
Garoufalidis and Kashaev ResMath Sci (2019) 6:8
https://doi.org/10.1007/s40687-018-0166-9

RESEARCH

Ameromorphic extension of the 3D index
Stavros Garoufalidis1,2* and Rinat Kashaev3

*Correspondence:
stavros@math.gatech.edu
http://www.math.gatech.edu/~stavros
1School of Mathematics, Georgia
Institute of Technology, Atlanta,
GA 30332-0160, USA
Full list of author information is
available at the end of the article

To Don Zagier, on the occasion
of his 65th birthday.

Abstract

Using the locally compact abelian groupT × Z, we assign a meromorphic function to
each ideal triangulation of a 3-manifold with torus boundary components. The function
is invariant under all 2–3 Pachner moves, and thus is a topological invariant of the
underlying manifold. If the ideal triangulation has a strict angle structure, our
meromorphic function can be expanded into a Laurent power series whose
coefficients are formal power series in q with integer coefficients that coincide with the
3D index of (Dimofte et al. in Adv Theor Math Phys 17(5):975–1076, 2013). Our
meromorphic function can be computed explicitly from the matrix of the gluing
equations of a triangulation, and we illustrate this with several examples.
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1 Introduction
1.1 The 3D index of Dimofte–Gaiotto–Gukov

In a recent breakthrough in mathematical physics, the physicists Dimofte, Gaiotto and
Gukov [8,9] introduced the 3D index, a powerful new invariant of an ideal triangulation T
of a compact orientable 3-manifold M with non-empty boundary consisting of tori. The
3D index was motivated by the study of the low energy limit of a famous 6-dimensional
(2, 0) superconformal field theory, and seems to contain a great deal of information about
the geometry and topology of the ambient manifold. For suitable ideal triangulations, the
3D index is a collection of formal Laurent power series in a variable q, parametrized by a
choice of peripheral homology class, i.e., an element of H1(∂M,Z).
Physics predicts that the 3D index is independent of the triangulation T and that it

is a topological invariant of the ambient manifold. However, there is a subtlety: The
3D index itself (which is a sum over some q-series over a lattice) is only defined for
suitable triangulations, and it is invariant under 2–3 moves of such triangulations. It is
not known whether suitable triangulations are connected under 2–3 moves, and it is
known that some 3-manifolds (for instance, the unknot) have no suitable triangulation.
It was shown in [10,12] that a triangulation is suitable if and only if it is 1-efficient, i.e.,
has no normal surfaces which are topologically 2-spheres or tori. Thus, the connected
sum of two nontrivial knots, or the Whitehead double of a nontrivial knot has no 1-
efficient triangulations. With some additional work, one can extract from the 3D index a
topological invariant of hyperbolic 3-manifolds [12].
This partial success in constructing a topological invariant suggests the existence of

an invariant of ideal triangulations unchanged under all 2–3 Pachner moves. The con-
struction of such an invariant is the goal of our paper. Indeed, to any ideal triangulation,
we associate an invariant which is a meromorphic function of the peripheral variables,
and for triangulations with strict angle structures, the coefficients of its expansion into
Laurent series coincides with the 3D index of [8]. Our meromorphic function is an exam-
ple of a topological invariant associated with the self-dual locally compact abelian group
(abbreviated LCA group)T × Z. A more detailed formulation of our results follows.
In a sense, our paper does the opposite from that of [13]. In the latter paper, we expressed

state integral invariants (which are analytic functions in a cut plane) in terms of q-series,
whereas in the present paperwe assemble q-series intomeromorphic state-integral invari-
ants.Ourwork illustrates the principle that some state integrals canbe formulated in terms
of q-series and vice versa.

1.2 Our results

Fix an ideal triangulation T of an oriented 3-manifold M whose boundary consists of r
tori, and choose peripheral curves that form a basis of H1(∂M,Z). To simplify notation,
we will present our results only in the case when M has a single torus boundary though
our statements and proofs remain valid in the general case.
After a choice of a meridian and longitude, we can identify the complex torus TM =

H1(∂M,C∗) with (C∗)2 where the latter is given by the coordinates (eμ, eλ). Throughout
the paper, q will denote a complex number inside the unit disk: |q| < 1. When q = −eh

with Re(h) < 0 and z ∈ C, we define (−q)z = ezh. For r, s ∈ Q, we define the associated
q-rays of the complex torus by
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�r,s = {
(eμ, eλ) ∈ (C∗)2 | erμesλ ∈ qN

}
, (1)

where N = Z≥0 is the set of nonnegative integers. A shifted q-ray is a subset of the
complex torus of the form εqt�r,s for some t ∈ Q and ε = ±1.

Theorem 1.1 With the above assumptions, there exists a meromorphic function

IT (q) : (C∗)2 � (eμ, eλ) �→ IT ,eμ ,eλ (q) ∈ C ∪ {∞}
with the following properties:

(a) IT (q) is invariant under 2–3 Pachner moves.
(b) IT (q) is given by a balanced state integral depending only on the Neumann–Zagier

matrices of the gluing equations of T .
(c) The singularities of IT (q) are contained in the union of finitely many shifted q-rays.

Theorem 1.2 When T has a strict angle structure, we have a Laurent series expansion

IT ,eμ ,eλ (q) =
∑

(m,e)∈Z2

emμ eeλIT (m, e)(q2) (2)

convergent on the unit torus |eμ| = |eλ| = 1, where IT (m, e) is the 3D index of [9].

Fix a 3-manifold M as above and consider the set SM of all ideal triangulations of M
that admit a strict angle structure.

Corollary 1.3 Although it is not known yet ifSM is connected or not by 2–3Pachnermoves,
the 3D index of [9] is constant on SM.

