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For instance, we get a new expression of the holonomy of the longitude:

Proposition 2.4 With the convention of Remark 2.3, the holonomy of the zero-winding
number longitude is expressed by:

wλ = w−wr(D)
μ

∏

X(D)

w

(
1 − wμ

za′
1 − wμ

za

)(
1 − zb′

1 − zb

)
. (18)

Proof By Eq. (17) we have:

wλ = w−wr(D)
μ

∏

X(D)

z′′uoz′ui
z′loz′′li

= w−wr(D)
μ

∏

X(D)

(
1 − za′

wμ

1 − za
wμ

)(
1 − zb′

1 − zb

)

= w−wr(D)
μ

∏

X(D)

za′

za

(
1 − wμ

za′
1 − wμ

za

)(
1 − zb′

1 − zb

)

= w−wr(D)
μ

∏

X(D)

w

(
1 − wμ

za′
1 − wμ

za

) (
1 − zb′

1 − zb

)
.

��

2.7 Analysis of big region equations

Recall that the big region equations are parametrized by the regions of the planar
diagram D, i.e., by the connected components of S2\D. In this section, we give an
alternative set of equations which are parametrized by the crossings of D, and we call
those the loop equations.

Our motivation comes from the fact that we will later match the loop equations
with equations that come from a state sum formula for the colored Jones polynomial.

Consider a crossing c in the labeled diagram D. Recall from Sect. 2.5 that c has
two labels j < j ′. The arc [ j, j ′] starts and ends at the same crossing, hence one may
close it up to obtain a loop γc. For a region Ri of the diagram, let us pick a point pi
in the interior of Ri . We write w(γc, pi ) for the winding number of γ relative to the
point pi . The big region equation corresponding to the region Ri is ri = 1, where ri
is the product of corners factors, see Eq. (14) and Fig. 6. The loop equation Lc = 1 is
then defined by

Lc =
∏

Ri region

rw(γc,pi )
i . (19)
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We also introduce

L0 =
∏

Ri region of D

rw(K ,pi )
i . (20)

Proposition 2.5 The set of equations L0 = 1, Lc = 1 for all c ∈ X(D) is equivalent
to the set of equations ri = 1 for all region Ri of D.

Proof The equations L0 = 1, Lc = 1 are clearly implied by the big region equations
ri = 1 as the Lc’s and L0 are monomials in the ri ’s. We will show that the ri ’s are
also monomials in L0 and the Lc’s, and thus equations ri = 1 are a consequence of
loop equations.

Let us consider the diagram D as an oriented 4-valent graph embedded in S2. For
any δ ∈ H1(D,Z), we can also introduce a loop equation

Lδ =
∏

Ri region

rw(δ,pi )
i .

Note that δ → Lδ is a morphism of group H1(D,Z) → C
∗ and that the equation ri

can be presented in this form too:
Indeed, chose δ = ∂Ri with positive orientation. Then w(δ, p j ) = 0 if j �= i , and

w(δ, pi ) = 1, hence Lδ = ri .
Thus we only need to prove that H1(D,Z) is generated by K and the classes γc.

The diagram D has c(D) vertices and 2c(D) edges, and thus H1(D,Z) = Z
c(D)+1.

So we need to show that K and the loops γc are a Z-basis of H1(D,Z). To do this we
first show that they are linearly independent in the space of 1-chains C1(D,Z).

Recall that we fixed a labeling of overpasses and underpasses in [1, 2c(D)] follow-
ing the knot K . Note that the arcs [1, 2], [2, 3], . . . [2c(D), 1] give a basis ofC1(D,Z).
We order this basis with the convention [1, 2] < [2, 3] < · · · < [2c(D), 1].

Then K = [1, 2] + [2, 3] + · · · + [2c(D), 1] in C1(D,Z), and if a crossing c has
labels j < j ′, then γc = [ j, j + 1] + · · · + [ j ′ − 1, j ′].

We see that K is not in the space generated by the γc as it is the only one with
non-zero coordinate along [2c(D), 1].

Moreover, the loops γc are linearly independent as the indices of their first non-zero
coordinates are all different.

So K and the γc are linearly independent in H1(D,Z), and thus a Q-basis of
H1(D,Q). We can actually show that they form a Z-basis of H1(D,Z). Indeed if
δ ∈ H1(D,Z), we can subtract a Z-linear combination of K and the γc’s to δ to obtain
an element with 0 coordinate on [2c(D), 1] and each [ j, j + 1] for each crossing with
labels j < j ′. This element has then to be zero as (K , γc) is a Q-basis of H1(D,Q).

Thus K and the γc’s generate H1(D,Z), and the ri ’s are monomials in the L0, Lc.
��
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2.8 Formulas for the loop equations

In this section, we simplify the equations L0, Lc which we defined as monomials in
the big region equations. Our goal is to express those equations in terms of the arc
parameters zk,k+1 introduced in Sect. 2.6, which we recall are monomials in the w

variables.

Proposition 2.6 Let c be a crossing of D with labels j < j ′. For k ∈ [ j, j ′], let
ε(k) = 1 if k corresponds to a positive crossing and ε(k) = −1 otherwise. Let also
u+(k) = 1+ε(k)

2 and u−(k) = 1−ε(k)
2 . Then we have:

Lc = Kc

∏

k∈[[ j+1, j ′−1]]∩O(D)

(
zu−(k)
b

zu+(k)
b′

)(
1 − wμ

za′
1 − wμ

za

)

×
∏

k∈[[ j+1, j ′−1]]∩U (D)

wε(k)
μ

(
zu−(k)
a

zu+(k)
a′

)(
1 − zb
1 − zb′

)
, (21)

where in the above we set

Kc =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(
1
zb′c

)
(
1− wμ

za′
c

)
(1−zbc )

(1−wc)
if j is an overpass andε(c) = +1,

(
− za′

c
wμ

)
(
1− wμ

za′
c

)
(1−zbc )

(1−wc)
if j is an overpass andε(c) = −1,(

wμ

za′
c

)
(1−wc)(

1− wμ
zac

)(
1−zb′c

) if j is an underpass andε(c) = +1,

(−zb′
c
)

(1−wc)(
1− wμ

zac

)
(1−zb′c )

if j is an underpass andε(c) = −1.

Proof We recall that γ is the loop obtained from the arc [ j, j ′] of D by gluing its two
ends together. Let also γ ′ be the complementary loop of γ , which is obtained from the
arc [ j ′, j] by gluing the two ends. Note that γ ′ goes through the underpass labeled 1.

As Lc = ∏
Ri regionr

w(γ,pi )
i is a product of big region equations, and each big region

factor is a product of corner factors, we can rewrite Lc as a product of corner factors.
Each corner v of D appears in one region Ri only , and the winding number w(γ, v)

of γ around v is the same as w(γ, pi ). Thus we may rewrite Lc as

Lc =
∏

v corner of D

f (v)w(γ,v),

where the corner factors f (v) are those of Fig. 6.
Figure 10 shows the local pattern of winding numbers of corners near a crossing

of D, depending which neighboring arcs belong to γ and γ ′. First let us note for a
crossing between two strands of γ ′, all local winding numbers are equal, thus the
crossing contributes by the product of all 4 corners factors to some power. However,
at any positive crossing, the product of corner factors is
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n

n

n n

n+ 1

n+ 1
n

n n+ 2

n+ 1

n+ 1

n

n− 1
n

n

n n

n+ 1

n

n n

n+ 1

n

n n− 1
n

n

n

Fig. 10 The local pattern of winding numbers near a crossing. Strands of γ are represented by solid lines,
strands of γ ′ by dashed lines. The bottom row corresponds to the 4 different possibilities for over/underpass
j : positive overpass, negative overpass, positive underpass, or negative underpass

(w′z′′uoz′′lo)(w′′z′uoz′li )(w′z′′ui z′′li )(w′′z′ui z′lo) = 1

w2zui zuozli zlo
= 1

by the rule zz′z′′ = −1 and the triangle equations. Similarly, at any positive crossing,
the product of corner factors is

(w′′z′uoz′lo)(w′z′′uoz′′li )(w′′z′ui z′li )(w′z′′ui z′′lo) = 1

w2zui zuozli zlo
= 1.

So crossings between two strands of γ ′ do not contribute to Lc.
Next we consider a crossing between one strand of γ and one strand of γ ′. By the

local winding numbers shown in Fig. 10 and that fact that the product of the 4 corner
factors at a crossing is 1, such a crossing contributes by the product of the two corner
factors to the left of γ . Similarly, for a crossing between two strands of γ , we get the
product of the two corner factors to the left of the first strand times tFig. he two corner
factors to the left of the other strand.

Hence, each overpass or underpass l ∈ [[ j + 1, j ′ − 1]] of γ contributes to one
factor Kl which is the product of the two left corner factors. By the rule described in
Fig. 6, for a positive overpass we get

Kl = (w′z′′uoz′′lo)(w′′z′ui z′lo) = z′ui z′′uo
wzlo

= zli z
′
ui z

′′
uo

= 1

zb

(
1 − za′

wμ

1 − za
wμ

)
= za′

zazb

(
1 − wμ

za′
1 − wμ

za

)
= 1

zb′

(
1 − wμ

za′
1 − wμ

za

)
,

where the last equality comes from the fact that, at any crossing, za′
za

= zb
zb′

= w.
Similarly, at a negative overpass we get:

Kl = (w′z′′uoz′′li )(w′′z′ui z′li ) = z′′uoz′ui
wzli

= zloz
′
uoz

′′
ui

= zb′

(
1 − za′

wμ

1 − za
wμ

)
= zb′ za′

za

(
1 − wμ

za′
1 − wμ

za

)
= zb

(
1 − wμ

za′
1 − wμ

za

)
.

123



A diagrammatic approach to the AJ Conjecture 467

At a positive underpass we get:

Kl = (w′′z′ui z′lo)(w′z′′ui z′′li ) = z′loz′′li
wzui

= zuoz
′
loz

′′
li = wμ

za′

(
1 − zb
1 − zb′

)
,

and, finally, at a negative underpass we get:

Kl = (w′z′′uoz′′li )(w′′z′uoz′lo) = z′loz′′li
wzuo

= zui z
′
loz

′′
li = za

wμ

(
1 − zb
1 − zb′

)
.

All those overpass/underpass factors correspond to the ones in Eq. (21). Finally we
turn to the contribution Kc of crossing c. By the local pattern of winding numbers in
Fig. 10, and the corner factors rule of Fig. 6, we have, if j is a positive overpass:

Kc = 1

w′′z′uoz′li
=

(1 − wμ

za′ )(1 − 1
zb

)

(1 − 1
w

)

=
(

w

zb

) (1 − wμ

za′ )(1 − zb)

(1 − w)
=

(
1

zb′

) (1 − wμ

za′ )(1 − zb)

(1 − w)
.

If j is a negative overpass, we have:

Kc = w′z′′uoz′′li =
(

1

1 − w

)
(1 − za′

wμ

)(1 − zb) =
(

− za′

wμ

) (1 − wμ

za′ )(1 − zb)

(1 − w)
.

If j is a positive underpass, then:

Kc = w′′z′ui z′lo = (1 − 1
w

)

(1 − za
wμ

)(1 − zb′)

=
(

wμ

wza

)
1 − w

(1 − wμ

za
)(1 − zb′)

=
(

wμ

za′

)
1 − w

(1 − wμ

za
)(1 − zb′)

.

Finally if j is a negative underpass, then:

Kc = 1

w′z′′ui z′′lo
= (1 − w)

(1 − wμ

za
)(1 − 1

zb′
)

= (−zb′)
(1 − w)

(1 − wμ

za
)(1 − zb′)

.

We clearly see that in each case the factor Kc matches with that of Proposition 2.6. ��
We want to rearrange the loop equations slightly, grouping together the factors

w
ε(k)
μ on the one side and the factors

z
u−(k)
b

z
u+(k)
b′

and z
u−(k)
a

z
u+(k)
a′

on the other side. For the former

we claim:
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Lemma 2.7 Let c be a crossing of D with labels j < j ′, γ the loop [ j, j ′]/ j= j ′ , and
γ ′ the loop [ j ′, j]/ j= j ′ . For l ∈ ( j, j ′) an over- or underpass, let ε(l) be the sign of
the corresponding crossing. Then we have

∑

l∈U (D)∩( j, j ′)
ε(l) =

∑

l∈( j, j ′)

ε(l)

2
= wr(γ ) + lk(γ, γ ′).