1.3 Discussion

In a series of papers [2–4,15], topological invariants of (ideally triangulated) 3-manifolds
have been constructed from certain self-dual LCA groups equipped with quantum dilog-
arithm functions. The main idea of those constructions is the following. Fixing a self-dual
LCA group with a Gaussian exponential and a quantum dilogarithm function, one assigns
a state-integral invariant to an ideal triangulation decorated by a pre-angle structure (in
the cited papers this is called shape structure) that is a choice of a strict angle structure
within each ideal tetrahedron, but the angles do not have to add up to 2π around the
edges of the ideal triangulation. The resulting state integral is often the germ of a mero-
morphic function on the (affine vector) space of real-valued pre-angle structures. This
affine space has an (affine vector) subspace of complex-valued angle structures (the pre-
angle structures that add up to 2π around each geometric edge of the triangulation). The
above meromorphic function is either infinity or restricts to a meromorphic function on
the space of complex-valued angle structures. When the latter happens, the state integral
depends only on the peripheral angle monodromy. This way, we obtain an invariant of
ideal triangulations which depends on the peripheral angle monodromy.
The above construction is general and, in particular, it applies to the invariants con-

structed in [2–4] and [17]. Our goal is to give a self-contained presentation in the case of
the self-dual LCA group T × Z with a quantum dilogarithm first found by Woronowicz
in [21] and to relate this invariant to the 3D index of Dimofte–Gaiotto–Gukov [8].
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2 Building blocks
2.1 The tetrahedral weight

In this section, we define the tetrahedral weight which is the building block of our state
integral. We give a self-contained treatment of the symmetries and identities that it satis-
fies.
Below, we will often consider expansions of meromorphic functions defined on open

annuli or punctured disks, examples of which are given in Eqs. (20), (23), (24). These
Laurent expansions (not to be confused with the formal Laurent series which involve
only finitely many negative powers and arbitrarily many positive powers) are well known
in complex analysis and their existence, convergence and manipulation follows from
Cauchy’s theorem. A detailed discussion of this can be found, for example, in [1].
As a warm up, recall the Pochhammer symbol

(x; q)m :=
m−1∏

i=0
(1 − qix), m ∈ N ∪ {∞}, (3)

where N := Z≥0 and we always assume that |q| < 1. The next lemma summarizes the
well-known properties of the Pochhammer symbol (x; q)∞.

Lemma 2.1 The Pochhammer symbol (x; q)∞ has the following properties.

(a) It is an entire function of x with simple zeros x ∈ q−N.
(b) It satisfies the q-difference equation

(x; q)∞ = (1 − x)(qx; q)∞. (4)

(c) It has convergent power series expansions

1
(x; q)∞

=
∞∑

n=0

xn

(q; q)n
, |x| < 1, (5a)

(x; q)∞ =
∞∑

n=0
(−1)n

q
1
2n(n−1)xn

(q; q)n
, ∀x ∈ C. (5b)

For the proof of part (c), see for instance [22, Prop. 2].
Consider the functin

Gq(z) =
(−qz−1; q

)
∞

(z; q)∞
=

(
1 + q

z

) (
1 + q2

z

) (
1 + q3

z

)
. . .

(1 − z)(1 − qz)(1 − q2z) . . .
. (6)

The next lemma summarizes its properties.

Lemma 2.2 The function Gq(z) defined in (6) has the following properties.

(a) It is a meromorphic function of z ∈ C∗ := C \ {0} with simple zeros and poles in
−q1+N and q−N, respectively, and with essential singularities at z = 0 and z = ∞.

(b) It satisfies the q-difference equation

Gq(qz) = (1 − z)(1 + z−1)Gq(z) (7)
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and the involution equation

Gq(−qz) = 1
Gq(z−1)

. (8)

(c) It has a convergent Laurent series expansion in the punctured unit disk 0 < |z| < 1:

Gq(z) =
∑

n∈Z
J (n)(q)zn, (9)

where

J (n)(q) :=
∞∑

k=(−n)+

q
k(k+1)

2

(q)k (q)n+k
, (n)+ := max{n, 0}, (10)

is a well-defined element of Z[[q]], analytic in the disk |q| < 1.

Parts (a) and (b) follow easily from the product expansion of the Pochhammer symbol,
and part (c) follows from (5a)–(5b).
The tetrahedral weight is a function ψ0(z, w) defined by:

ψ0(z, w) := c(q)Gq(−qz)Gq(w−1)Gq(wz−1), (11)

where

c(q) := (q; q)2∞(
q2; q2

)
∞
. (12)

The properties of this function are summarized in the following lemma.

Lemma 2.3 The function ψ0(z, w) defined in (11) has the following properties.

(a) It is a meromorphic function of (z, w) ∈ (C∗)2 with zeros in

z ∈ qN, or w−1 ∈ −q1+N, or z−1w ∈ −q1+N (13)

and poles in

z ∈ −q−1−N, or w ∈ qN, or zw−1 ∈ qN. (14)

(b) It satisfies the q-difference equations

w−1ψ0(qz, w) − ψ0(z, w) − q−1z−1ψ0(z, w) = 0, (15a)

wψ0(qz, w) − ψ0(z, w) − qzψ0(z, w) = 0. (15b)

(c) It satisfies the Z/2 and Z/3-invariance equations

ψ0(z, w) = ψ0(−q−1w−1,−q−1z−1), (16a)

ψ0(z, w) = ψ0(−q−1z−1w,−q−1z−1) = ψ0(−q−1w−1, zw−1). (16b)
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(d) In the domain

1 < |w| < |z| < |q|−1, (17)

we have the absolutely convergent expansion

ψ0(z, w) = c(q)
∑

e,m∈Z
zewm

∑

k1 ,k2 ,k3∈Z
k1−k3=e; k3−k2=m

(−q)k1 J (k1)(q)J (k2)(q)J (k3)(q),

(18)

where the interior sum is a well-defined element ofZ[[q]], analytic in the disk |q| < 1.

These properties follow from the definition of ψ0 and the properties of Gq listed in
Lemma 2.2.

2.2 The quantum dilogarithm

In this subsection, we identify the tetrahedral weight functionψ0(z, w) with (the reciprocal
of) the quantum dilogarithm function ψ(z,m) on the self-dual LCA group T × Z, given
by [15, Eqn.97]

ψ(z,m) = (−q1−m/z; q2)∞
(−q1−mz; q2)∞

. (19)

In the context of quantum groups, this function first appeared in [21]. In Appendix A, we
explain how formula (19) fits the general definition of a quantum dilogarithm over the
LCA groupT × Z.
Lemma 2.1 and the above definition imply the following properties of the function

ψ(z, w).