Remark 2.8 By the above lemma, the factors w
ε(k)
μ in the product on the right of

Eq. (21) group up to one factor w
wr(γ )+lk(γ,γ ′)
μ .

Proof The crossings of D that are in ( j, j ′) are of two types: self-crossings of γ and
crossing between γ and γ ′. Self-crossings of γ belong to both an overpass and an
underpass l ∈ ( j, j ′), hence in both sums in the lemma, those crossings contribute to
c+(γ ) − c−(γ ) = wr(γ ).

Moreover the linking number of γ and γ ′ can be computed in two ways as∑
l∈γ∩γ ′ ε(l)

2 or as
∑

l∈γ∩γ ′∩U (D)ε(l). Thus hence in both sums in the lemma mixed
crossings contribute to lk(γ, γ ′). ��

Lemma 2.9 Let c be a crossing of D with labels j < j ′. Then:

∏

k∈( j, j ′)∩O(D)

zu−(k)
b

z′u+(k)
b

∏

k∈( j, j ′)∩U (D)

zu−(k)
a

zu+(k)
a′

= C
∏

k∈( j, j ′)∩O(D)

(zbzb′)−
ε(k)
2

∏

k∈( j, j ′)∩U (D)

(zaza′)−
ε(k)
2 ,

where C =
(

zbc
za′

c

) 1
2 =

( zb′c
zac

) 1
2
if j is an overpass and C =

(
zac
zb′c

) 1
2 =

( za′
c

zbc

) 1
2
.

Proof We have by definition of u+(k) and u−(k):

zu−(k)
b

zu+(k)
b′

=
(
zb
zb′

) 1
2

(zbz
′
b)

− ε(k)
2 , and

zu−(k)
a

zu+(k)
a′

=
(
za
za′

) 1
2

(zaz
′
a)

− ε(k)
2 .

Moreover, as at any crossing zb
zb′

= za′
za

= w, we have:

∏

k∈( j, j ′)∩O(D)

(
zb
zb′

) 1
2 ∏

k∈( j, j ′)∩U (D)

(
za
za′

) 1
2 =

∏

k∈( j, j ′)∩O(D)

(
za′

za

) 1
2 ∏

k∈( j, j ′)∩U (D)

(
zb′

zb

) 1
2

=
∏

k∈( j, j ′)

(
zk,k+1

zk−1,k

) 1
2 =

(
z j ′−1, j ′

z j, j+1

) 1
2

.
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Finally, if j is an overpass then
(
z j ′−1, j ′
z j, j+1

) 1
2 =

(
zbc
za′

c

) 1
2

as za′
c

= z j, j+1 and zbc =

z j ′−1, j ′ . Similarly,
(
z j ′−1, j ′
z j, j+1

) 1
2 =

(
zac
zb′c

) 1
2

if j is an underpass. ��

From Proposition 2.6 together with Lemmas 2.7 and 2.9 , we obtain another formula
for the loop equation:

Proposition 2.10 Let c be a crossing of D with labels j < j ′ and let Lc be the
associated loop equation. If k ∈ ( j, j ′), let ε(k) be the sign of the corresponding
crossing. Then:

Lc = K ′
c

∏

k∈( j, j ′)∩O(D)

(
wμ

zbzb′

) ε(k)
2

(
1 − wμ

za′
1 − wμ

za

)

×
∏

k∈( j, j ′)∩U (D)

(
wμ

zaza′

) ε(k)
2

(
1 − zb
1 − zb′

)
(22)

where K ′
c is obtained from Kc of Proposition 2.6 by replacing respectively a factor(

1
zb′c

)
, za′

c
,

(
1
za′

c

)
, or zb′

c
by 1

(zac zb′c )
1
2
, (za′

c
zbc )

1
2 , 1

(za′
c
zbc )

1
2
, or (zac zb′

c
)
1
2 if j is a

positive overpass, a negative overpass, a positive underpass or a negative underpass.

Finally, we turn to the expression of the last loop equation L0 = ∏
Ri region r

w(K ,Ri )
i

that we introduced in Section 2.7.

Proposition 2.11 We have the formula:

L0 =
∏

c∈X(D)

(
wμ

zazb

)ε(c) (1 − wμ

za′ )(1 − zb)

(1 − wμ

za
)(1 − zb′)

Proof We proceed similarly as in the proof of 2.6. As we are taking the whole knot K
instead of one of the loops γc, the local pattern of winding numbers at any crossing
looks like the third drawing in Fig. 10.

By the corner factor rule of Fig. 6, we get a factor

z′ui z′lo
z′uoz′li

=
(1 − wμ

za′ )(1 − 1
zb

)

(1 − za
wμ

)(1 − zb′)
=

(
wμ

zazb

) (1 − wμ

za′ )(1 − zb)

(1 − wμ

za
)(1 − zb′)
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at a positive crossing and a factor:

z′′uoz′′li
z′′ui z′′lo

=
(1 − za′

wμ
)(1 − zb)

(1 − wμ

za
)(1 − 1

zb′
)

=
(
za′ zb′

wμ

) (1 − wμ

za′ )(1 − zb)

(1 − wμ

za
)(1 − zb′)

=
(
zazb
wμ

) (1 − wμ

za′ )(1 − zb)

(1 − wμ

za
)(1 − zb′)

,

at a negative crossing, using that zazb = za′ zb′ at any crossing. ��

2.9 A square root of the holonomy of the longitude

In this section, we show that the holonomy of the longitude wλ admits a square root
in C[GD]. We prove the following.

Proposition 2.12 Let s be defined by

s =
∏

X(D)

(1 − wμ

za
)

(1 − wμ

za′ )
w−1/2(zazb)

ε(c)
2 . (23)

Then s ∈ C(wμ,w0, wc) and s2 = 1
wλL0

.

Proof By Eq. (18),

wλ =
∏

X(D)

w−ε(c)
μ w

(
1 − wμ

za′
1 − wμ

za

) (
1 − zb′

1 − zb

)
,

and by Eq. (22):

L0 =
∏

X(D)

(
wμ

zazb

)ε(c)
(
1 − wμ

za′
1 − wμ

za

) (
1 − zb
1 − zb′

)
.

Those two equations clearly imply that s2 = 1
wλL0

. The non-trivial part is to show
that s is actually in C(wμ,w0, wc), which is equivalent to showing the degree of the
monomial

∏
X(D) wzazb is even in each of the variable wμ,w0 and wc.

First we note that all arc parameters za, zb have degree 0 along wμ and degree 1
along w0. So what we need to show is that the product

∏
X(D) zazb has odd degree

along each variable wc associated to a crossing. We remark that this product is also
the product of all arc parameters as each arc is an inward arc of exactly one crossing.

Let c be a crossing with labels j < j ′. Then for any arc [k, k+1] the arc parameter
zk,k+1 is of the form zk,k+1 = w0w

ε
c
∏

c′ �=c w
εc′
c′ , where ε ∈ {−1, 0, 1}, and ε �= 0

if and only if [k, k + 1] ⊂ [ j, j ′]. So all we have to show is that j ′ − j is always
odd for any crossing c. The reason is that the loop γ = [ j, j ′]/ j∼ j ′ has j ′ − j − 1
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intersection points with the rest of K , and those intersection points bound a collection
of segments, which are the intersection of K with a disk bounded by γ . So j ′ − j − 1
is always even. ��

3 q-holonomic functions, creative telescoping and certificates

In this sectionwe recall someproperties ofq-holonomic functions, creative telescoping
and certificates, which we will combine with a state sum formula for the colored
Jones polynomial to prove our main Theorem 1.1. Recall that a q-holonomic function
f : Z → Q(q) is one that satisfies a non-zero recursion relation of the form (1),
i.e., a function with annihilator (3) satisfying Ann( f ) �= 0. q-holonomic functions
of several variables are defined using a notion of Hilbert series dimension, and are
closed under sums, products as well as summation of some of their variables. Building
blocks of q-holonomic functions are the proper q-hypergeometric functions of [37].
For a detailed discussion of q-holonomic functions, we refer the reader to the survey
article [17].

The following proposition is the fundamental theorem of q-holonomic functions.
When F is proper q-hypergeometric, a proof was given in Wilf-Zeilberger [37]. A
detailed proof of the next proposition, as well as a self-contained introduction to q-
holonomic functions, we refer the reader to [17].

Proposition 3.1 (a) Proper q-hypergeometric functions are q-holonomic.

(b) Let F : Zr+1 → Q(q) be q-holonomic in the variables (n, k) ∈ Z×Zr such that
F(n, ·) has finite support for any n and let f : Z → Q(q) be defined by

f (n) =
∑

k∈Zr

F(n, k).

Then f is q-holonomic.

The above proposition combined with an R-matrix state-sum formula for the col-
ored Jones polynomial implies that the colored Jones polynomial of a knot (or link,
colored by representations of a fixed simple Lie algebra) is q-holonomic [15].

With the notation of the above proposition, a natural question is how to compute
Ann( f ) given Ann(F). This is a difficult problem practically unsolved. However, an
easier question can be solved: namely given Ann(F), how to compute a nonzero
element in Ann( f ). The answer to this question is given by certificates, which
are synonymous to the method of creative telescoping, coined by Zeilberger [39].
The latter aims at computing recursions for holonomic functions obtained by sum-
ming/integrating all but one variables. For a detailed discussion and applications, see
[30,37] and also [3].

Proposition 3.2 (a) Let F and f be as in Proposition 3.1, and consider the map ϕ

from (6). Let

P ∈ Ann(F) ∩ Q[q, Q]〈E, Ei 〉. (24)
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Then ϕ(P) ∈ Ann( f ).
(b) There exists P as above with ϕ(P) �= 0.

Nonzero elements P as in (24) are called “certificates”, and those that satisfy
ϕ(P) �= 0 are called “good certificates”. Certificates are usually computed in the
intersectionAnn(F)∩Q(q, Q)〈E, Ei 〉, wheremembership reduces to a linear algebra
question over the fieldQ(q, Q) and then lifted to the ringQ[q, Q]〈E, Ei 〉 by clearing
denominators.

Part (b) is shown inZeilberger [38] and in detail inKoutschan’s thesis [23, Thm.2.7].
In the latter reference, this is called the “elimination property” of holonomic ideals.
Part (a) is easy and motivates the name “creative telescoping”. Indeed, one may write

P(E, Q, Ei ) = P̃(E, Q) +
d∑

i=1

(Ei − 1)Ri (E, Q, Ei ).

A recurrence relation of this form is also called a certificate. After expanding the sum∑
k∈Zd P(E, Q, Ei )F(n, k) = 0, the terms

∑

k∈Zd

(Ei − 1)Ri (E, Q, Ei )F(n, k),

are telescoping sums and thus equal to 0. Finally, note that when F is proper q-
hypergeometric, an operator P as above may be found by using its monomials as
unknowns and solving a system of linear equations of PF/F . Hence, once P is found
(and that is the difficult part), it is easy to check that it satisfies the relation PF = 0,
which reduces to an identity in a field of finitely many variables–hence the name
“certificate”.

Part (b) follows by multiplying an element of Ann(F) on the left if necessary by a
monomial in Qi . We thank Koutschan for pointing this out to us.

4 The colored Jones polynomial of a knot

4.1 State sum formula for the colored Jones polynomial of a knot diagram

In this section, we use a diagram D of an oriented knot K to give a (state sum)
formula for the n-th colored Jones polynomial JK (n) ∈ Z[q±1] of K . Such a formula
is obtained by placing an R-matrix at each crossing, coloring the arcs of the diagram
with integers, and contracting tensors as described for instance in Turaev’s book [34].
The formula described in this section follows the conventions introduced in [16]; we
also refer to [16] for all proofs.