Lemma 2.4 The function ψ(z,m) defined in (19) has the following properties.

(a) It is a meromorphic function of z with simple poles and zeros at z ∈ −q−1−|m|−2N

and z ∈ −q1+|m|+2N, respectively.
(b) It is analytic in the annulus 0 < |z| < |q|−1−|m| (which always includes the unit circle

|z| = 1) where it has an absolutely convergent Laurent series expansion

ψ(z,m) =
∑

e∈Z
I�(m, e)(q)ze, (20)

where

I�(m, e)(q) = (−q)eI�(m, e)(q2) (21)

is related to the tetrahedron index I� of [8] given by

I�(m, e)(q) =
∞∑

n=(−e)+

(−1)n
q

1
2n(n+1)−

(
n+ 1

2 e
)
m

(q)n(q)n+e
∈ Z[[q

1
2 ]] (22)

and (e)+ := max{0, e} and (q)n := (q; q)n = ∏n
i=1(1 − qi).
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The next theorem connects the tetrahedral weight function ψ0(z, w) with the above
function ψ(z,m).

Theorem 2.5 (a) In the domain (17), we have the identity

ψ0(z, w) =
∑

m∈Z
ψ(z,m)wm, (23)

where the sum is absolutely convergent.
(b) In the domain (17), we have an absolutely convergent double Laurent series expansion

ψ0(z, w) =
∑

e,m∈Z
I�(m, e)(q)zewm. (24)

Proof We let RHS denote the sum in the right-hand side of Eq. (23). RHS is absolutely
convergent in the domain (17) and it can be explicitly calculated by using Ramanujan’s
1ψ1-summation formula. The detailed computation appears in [15, Eqn. (98)], and the
result reads

RHS =
(
q2; q2

)
∞

(
z−2; q2

)
∞(

w−2; q2
)
∞

(
w2z−2; q2

)
∞

(
θq(zw−2)

θq(z)
+ w

θq(qw2/z)
θq(q/z)

)

, (25)

where

θq(x) :=
∑

k∈Z
qk

2
xk = (

q2; q2
)
∞

(−qx; q2
)
∞

(−q/x; q2
)
∞ (26)

is the Jacobi theta function, and the second equality in (26) is the Jacobi triple product
identity. By using Lemma 2.6 (see below) and the Jacobi triple product identity, we can
further simplify the right-hand side of (25), thus getting

RHS = (q; q)2∞
(
z−1; q

)
∞ (−qw; q)∞ (−qz/w; q)∞(

q2; q2
)
∞ (−qz; q)∞

(
w−1; q

)
∞ (w/z; q)∞

= c(q)Gq(−qz)Gq(w−1)Gq(wz−1)

= ψ0(z, w).

This concludes the proof of the part (a). Part (b) follows from (23) combined with (20). ��

Lemma 2.6 For any choice of the square root p := √q, we have the identity

θq(zw−2)
θq(z)

+ w
θq(qw2/z)
θq(q/z)

= (q; q)∞
(
q2; q2

)2
∞

θp (pw/z) θp (w/p)
θp (z/p)

. (27)

Proof Denoting the left-hand side of (27) as f (z−1, w), we have

f (u, w) = h(u, w)/g(u),

where

g(u) := θq(u)θq(qu), h(u, w) := θq(qu)θq(uw2) + wθq(u)θq(quw2).
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First, we rewrite g(u) as follows:

g(u) = (
q2; q2

)2
∞

(−qu; q2
)
∞

(−q2u; q2
)
∞

(−q/u; q2
)
∞

(−1/u; q2
)
∞

= (
q2; q2

)2
∞ (−qu; q)∞ (−1/u; q)∞ =

(
q2; q2

)2
∞

(q; q)∞
θp(pu). (28)

Then, we transform h(u/w,w) as follows:

h
( u
w
, w

)
=

∑

k,l∈Z
qk

2+l2uk+lwl−k (qk + qlw)

=
∑

k,l∈Z
qk

2−2kl+2l2ukw2l−k (qk−l + qlw), (29)

where in the second equality we have shifted the summation variable k �→ k − l. Next, we
write out separately the sum over even and odd k :

h
( u
w
, w

)
=

∑

k,l∈Z
q2k

2+2(l−k)2u2kw2l−2k

×
(
q2k−l + qlw + q4k+1−2luw−1(q2k+1−l + qlw)

)

=
∑

k,l∈Z
q2k

2+2l2+ku2kw2l
(
q−l + qlw + q2k+1−2luw−1(q1−l + qlw)

)
, (30)

where, this time, in the second equality we have shifted the summation variable l �→ l+k .
Now, we can absorb both summations by using the definition of the θ-function:

h
( u
w
, w

)
= θq2 (qu2)

(
θq2 (q−1w2) + wθq2 (qw2)

)

+quθq2 (q3u2)
(
qw−1θq2 (q−3w2) + θq2 (q−1w2)

)
. (31)

Finally, by using the functional equation

θq(q2lx) = q−l2x−lθq(x), for all l ∈ Z, (32)

with q �→ q2, x = w2 and l = −1 in the second term, we arrive at the following factorized
formula

h
( u
w
, w

)
= (

θq2 (qu2) + quθq2 (q3u2)
) (

θq2 (q−1w2) + wθq2 (qw2)
) = s(qu)s(w), (33)

where

s(w) := θq2 (q−1w2) + wθq2 (qw2) =
∑

k∈Z
q2k

2
w2k

(
q−k + qkw

)

=
∑

k∈Z
p4k

2
w2k

(
p−2k + p2kw

)
=

∑

k∈Z

(
p(2k)

2−2kw2k + p(2k+1)2−2k−1w2k+1
)

=
∑

k∈Z
pk

2−kwk = θp(w/p). (34)

Thus, we have obtained the equality

h(u, w) = θp(puw)θp(w/p), (35)

and formula (27) follows straightforwardly. ��
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In summary, the tetrahedral weightψ0(z, w) is given by two sum formulas and a product
formula, and the last of which implies themeromorphicity of the function and the location
of its zeros and poles:

ψ0(z, w) =
∑

m∈Z
ψ(z,m)wm (36)

=
∑

e,m∈Z
I�(m, e)(q)zewm (37)

= c(q)Gq(−qz)Gq(w−1)Gq(wz−1). (38)

For completeness, the next lemma summarizes the q-difference equations and the sym-
metries of ψ(z, w).