For n ≥ 0, we define the n-th quantum factorial by

(q)n =
n∏

i=1

(1 − qi ).
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a a

a a

q
2a−n

4 q− (2a−n)
4 q− (2a−n)

4 q
2a−n

4

b′ a′

ba

q
(n+na+nb′−a′b′−ab)

2
(q)n−a

(q)n−a′
(q)b

(q)b′ (q)k

b′a′

b a

(−1)kq
(−n−na′−nb+a′b+ab′−a′+a)

2
(q)n−a

(q)n−a′
(q)b

(q)b′ (q)k

Part

Weight

Part

Weight

Fig. 11 The local parts X of D, their arc-colors r and their weights w(X , r)

Note that quantum factorials satisfy the recurrence relation (q)n+1 = (1− qn+1)(q)n
for any n ≥ 0. As it will be helpful for us to have recurrence relations that are valid
for any n ∈ Z, we will use the following convention of quantum factorials and their
inverses:

(q)n =
{∏n

j=1(1 − qi ) if n ≥ 0,

0 if n < 0,

1

(q)n
=

{
1∏n

i=1(1−qi )
if n ≥ 0,

0 if n < 0.

With the above definition and with the notation of (2) we have:

(1 − qQ)(E − (1 − qQ)) ∈ Ann((q)n), ((1 − qQ)E − 1) ∈ Ann(1/(q)n).

Fix a labeled diagram D of an oriented knot K as inSect. 2.5.After possibly performing
a local rotation, one can arrange D so that at each crossing the two strands of K are
going upwards. The diagram D is then composed of two types of pieces: the crossings
(which can be possible or negative) and local extrema. Let arc(D) be the set of arcs
of the diagram D, we say that a coloring

r : arc(D) −→ Z

is n-admissible if the color of any arc is in [0, n] and for any crossing, if a, a′, b, b′ are
the color of the neighboring arcs in shown in Fig. 11, then a′−a = b−b′ = k ≥ 0. Let
SD,n be the set of all n-admissible colorings of the arcs of D. Note that SD,n coincides
with the set of lattice points in the n-th dilatation of a rational convex polytope PD

defined by the n-admissibility conditions.
For a proof of the next proposition, we refer to [16, Sec.2].

Proposition 4.1 The normalized n-th colored Jones polynomial of K is obtained by
the formula:

JK (n) = qn/2
∑

r∈SD,n

w̃D(n, r), (25)
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where w̃D(n, r) = ∏
X piece w(X , r) is a product of weights associated to crossings

and extrema of D as shown in Fig. 11.

The insertion of the factor qn/2 in front of the above sum is done for convenience
only, so that JK (n) is a Laurent polynomial in q rather than one in q1/2. This normal-
ization plays no role in the AJ Conjecture . Note that we have JK (0) = 1 for every

knot K and JUnknot(n) = 1−qn+1

1−q for any n ≥ 0 and JK (1, q−1)/JUnknot(1, q−1) is
the Jones polynomial of K .

Note that the color of all arcs are completely determined by the shifts (k1, . . . , kc(D))

∈ Z
c(D) associated to crossings and the color k0 of the arc [1, 2]. In other words,

r = r(k) is a linear function of k = (k0, . . . , kc(D)) ∈ Z
c(D)+1. Suppressing the

dependence on q, we introduce the notation

wD(n, k) = qn/2w̃D(n, r(k))(q).

When examining recurrence relations for the colored Jones it will be more conve-
nient to express JK (n) as a sum over all k ∈ Z

c(D)+1 rather than a sum over colorings
r in the set SD,n of lattice points in the rational convex polytope PD . For this we have
the lemma:

Lemma 4.2 For any knot K , we have:

JK (n) =
∑

k∈Zc(D)+1

wD(n, k). (26)

Proof We recall that we have set the convention 1
(q)n

= 0 if n < 0. From the definition
of weights associated to crossings, we see that at any crossing the weight vanishes
unless k ≥ 0, b′ ≥ 0 and a′ ≤ n.

Pick a coloring so that the associated weight is non-zero. Consider the color ci,i+1
of the arc [i, i + 1]. If i is an underpass, then we get that ci,i+1 ≥ 0. If on the other
hand i is an overpass, then ci,i+1 = ci−1,i + ki , so ci,i+1 ≥ ci−1,i . If i − 1 is an
underpass, one concludes that ci,i+1 ≥ ci−1,i ≥ 0, else, one can continue until we
meet an underpass k, and write

ci,i+1 ≥ ci−1,i ≥ · · · ≥ ck,k+1 ≥ 0.

Thus if the weight is non-zero, the color of all arcs must be non-negative.
Similarly, we can show that the color of all arcs muss be at most n. We already

know that ci,i+1 ≤ n if i is an overpass. Else, if k is the overpass immediately before
i , we have

ci,i+1 ≤ ci−1,i · · · ≤ ck,k+1 ≤ n.

Thus any non-zero weight corresponds to an element of SD,n . ��
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4.2 The annihilator ideal of the summand of the state sum

It is easy to see that the summand wD(n, k) of the state sum (25) is a q-proper hyper-
geometric function in the sense of [37]. In this section we compute generators of its
annihilator ideal. To do so, we compute the effect of the shift operators E , E0 and Ec

on wD(n, k). Each operator is acting on exactly one of the c(D) + 2 variables (n, k)
leaving all others fixed.

• E shifts n to n + 1.
• E0 shifts k0 to k0 + 1. As the color of any other arc of D is of the form k0 +∑

c∈X(D)εckc with εc ∈ {−1, 0, 1}, the operator E0 actually shifts the color of all
arcs up by 1.

• Ec for each crossing c shifts kc to kc + 1.

The propositions of this section will match, after setting q = 1, with the gluing
equations of the 5T -spine of the knot projection.

Because we will later reduce our equations by plugging q = 1, it will only matter
to us that they are exact up to fixed powers of q. We will write q∗ for a power of q
which does not depend on (n, k).

Let us start by considering the effect of E0 on w.

Proposition 4.3 The summand wD(n, k) of the colored Jones polynomial satisfies:

E0wD(n, k)

wD(n, k)
= q∗ ∏

c∈X(D)

(
qn

qaqb

)ε(c)
(1 − qn−a′

)(1 − qb+1)

(1 − qn−a)(1 − qb′+1)
(27)

Remark 4.4 The denominators in the above equations actually vanish if k /∈ SD,n . To
obtain recurrence relations that are valid for any (n, k), we can simply move each
denominator to the other side of the equation. The convention 1

(q)i
= 0 if i < 0 will

ensure that the equations still hold.

Proof Let us note first that the weights of local extrema are linear powers of q. When
computing the ratio E0wD(n,k)

wD(n,k) those weights will only contribute to a q∗ factor. Thus
we can discard thoseweightswhile trying to prove Proposition 4.3.We can also discard
any linear power q from the weights of crossing, as well as the contribution of the
factor qn/2 in wD for the same reason.

We also note that one can separate the weights w(c) of crossings into a product of
two factors w>(c) and w<(c), where

w>(c) = (q)n−a

(q)n−a′
(q)b

(q)b′(q)k

and

w<(c) =
{
q(n+na+nb′−a′b′−ab)/2 if ε(c) = +1,

(−1)kq(−n−na′−nb+a′b+ab′)/2 if ε(c) = −1.
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where a, a′, b, b′ are the colors of arcs neighboring the crossing c, following the
convention described in Fig. 11.

Recall that E0 shifts the color of all arcs up by 1. Up to q∗, the ratio E0wD(n,k)
wD(n,k)

is a product of factors μ(c) = E0w>(c)
w>(c) and ν(c) = E0w<(c)

w<(c) for every crossing. We
compute that:

μ(c) = (q)n−a−1(q)n−a′

(q)n−a(q)n−a′−1

(q)b+1(q)b′

(q)b(q)b′+1
= (1 − qn−a′

)(1 − qb+1)

(1 − qn−a)(1 − qb′+1)
,

and

ν(c) = q∗ q(n(a+1)+n(b′+1)−(a′+1)(b′+1)−(a+1)(b+1))/2

q(na+nb′−a′b′−ab)/2
= q∗ qn

q(a+a′+b+b′)/2 = q∗ qn

qa+b
,

if c is positive and

ν(c) = q∗ q(−n(a′+1)−n(b+1)+(a′+1)(b+1)+(a+1)(b′+1))/2

q(−na′−nb+a′b+ab′)/2 = q∗ q(a+a′+b+b′)/2

qn
= q∗ qa+b

qn
,

if c is negative. This gives Eq. (27). ��

Let us now turn to the effect of operator E .

Proposition 4.5 The summand wD(n, k) of the colored Jones state sum satisfies:

EwD(n, k)

wD(n, k)
= q∗ ∏

X(D)

q
ε(c)

(
a+b
2

)
− k

2

(
1 − qn+1−a

1 − qn+1−a′

)
. (28)

Proof Again, we can safely ignore the contribution of weights of local extrema and
any linear power of q in the weights of crossings as they just contribute to a q∗ factor.
First, note that the effect of E is to shift n up by 1 and leave the colors of all arcs
invariant. Then, as in the previous Proposition, any crossing c contributes to the ratio
by the product of two factors μ(c) and ν(c), where

μ(c) = Ew>(c)

w>(c)
= (q)n+1−a(q)n−a′

(q)n+1−a′(q)n−a
= (1 − qn+1−a)

(1 − qn+1−a′
)
,

and

ν(c) = Ew<(c)

w<(c)
= q∗ q

(n+1)a+(n+1)b′−a′b′−ab
2

q
na+nb′−a′b′−ab

2

= q∗q(a+b′)/2 = q∗q(a+b)/2−k/2,
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as b′ = b − k, if c is a positive crossing. For c a negative crossing, we have:

ν(c) = q∗ (−1)kq
(−(n+1)a′−(n+1)b+a′b+ab′)

2

(−1)kq
(−na′−nb+a′b+ab′)

2

= q∗q(−a′−b)/2 = q∗q−(a+b)/2−k/2.

as a′ = a + k. Combining the factors μ(c) and ν(c) we get Eq. (28). ��

Proposition 4.6 Fix a labeled diagram D as in Sect. 2.5. Let c be a crossing of D with
labels j < j ′. Then the summand wD(n, k) of the colored Jones polynomial satisfies:

EcwD(n, k)

wD(n, k)
= q∗Fc

∏

l∈O(D)∩( j, j ′)

(
qn

qbqb′

) ε(l)
2 1 − qn−a′

1 − qn−a

∏

l∈U (D)∩( j, j ′)

(
qn

qaqa′

) ε(l)
2 1 − qb+1

1 − qb′+1
,

(29)

if j is an overpass and

EcwD(n, k)

wD(n, k)
= q∗Fc

∏

l∈O(D)∩( j, j ′)

(
qn

qbqb′

)− ε(l)
2 1 − qn+1−a

1 − qn+1−a′
∏

l∈U (D)∩( j, j ′)

(
qn

qaqa′

)− ε(l)
2 1 − qb

′

1 − qb
,

(30)

if j is an underpass. In the above, we set

Fc =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

q− ac+b′c
2

(
(1−qbc+1)(1−qn−a′

c )

1−qkc+1

)
if j is an overpass andε(c) = +1,

−q
a′
c+bc
2 −n

(
(1−qbc+1)(1−qn−a′

c )

1−qkc+1

)
if j is an overpass andε(c) = −1,

q
a′
c+bc
2 −n

(
(1−qb

′
c )(1−qn−ac+1)

1−qkc+1

)
if j is an underpass andε(c) = +1,

−q− ac+b′c
2

(
(1−qb

′
c )(1−qn−ac+1)

1−qkc+1

)
if j is an underpass andε(c) = −1 .

Proof Let c be a crossing with labels j < j ′. The effect of Ec is to shift kc up by 1.
Note that the colors of arcs [k, k + 1] ⊂ [1, j] ∪ [ j ′, 1] do not depend on kc, while
the colors of arcs [k, k + 1] ⊂ [ j, j ′] are of the form c0 + εkc, where c0 does not
depend on kc and ε = 1 if j is an overpass, ε = −1 else. Thus the effect of Ec is to
shift the colors of arcs in [ j, j ′] up by 1 (if j is an overpass) or down by 1 (if j is an
underpass).