Lemma 2.7 The function ψ(z,m) defined in (19) satisfies the following q-difference equa-
tions

ψ(qz,m + 1) − ψ(z,m) − q−m−1z−1ψ(z,m) = 0, (39a)

ψ(qz,m − 1) − ψ(z,m) − q−m+1zψ(z,m) = 0. (39b)

The above equations characterize the meromorphic function ψ(z,m) up to multiplication
by a function of q, analytic in the unit disk |q| < 1.

These follow from the definition of ψ(z, w) and Eqs. (4), (23) and (15a)–(15b). Alterna-
tively, they can be derived from Eq. (20) and the symmetries of the tetrahedron index I�
given in [10, Thm.3.2].
For completeness, the next lemma summarizes the symmetries of I�(m, e).

Lemma 2.8 For all integers m and e, we have the Z/2 and Z/3-invariance equations:

I�(m, e)(q) = (−q)e+mI�(−e,−m)(q), (40a)

I�(m, e)(q) = (−q)eI�(−e − m,m)(q) = (−q)e+mI�(e,−e − m)(q). (40b)

As a consequence, we have another Z/2-invariance equation

I�(m, e) = I�(−m,m + e). (41)

These follow from Eqs. (24) and (16a)–(16b). Additionally, they follow from Eqs. (21) and
the symmetries of the tetrahedron index I�(m, e) given in [10, Thm.3.2].

2.3 The pentagon identity and the Pachner 2–3 move

Let us recall the pentagon identity for the tetrahedron index I� from [10, Thm.3.7].

I�(m1−e2, e1)I�(m2−e1, e2) =
∑

e3∈Z
qe3 I�(m1, e1+e3)I�(m2, e2+e3)I�(m1+m2, e3)

(42)
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for all integers m1, m2, e1, e2. Replacing q by q2 in (42) and using Eq. (21), it follows that
the tetrahedron index I� satisfies the equation

I�(m1 − e2, e1)I�(m2 − e1, e2)

=
∑

e3∈Z
(−q)−e3 I�(m1, e1 + e3)I�(m2, e2 + e3)I�(m1 + m2, e3). (43)

To remove the factor (−q)e3 in the above equation, we apply Eq. (40b) to the two terms
of the left-hand side and to the last term in the right-hand side, and obtain

I�(e1,−e1 + e2 − m1)I�(e2, e1 − e2 − m2)

=
∑

e3∈Z
I�(m1, e1 + e3)I�(m2, e2 + e3)I�(e3,−e3 − m1 − m2).

Setting

x = e1, y = −e1 + e2 − m1, u = e2, v = e1 − e2 − m2, e3 = −z,

we rewrite the latter equality as

I�(x, y)I�(u, v) =
∑

z∈Z
I�(u − x − y, x − z)I�(−z, z + v + y)I�(−u − v + x, u − z).

Applying Eq. (41) to both functions on the left-hand side of the above equation, and after
a linear change in variables we obtain

I�(x, y)I�(u, v) =
∑

z∈Z
I�(−u − y,−x − z)

×I�(−z, z + x + y + u + v)I�(−x − v,−u − z).

Applying Eq. (41) to the first and third terms of the right-hand side of the above equation,
we obtain

I�(x, y)I�(u, v) =
∑

z∈Z
I�(u + y,−x − y − u − z)I�(−z, z + x + y + u + v)

×I�(x + v,−x − u − v − z).

Finally, changing the summation variable z �→ z − x − y − u − v, we obtain equation

I�(x, y)I�(u, v) =
∑

z∈Z
I�(u+y, v−z)I�(x+y+u+v−z, z)I�(x+v, y−z), (44)

which coincides with a special (constant) form of the beta pentagon equation [16, Eqn.(2)]
for the LCA groupZ. Using the fact that the beta pentagon relation is stable under Fourier
transformation, see [16, Sec.2], we also conclude that the function

φ(x, y) :=
∑

m,n∈Z
xmy−nI�(m, n) = ψ0(x, 1/y) (45)

satisfies the constant beta pentagon equation for the circle LCA group T = {z ∈ C | |z| =
1}:

φ(x, y)φ(u, v) =
∫

T

φ(uy, v/z)φ(xyuv/z, z)φ(xv, y/z)
dz
2π iz

. (46)

Equivalently, the functionψ0(z, w), thought of as a distribution onT2, satisfies the integral
identity

ψ0 (x, y)ψ0 (u, v) =
∫

T

ψ0
(
u
y
,
v
z

)
ψ0

(
xuz
yv

, z
)

ψ0
(x
v
,
y
z

) dz
2π iz

, (47)
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Fig. 1 The angles of an ideal tetrahedron with ordered vertices

where all variables belong to the unit circle T. The distributional interpretation of
ψ0(z, w) means that its restriction to T2 should be obtained by approaching T2 from
the domain (17), which is the domain of absolute convergence of the double series (24),
i.e.,

ψ0(z, w) = ψ0+0,+0(z, w) := lim
α,γ→0

α>0,γ>0,α+γ<π

ψ0
α,γ (z, w), |z| = |w| = 1, (48)

where

ψ0
α,γ (z, w) := ψ0

(
z(−q)−

α+γ
π , w(−q)−

α
π

)
(49a)

= c(q)Gq(z(−q)
β
π )Gq(w−1(−q)

α
π )Gq(z−1w(−q)

γ
π ), (49b)

where α+β+γ = π . The positive parameters α,β , γ satisfying the condition α+β+γ =
π (which we call pre-angle structure) can be identified with the dihedral angles of a
positively oriented ideal hyperbolic tetrahedron. These angles are placed on the edges of
a tetrahedron with ordered vertices according to Fig. 1.
Moreover, the constant distributional beta pentagon identity (47) is a constant limit of

the analytically continued non-constant identity

ψ0
α3,γ3 (x, y)ψ

0
α1,γ1 (u, v) =

∫

T

ψ0
α0 ,γ0

(
u
y
,
v
z

)
ψ0

α2,γ2

(
xuz
yv

, z
)

ψ0
α4 ,γ4

(x
v
,
y
z

) dz
2π iz

,

(50)

where (αi,βi, γi) are pre-angle structures on five tetrahedra Ti for i = 0, . . . , 4 which are
compatible, i.e., satisfy the linear relations

α1 = α0 + α2, α3 = α2 + α4 , γ1 = γ0 + α4 , γ3 = α0 + γ4 , γ2 = γ1 + γ3. (51)

Notice that a compatible angle structure satisfies the balancing condition for the interior
edge 13: β0+γ2+β4 = 2π . Such an identity for Faddeev’s quantum dilogarithm appeared
in [3, Prop.1].