As before we neglect the weights of local extrema and any linear power q in the
weights of crossings. Let us write a, a′, b, b′ for the colors of the arcs neighboring a
crossing c′ ∈ ( j, j ′) with labels l < l ′, let k = a′ − a = b − b′.
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First we note that the weights w>(c′) = (q)n−a
(q)n−a′

(q)b
(q)b′ (q)k

can separated into a factor

w>(l) = (q)n−a
(q)n−a′ associated to the overpass l and a factorw>(l ′) = (q)b

(q)b′ (q)k
associated

to the underpass l ′. The weights w<(c′) are not separable in the same way; however
the ratios ν(c′) = Ecw<(c′)

w<(c′) are linear powers of q and thus we can compute those
factors up to q∗ as a product of two factors ν(l), ν(l ′), where in ν(l) we apply the shift
only to the colors a, a′ and in ν(l ′) we apply the shift only to the colors b, b′.

Now we compute the factors μ(l) = Ecw>(l)
w>(l) and ν(l) associated to over- or under-

passes.
Note that if l /∈ [[ j, j ′]], then no arc of the over- or underpass l has its color changed

under the shift Ec. Thus μ(l), ν(l) = 1 in this case.
Consider l ∈ ( j, j ′) that corresponds to a positive crossing. Assume first that l is

an overpass. If j is an overpass, the operator Ec shifts the colors a, a′ up by 1, and we
have

μ(l) = (q)n−(a+1)(q)n−a′

(q)n−(a′+1)(q)n−a
= 1 − qn−a′

1 − qn−a
,

and ν(l) = q∗ q
n(a+1)−(a′+1)b′−(a+1)b

2

q
na−a′b−ab

2

= q∗q
n−b−b′

2 .

If j was an underpass instead, colors a, a′ are shifted down by 1 under Ec, so that

μ(l) = (q)n−(a−1)(q)n−a′

(q)n−(a′−1)(q)n−a
= 1 − qn+1−a

1 − qn+1−a′ ,

and ν(l) = q∗ q
n(a−1)−(a′−1)b′−(a−1)b

2

q
na−a′b−ab

2

= q∗q− n−b−b′
2 .

Now if l ∈ ( j, j ′) is an underpass and j is an overpass, the colors b, b′ are shifted up
by 1 under Ec and we get:

μ(l)= (q)b+1(q)b′

(q)b′+1(q)b
= 1 − qb+1

1 − qb′+1
, and ν(l)=q∗ q

n(b′+1)−a′(b′+1)−a(b+1)
2

q
(nb′−a′b′−ab

2

= q∗q
(n−a′−a)

2 .

Finally if j is an underpass instead, colors b, b′ are shifted down by 1 and:

μ(l) = (q)b−1(q)b′

(q)b′−1(q)b
= 1 − qb

′

1 − qb
, and ν(l) = q∗ q

n(b′−1)−a′(b′−1)−a(b−1)
2

q
nb′−a′b′−ab

2

= q∗q
−(n−a′−a)

2 .

We see that those factors match with the ones in Eqs. (29) and (30) considering
ε(l) = +1. If l corresponds to a negative crossing, only the ν(l) factor is changed.
The computation of the ν(l) factors is similar and left to the reader.
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There is now just one factor to be considered: the factor Fc = Ecw(c)
w(c) coming from

crossing c. Assume that j is a positive overpass, then Ec shifts the colors a′
c and bc

up by one and leaves colors ac, b′
c invariant. Also here Ec shifts kc up by one. We get

μ(c) = Ecw>(c)

w>(c)
= (q)n−a′

c

(q)n−(a′
c+1)

(q)bc+1(q)k

(q)bc (q)k+1
= (1 − qn−a′

c )(1 − qbc+1)

(1 − qkc+1)

and

ν(c) = Ecw<(c)

w<(c)
= q∗ q

−(a′
c+1)bc−ac(bc+1)

2

q
−a′

cbc−acbc
2

= q∗q− ac+b′c
2 .

Thus Fc = μ(c)ν(c) matches with the formula of Proposition 4.5. The other possi-
bilities for j (negative overpass, positive underpass, negative underpass) yield similar
computations and are left to the reader. ��

Recall that the annihilator idealAnn(wD) is a left ideal of the ringQ[q, Q, Qc]〈E, Ec〉
where Qc = (Q0, . . . , Qc(D)) and Ec = (E0, . . . , Ec(D)). Let Annrat(wD) denote the
corresponding ideal of the ringQ(q, Q, Qc)〈E, Ec〉. Let R, Rc (for c = 1, . . . , c(D))
and R0 denote the expressions on the right hand side of Eqs. (28), (27) and (29), (30)
respectively.

Proposition 4.7 The ideal Annrat(wD) is generated by the set

{Ec − Rc(q, Q, Qc), c = 0, . . . , c(D), E − Rc(q, Q, Qc)} . (31)

Below, we will need to specialize our operators to q = 1. To make this possible,
we introduce the subring Qloc(q, Q, Qc) of the fieldQ(q, Q, Qc) that consists of all
rational functions that are regular (i.e., well-defined) at q = 1.

Let Annrat,loc(wD) = Annrat(wD) ∩ Qloc(q, Q, Qc)〈E, Ec〉 denote the left ideal
of the ring Qloc(q, Q, Qc)〈E, Ec〉.
Proposition 4.8 The ideal Annrat,loc(wD) is generated by the set (31).

Proof First, let us note that Qloc(q, Q, Qc)〈E, Ec〉 is a subring of Q(q, Q, Qc)

〈E, Ec〉.
Indeed, if P(q, Q, Qc) is in Qloc(q, Q, Qc) then EP(q, Q, Qc) =

P(q, q−1Q, Qc)E is also inQloc(q, Q, Qc)〈E, Ec〉, as the denominator of P(q, q−1

Q, Qc) evaluated at q = 1 is the same as that of R(q, Q, Qc). The same can said for
multiplication by one of the Ec’s.

Secondly, it is easy to see that the elements R(q, Q, Qc) and Rc(q, Q, Qc) (for
c = 1, . . . , c(D)) are in Qloc(q, Q, Qc). Let I be the left Qloc(q, Q, Qc)〈E, Ec〉
ideal generated by those elements.

Let us order monomials in E and the Ec’s using a lexicographic order. We
claim that I contains a monic element in each non zero (E, Ec)-degree. Indeed, if
E − R(q, Q, Qc) is one of the above described generators and (α, βc) ∈ Nc(D)+2,
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multiplying by EαEβc
c on the left we get that I contains an element of the form

Eα+1Eβc
c − R̃(q, Q, Qc)EαEβc

c where R̃(q, Q, Qc) ∈ Qloc(q, Q, Qc). Using also
the generators Ec − Rc(q, Q, Qc) the claim follows.