3 The state integral
3.1 Definition of the state integral

Fix an ideal triangulation T of an oriented 3-manifold with N tetrahedra Ti for i =
1, . . . , N . The invariant is defined as follows:
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(a) Assign variables xi for i = 1, . . . , N to N edges of T .
(b) Choose a strictly positive pre-angle structure θ = (α,β , γ ) at each tetrahedron. Here,

α is the angle of the 01 and 23 edges, β is the angle of the 02 and 13 edges, and γ is the
angle of the 03 and 12 edges. The angles are normalized so that at each tetrahedron,
their sum is π .

(c) The weight of a tetrahedron T is given by

B(T, x, θ ) = ψ0
(
(−q)−

α+γ
π

Xα

Xγ

, (−q)−
α
π
Xβ

Xγ

)
(52a)

= c(q)Gq

(
(−q)

α
π
Xγ

Xβ

)
Gq

(
(−q)

β
π
Xα

Xγ

)
Gq

(
(−q)

γ
π
Xβ

Xα

)
, (52b)

where

Xα := x01x23, Xβ := x02x13, Xγ := x03x12,

and xij is the variable at edge ij of the tetrahedron.
(d) Define

IpreT ,θ (q) =
∫

TN

N∏

i=1
B(Ti, x, θ )dμ(x), (53)

where dμ(x) = (2π i)−N ∏N
i=1 dxi/xi is the normalized Haar measure onTN .

Recall the exponentmatrices (A|B|C) of the edge gluing equations of T [6,19,20]. These
are N × N matrices with integer entries which determine the gluing equations

N∏

j=1
zAi,j
j (z′

j)
Bi,j (z′′

j )
Ci,j = 1, i = 1, . . . , N, (54)

where z′ = 1/(1 − z) and z′′ = 1 − 1/z, and as usual we have zz′z′′ = −1.
For a vector x = (x1, . . . , xN ) of nonzero complex numbers, and a vector v = (v1, . . . , vN )

of integers, define xv = ∏N
i=1 x

vi
i . Also, for a matrix A, let Ai denote its ith column.

The next proposition implies that the integral (53) (and even the integrand) depends on
only the Neumann–Zagier matrices of the gluing equations of the triangulation T .

Proposition 3.1 With the above notation and for i = 1, . . . , N , we have:

B(Ti, x, θ ) = c(q)Gq
(
(−q)

αi
π x(C−B)i

)
Gq

(
(−q)

βi
π x(A−C)i

)
Gq

(
(−q)

γi
π x(B−A)i

)
. (55)

It follows that IT ,θ (q) depends on only the matrices A, B, C and θ .

Proof Let ei ∈ ZN denote the ith coordinate vector (1 in position i and 0 otherwise). It
suffices to show that

(
Xγ

Xβ

)

i
= x(C−B)ei ,

(
Xα

Xγ

)

i
= x(A−C)ei ,

(
Xβ

Xα

)

i
= x(B−A)ei . (56)

This follows from the fact that the matrices A, B and C indexed by edges × tetrahedra
record the number of times a shape zj (resp., z′

j , z
′′
j ) of the jth tetrahedron appears around

an edge ei. ��
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Our choice of θ and Eq. (17) implies that the integrand in (53) is an analytic function
of x ∈ TN , and therefore the integral converges. We are interested in two affine vector
subspaces ofC3N :

• AT , the space of complexified pre-angle structures, i.e., θ ∈ C3N such that αi + βi +
γi = π for i = 1, . . . , N .

• BT ⊂ AT , the affine subspace ofAT that consists of balanced complexified pre-angle
structures, that is the sum of the angles around each edge of T is 2π . The points of B
are also known as complex-valued angle structures on T .

AT andBT are complex affine subspaces ofC3N of dimension 2N andN+1, respectively,
[18].
The integral in (53) extends to a meromorphic function of θ ∈ AT , regular when

Re(θ ) > 0. Our task is to show that this extension restricts to a meromorphic function on
BT . To do so, it will be convenient to parametrize AT . This breaks the symmetry in the
definition of the integral; however, it is a useful gauge to draw conclusions.
Consider a vector ε = (ε1, . . . , εN ) ∈ CN and complex numbers μ, λ defined by

Aα + Bβ + Cγ = π2 + ε, νμ · α + ν′
μ · β + ν′′

μ · γ = μ,
νλ · α + ν′

λ · β + ν′′
λ · γ = λ,

(57)

where μ and λ are the sums of the angles along the meridian and the longitude curves,
2 ∈ CN is the vector with all coordinates 2 and νμ, νλ and their primed versions are the
vectors of the meridian and longitude cusp equations. Note that ε1 + · · · + εN = 0. A
quad is a choice of a pair of opposite edges in a tetrahedron. Choosing a quad allows one
to eliminate the angle variable of those edges using the equation αi + βi + γi = π . Note
that each tetrahedron has 3 quads, and hence T has 3N quads. IfQ is a system ofN quads
obtained by choosing one quad from each tetrahedron of T , let Q(θ ) ∈ CN be defined
so that its ith component is the angle associated with the corresponding quad in Ti, i.e.,
Q(θ )i = αi if, for example, the quad of the ith tetrahedron is (01), (23). In effect, Q(θ )
chooses one of the 3 angles for every tetrahedron of T . Together with Eqs. (57), we get a
linear map

AT → CN × CN × C2, θ �→ (Q(θ ), ε,μ, λ).

For i, j ∈ {1, . . . , N }, letπi,j : CN ×CN ×C2 → CN−1×CN−1×C2 denote the projection
that removes the ith entry of the first copy ofCN and the jth entry of the second copy of
CN . The next proposition describes a parametrization ofAT .

Proposition 3.2 For every j, there exists a system of quads Q of T and an i such that
the composition AT → CN × CN × C2 πi,j→ CN−1 × CN−1 × C2 is an affine linear
isomorphism.

Proof Consider the standard system of quads Q of T , i.e., the one that chooses the
(01), (23) edges of each tetrahedron of T . It follows that Q(θ ) = α. Eliminating β from
Eq. (57), we obtain that

Aα + Bγ = π2 + ε + ν, (58)
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where

A = A − B, B = C − B, ν = −B1π .

Consider the matrix (A′|B′) obtained from (A|B) by replacing the jth row of (A|B) with the
peripheral cusp equation corresponding to the meridian. Neumann–Zagier prove that
(A′|B′) is the upper half of a symplectic 2N × 2N matrix [19]. In fact, we can take the
first row of the bottom half of the symplectic matrix to be the peripheral cusp equation
corresponding to the longitude. If B′ is invertible, then we can solve for γ from Eq. (58)
and deduce that θ is determined by (α,πj(ε),μ). Using the longitude cusp equation, it
follows that θ is determined by (πi(α),πj(ε),μ, λ).
When B′ is not invertible, using the fact that (A′|B′) is the upper half of a symplectic

matrix and [7, Lem.A.3], it follows that we can always find a system of quads Q for which
the corresponding matrix B′ is invertible. The result follows. ��
Without loss of generality, we can assume that Proposition 3.2 holds for the standard

system of quads, and that i = j = N . After a change in variables xi → xi/xN for i =
1, . . . , N − 1, the integral IT ,θ (q) reduces to an N − 1-dimensional integral since the
integrand is independent of xN .
The next lemma shows that after a change in variables, IT ,θ (q) is expressed as an integral

whose contour (a product of tori, with radi |q| raised to linear forms of α) depends only
on α and whose integrand depends only on (ε,μ, λ).

Proposition 3.3 With the above assumptions, there exists an edge column vector η whose
coordinates are affine linear forms inα, a contour Cα , and affine linear forms νi, ν′

i , ν
′′
i in the

variables ε = (ε1, . . . , εN−1) andμ, λ such that after the change in variables xi = (−q)ηi yi,
we have

IpreT ,θ (q) = c(q)N
∫

Cα

dμ(y)

×
N∏

i=1
Gq

(
(−q)νi(ε,μ,λ)y(C−B)i

)

× Gq
(
(−q)ν

′
i (ε,μ,λ)y(A−C)i

)

× Gq
(
(−q)ν

′′
i (ε,μ,λ)y(B−A)i

)
. (59)

Proof Recall Eqs. (56) and (58). If x = (−q)ηy then

x(C−B)ei = (−q)αi+eTi (C−B)T ηy(C−B)ei = (−q)αi+eTi B
T ηyBei

and likewise for the cyclic permutations. Using Eq. (55), and the above equalities, we are
looking for an edge vector η such that α + BTη, β + (A − B)Tη and γ − ATη depend on
only ε,μ, λ. Since the sum of these three vectors is constant, it suffices to find η such that
α − BTη and γ − ATη depend on only ε,μ, λ. Using the fact that B′ is invertible, we can
take η = (B′T )−1α. Solving for γ from Eq. (58), we obtain that

γ − A′Tη = B′−1(π2 + ε + ν) − (B′)−1A′α − (A′)T ((B′)T )−1α = B′−1(π2 + ε + ν).

The last equality follows from the fact that (A′|B′) is the upper half of a symplectic matrix,
and hence (B′)−1A′ is symmetric. Finally observe that |xi| = 1; hence, |yi| = |q|ηi where
ηi are linear forms in α. Hence, the y-contour Cα is a product of tori whose radii depend
linearly on α. This completes the proof. ��
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Remark 3.4 With the assumptions of Proposition 3.3, there exists an edge column vector
η′ whose coordinates are affine linear forms in α,μ, λ, a contourC , and affine linear forms
ξi, ξ ′

i , ξ
′′
i in the variables ε = (ε1, . . . , εN−1),μ and λ such that after the change in variables

yi = (−q)η′
i zi, we have

IpreT ,θ (q) = c(q)N
∫

C
dμ(z)

N∏

i=1
Gq

(
(−q)ξi(ε,μ,λ)z(C−B)i

)

× Gq
(
(−q)ξ

′
i (ε,μ,λ)z(A−C)i

)
Gq

(
(−q)ξ

′′
i (ε,μ,λ)z(B−A)i

)
, (60)

where ξi(0,μ, λ), ξ ′
i (0,μ, λ) and ξ ′′

i (0,μ, λ) are Z-linear combinations of 1,μ/pi, λ/(2π ).
This follows from the symplectic properties of the Neumann–Zagier matrices [19] (com-
pare also with the matrices (A′|B′) in Eq. (67) below).

The contours in Eqs. (59) and (60) depend on a positive pre-angle structure, but the
integrals are independent of the choice of the pre-angle structure. When we balance, i.e.,
set ε = 0, there are two possibilities: Either we can move the contour by a small isotopy in
order to avoid the singularities of the integrand, or we cannot do so. In the former case, the
new contour is canonically defined from the old contour. In the latter case, we apply the
residue theorem to change the integration contour, and the residue contribution is either
finite or infinite. In the latter case, by definition, our meromorphic function is infinity.

Remark 3.5 Anexample of an integralwhere the latter case occurs is the following integral

Iε(C) :=
∫

C

dz
z
Gq(z)Gq((−q)εz−1), (61)

where C is the contour |z| = 1 − δ for δ > 0 small. The singularities of the integrand
are z ∈ q−N and z ∈ (−q)εqN. When ε approaches zero, the contour is pinched from
two sides by the singularities at z = (−q)ε and z = 1. To avoid this pinching, by applying
the residue theorem, we move the contour of integration C to the other side of 1, i.e., the
contour C ′ given by |z| = 1 + δ:

Iε(C) = Iε(C ′) − 2π iResz=1

(
1
z
Gq(z)Gq((−q)εz−1)

)

= Iε(C ′) + 2π i (
−q; q)∞
(q; q)∞

Gq((−q)ε). (62)

Even though Iε(C ′) is regular at ε = 0, the contribution from the residue is singular
because of the simple pole of Gq((−q)ε) at ε = 0. Thus, we conclude that I0(C) = ∞.