Now let P(q, Q, Qc, E, Ec) be an arbitrary element Annrat,loc(wD).Wemaywrite

P(q, Q, Qc, E, Ec) =
∑

(α,βc)∈Nc(D)+2

Rα,βc(q, Q, Qc)E
αEβc

c .

As I contains a monic element in each non-zero (E, Ec) degree, one may subtrack
elements of I to P(q, Q, Qc, E, Ec) to drop its degree until we get that P − S ∈
Qloc(q, Q, Qc) for some element S ∈ I . But P − S must also be in Annloc(wD), and
as wD �= 0 it must be zero. Thus we can conclude that I = Annrat,loc(wD). ��

5 Matching the annihilator ideal and the gluing equations

5.1 From the annihilator of the state summand to the gluing equations variety

In the previous sectionswe studied the gluing equations varietyGD of a knot diagram D
and the state summandwD(n, k) of the colored Jones polynomial of K . In this section
we compare the annihilator ideal of the summand with the defining ideal of the gluing
equations variety, once we set q = 1, and conclude that they exactly match. Let us
abbreviate the evaluation of a rational function f (q) at q = 1 by evq f (q) = f (1).

Consider the map ψ defined by:

ψ : Q[Q, Qc][E] → C[GD], (E, Q, Qc) �→ (w
−1/2
λ ,wμ,wc) (32)

where C[GD] denotes the coordinate ring of the affine variety GD and w
−1/2
λ is the

element of C[GD] described in Proposition 2.12.
The main result which connects the quantum invariant with the classical one can

be summarized in the following.

Theorem 5.1 (a) We have:

(ψ ◦ evq ◦ ϕ)(Annrat,loc(wD)) = 0. (33)

(b) If P(q, Q, E) ∈ ϕ(Ann(F) ∩ Q[q, Q]〈E, Ek〉) as in (7), then P(q, Q, E) anni-
hilates the colored Jones polynomial and P(1, wμ,w

−1/2
λ ) = 0.

Proof Recall the generators of the annihilator ideal Annrat,loc(wD) given by Eq. (31),
as well as the functions Lk − 1 for k = 0, . . . , c(D) of the coordinate ring of GD

defined in Sect. 2.7. We will match the two.
For an arc of the diagramwith color a, let Qa be the multiplication by qa . We claim

that ϕ(Qa) = za , the corresponding arc parameter. Indeed, for the arc [1, 2] we have
ϕ(Q0) = w0 is the arc parameter of the arc [1, 2], and going from arc [k − 1, k] to
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[k, k + 1] we shift the multiplication operator by Q±1
c and the arc parameter by w±1

c ,
depending on whether k is an over- or underpass.

By Eqs. (28) and (27):

R(1, Q, Qc) =
∏

X(D)

⎛

⎝ 1 − Q
Qa

1 − Q
Qa′

⎞

⎠ (QaQb)
ε(c)
2 Q− 1

2

R0(1, Q, Qc) =
∏

c∈X(D)

(
Q

QaQb

)ε(c) (1 − Q
Qa′ )(1 − Qb)

(1 − Q
Qa

)(1 − Qb′)
.

If c is a crossing with labels j < j ′, and j is an overpass, we have by Eq. (29):

Rc(1, Q, Qc) = evq(Fc)
∏

k∈( j, j ′)∩O(D)

(
Q

QbQb′

) ε(k)
2

⎛

⎝
1 − Q

Qa′

1 − Q
Qa

⎞

⎠

×
∏

k∈( j, j ′)∩U (D)

(
Q

QaQa′

) ε(k)
2

(
1 − Qb

1 − Qb′

)

where

evq(Fc) = 1

Qb′
c

(1 − Q
Qa′

c
)(1 − Qbc)

(1 − Qc)

if c is a positive crossing for example. Similarly by Eq. (30), if j is an underpass, then

Rc(1, Q, Qc)) = evq(Fc)
∏

l∈O(D)∩( j, j ′)

(
Q

QbQb′

)− ε(k)
2

⎛

⎝ 1 − Q
Qa

1 − Q
Qa′

⎞

⎠

×
∏

l∈U (D)∩( j, j ′)

(
Q

QaQa′

)− ε(k)
2

(
1 − Qb′

1 − Qb

)
.

Comparing (evq ◦ ϕ)(E − R(q, Q, Qc)) with Eq. (23), we get that

(evq ◦ ϕ)(E − R(q, Q, Qc)) = s − s = 0.

Comparing (evq ◦ ϕ)(E0 − R0(q, Q, Qc)) with Eq. (22), we get that

(evq ◦ ϕ)(E0 − R0(q, Q, Qc)) = 1 − L0.

Finally, if c is a crossingwith labels j < j ′, comparing (evq◦ϕ)(Ec−Rc(q, Q, Qc))

with Eq. (21), we get that

(evq ◦ ϕ)(Ec − Rc(q, Q, Qc)) = 1 − Lc
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if j is an overpass, while if j is an underpass we get that

(evq ◦ ϕ)(Ec − Rc(q, Q, Qc)) = 1 − L−1
c = L−1

c (Lc − 1) .

Thus the image of the generators of the ideal Annrat,loc(wD) by evq ◦ϕ are generators
of the ideal ID . This proves part (a) of Theorem 5.1. Part (b) follows from part (a) and
Eq. (7). ��

5.2 Proof of Theorem 1.1

Proof Fix a labeled, oriented planar projection D of K . Then, the certificate recur-
sion Âc

D(q, Q, E) annihilates the colored Jones polynomial, as this is true for all
q-holonomic sums (5). This concludes part (a).

For part (b), Theorem 5.1 implies that Âc
D(1, wμ,w

−1/2
λ ) = 0 ∈ C[GD]. In other

words, the function Âc
D(1, wμ,w

−1/2
λ ) in the coordinate ring of GD is identically zero.

Since this is true for every labeled, oriented diagram D of a knot K , this concludes
part (b) of Theorem 1.1. ��
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