The next proposition defines the meromorphic function that appears in Theorem 1.1.

Proposition 3.6 Setting ε = 0 (i.e., balancing the edges), and assuming that we find a
contour C, we obtain a meromorphic function of (eμ, eλ) := ((−q)μ/π , (−q)λ/(2π )) ∈ (C∗)2

IT ,eμ ,eλ (q) = c(q)N
∫

C
dμ(z)

N∏

i=1
Gq

(
(−q)ξi(0,μ,λ)z(C−B)i

)
Gq

(
(−q)ξ

′
i (0,μ,λ)z(A−C)i

)

× Gq
(
(−q)ξ

′′
i (0,μ,λ)z(B−A)i

)
.

The above integral is absolutely convergent.



8 Page 16 of 34 Garoufalidis and Kashaev ResMath Sci (2019) 6:8

Let us phrase our previous proposition in more invariant language. Recall the complex
torusTM = H1(∂M,C∗). Define the map

�T : BT → TM, δ �→ (−q)hol(δ)/π (63)

for a simple closed curve δ of ∂M, where hol(δ) denotes the angle holonomy along δ.
Proposition 3.6 states that the restriction IbalT of the meromorphic function IpreT on B is
the pullback of a meromorphic function IT onTM . In other words, the following diagram
commutes:

AT

IpreT

BT
�T

IbalT

TM
IT

C

(64)

3.2 Identification with the 3D index of Dimofte–Gaiotto–Gukov

In this subsection, we discuss the Laurent expansion of the meromorphic function
IT ,eμ ,eλ (q) on the real torus |eμ| = |eλ| = 1, under the assumption that T supports a
strict angle structure. As we will show, the coefficients of the Laurent series are the 3D
index of Dimofte–Gaiotto–Gukov. This will conclude the proof of Theorem 1.2.
The next lemma (for h = 0) is based on the idea that the upper half part of a symplectic

matrix with integer entries is a pair of coprime matrices.

Lemma 3.7 Suppose M =
(
A B
C D

)

is a symplectic matrix with integer entries where

A, B, C, D are N × N matrices. Let (A′|B′) denote the upper (N + h) × 2N part of M
and consider r, s ∈ ZN that satisfy the equation

A′r + B′s =
(
0
ν

)

for a vector ν ∈ Zh. Then, there exists k ∈ ZN−h such that

r = −B′T
(

ν

k

)

, s = A′T
(

ν

k

)

.

Proof We apply the symplectic matrix M =
(
A B
C D

)

to the vector
(
r
s

)

and define k ∈

ZN−h so that k ′ :=
(

ν

k

)

∈ ZN satisfiesM
(
r
s

)

=
(
0
k ′

)

. Then,

(
r
s

)

= M−1
(
0
k ′

)

=
(

DT −BT

−CT AT

) (
0
k ′

)

=
(

−BTk ′

ATk ′

)

.

The result follows. ��

Proof (of Theorem 1.2) Fix an ideal triangulation T ofM with N tetrahedra and let A, B
and C denote the Neumann–Zagier matrices describing gluing Eqs. (54). If we eliminate
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the shape z′
i = −1/(ziz′′

i ), we obtain the gluing equations in the form:

N∏

j=1
zAi,j
j (z′′

j )
Bi,j = (−1)νi , i = 1, . . . , N, (65)

where

A = A − B, B = C − B.

Notice thatA−C = A−B,B−C = −B. Fix a strict angle structure θ anduseProposition3.1
to write the integrand of IpreT ,θ as follows:

N∏

i=1
B(Ti, x, θ ) =

N∏

i=1
ψ0

(
(−q)−

αi+γi
π

Xαi

Xγi
, (−q)−

αi
π
Xβi

Xγi

)

=
N∏

i=1
ψ0

(
(−q)−

αi+γi
π x(A−C)i , (−q)−

αi
π x(B−C)i

)

=
N∏

i=1
ψ0

(
(−q)−

αi+γi
π x(A−B)i , (−q)−

αi
π x−(B)i

)
.

Use Eq. (24) to expand the integrand of IpreT ,θ as a convergent series on the torus |xi| = 1
(for i = 1, . . . , N ):

N∏

i=1
B(Ti, x, θ )

=
∑

r,s∈ZN

I�(r1, s1) . . . I�(rN , sN )x
∑

i(A−B)isi x−∑
i(B)iri (−q)−

1
π

∑
i(αi+γi)si+αiri

where r = (r1, . . . , rN ) ∈ ZN and s = (s1, . . . , sN ) ∈ ZN . Now, we can compute the
absolutely convergent integral IpreT ,θ by integrating over the torus. After interchanging
summation and integration (justified by uniform convergence) and applying the residue
theorem, we obtain a sum over r, s ∈ ZN such that (A − B)s − Br = 0:

IpreT ,θ =
∫

TN
dμ(x)

N∏

i=1
B(Ti, x, θ )

=
∑

r,s
I�(r1, s1) . . . I�(rN , sN )(−q)−

1
π

∑
i(αi+γi)si+αiri

∫

TN
dμ(x)x

∑
i(A−B)isi−∑

i(B)iri

=
∑

r,s:(A−B)s−Br=0
I�(r1, s1) . . . I�(rN , sN )(−q)−

1
π

∑
i(αi+γi)si+αiri .

Collecting further terms whose meridian and (half) longitude holonomy is a fixed integer,
we obtain the uniformly convergent sum:

IpreT ,θ (q) =
∑

m,e∈Z
(−q)

mμ
π (−q)

eλ
2π

∑

r,s
I�(r1, s1) . . . I�(rN , sN ), (66)

where r, s ∈ ZN satisfy the equation

A′s + B′(−r − s) =
(
0
ν

)

, ν =
(
m
e

)

(67)
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Fig. 2 The ordered 2–3 Pachner move

for thematrix (A′|B′) (whereA′, B′ are (N +1)×N matrices) obtained from (A|B) after we
remove any one row of it and replace it with two rows of the meridian and half-longitude
monodromy. Neumann–Zagier [19] prove that (A′|B′) can be completed to a symplectic
matrix. Using this and Lemma 3.7, it follows that there exists k ∈ ZN−1 such that

s = −B′T
(

ν

k

)

, −r − s = A′T
(

ν

k

)

.

Let ai and bi for i = 1, . . . , N denote the ith column of A′ and B′, respectively, and let

k ′ =
(

ν

k

)

. Using the above and Eqs. (40a), (41), we obtain that

I�(ri, si) = I�(−ai · k ′ + bi · k ′,−bi · k ′) = I�(−bi · k ′, ai · k ′)

for i = 1, . . . , N . Combined with Eq. (66), this gives

IpreT ,θ (q) =
∑

m,e∈Z
(−q)

mμ
π (−q)

eλ
2π

∑

k∈ZN−1

N∏

i=1
I�(ri, si)(q)

=
∑

m,e∈Z
(−q)

mμ
π (−q)

eλ
2π

∑

k∈ZN−1

N∏

i=1
I�(−bi · k ′, ai · k ′)(q)

=
∑

m,e∈Z
(−q)

mμ
π (−q)

eλ
2π

∑

k∈ZN−1

N∏

i=1
(−q)v·k ′

I�(−bi · k ′, ai · k ′)(q2),

where the last equality follows from Eq. (21) and v = (1, . . . , 1, m, e) ∈ ZN+1. The latter
sum coincides with the 3D index of [9]; see also [12, Sec.4.5]. This completes the proof of
Theorem 1.2. ��

3.3 Invariance under 2–3 Pachner moves

Next, we prove the invariance of themeromorphic function IT under 2–3 Pachnermoves.
Consider two ideal triangulations T and T̃ withN andN +1 tetrahedra that are related by
a 2–3 Pachner move as in Fig. 2 and choose θ and θ̃ compatible positive angle structures
on T and T̃ that satisfy Eq. (51). In particular, this means that the sum of angles around
the interior edge of the 3 tetrahedra is 2π .
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Note that θ̃ determines θ , but not vice versa. Let us denote the linear map θ̃ �→ θ by
θ = m2

3(̃θ ). The commutative diagram (64) gives a commutative diagram

AT̃

m2
3

BT̃
�T̃

m2
3

TM

AT BT
�T

TM

(68)

Let θ̃ and θ be positive pre-angle structures. We claim that

IpreT ,θ (q) = IpreT̃ ,̃θ (q). (69)

This follows by separating the integration variable of the inner edge of the 2–3move in the
integral IpreT̃ ,̃θ (q) and applying the pentagon identity (50) to that variable. Since ameromor-
phic function is uniquely determined by its values on positive pre-angle structures and the
mapm2

3 : AT̃ → AT is onto, it follows that IpreT̃ = IpreT ◦ m2
3. Now restrict to BT̃ , use the

above commutative diagram and the fact that m2
3 is onto. It follows that I

bal
T̃ = IbalT ◦ m2

3.
Using once again the commutative diagram and the fact that �T and �T̃ are onto, it
follows that IT̃ = IT .

3.4 The singularities of IT (q)

The singularities of the integrand of IT ,eμ ,eλ (q) are given by Lemma 2.2. To determine the
singularities of the meromorphic function IT , perform one integral at a time and use the
next lemma.

Lemma 3.8 Suppose f (z) is a meromorphic function of z with singularities on q−N. Fix
positive integers a1, . . . , ap > 0 and b1, . . . , bn > 0, let s = (s1, . . . , sp), t = (t1, . . . , tn) and
consider the integral:

F (s, t) =
∫

C

p∏

i=1
f (sizai )

n∏

j=1
f (tjz−bj )

dz
z
,

where C is a contour that separates q−1−N from qN. Then, F (s, t) is ameromorphic function
of (s, t) with singularities at a subset of

{
(s, t) | sbji taij ∈ q−aiN−bjN for some 1 ≤ i ≤ p, 1 ≤ j ≤ n

}
. (70)

Proof The singularities of the integrand is the set �−(s) ∪ �+(t) where

�−(s) = ∪p
i=1{zai ∈ s−1

i q−N}, �+(t) = ∪n
j=1{zbj ∈ tjqN}.

As long as �−(s)∪ �+(t) does not touch the contour C, F (s, t) is regular. It follows that if
F (s, t) is singular when pinching occurs, in other words we must have zai = s−1

i q−k and
zbj = tjql for some i, j and some k, l ∈ N. Thus, zaibj = (s−1

i q−k )bj = (tjql)ai . The result
follows. ��
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4 Examples and computations
4.1 A non-1-efficient triangulation with two tetrahedra

It is traditional in hyperbolic geometry to illustrate theorems concerning ideally triangu-
lated manifolds with the case of the standard triangulation of the complement of the 41
knot. In our examples, we will deviate from this principle and begin by giving a detailed
computation of the state integral for the case of a non-1-efficient ideal triangulation with
two tetrahedra. This illustrates Propositions 3.1, 3.2, 3.3, 3.6 and Theorem 1.1, and also
points out the inapplicability of Theorem 1.2.
Ideal triangulations can be efficiently described, constructed and manipulated by

SnapPy and Regina [5,6], and we will follow their description below. In particular,
ideal triangulations can be uniquely reconstructed by their isometry signature, and the
latter is a string of letters and numbers. There are exactly 10 ideal triangulations with two
tetrahedra of manifolds with one cusp, given in Table 3 of [11], 9 of them are 1-efficient,
and one of them with isometry signature cPcbbbdei is not. Although we will not use it,
this triangulation is not ordered. The underlying 3-manifold M is the union of a T (2, 4)
torus link with the T (1, 3) (trefoil) torus knot. In Regina format, the tetrahedron gluings
of the triangulation T of cPcbbbdei are given by:

tet glued to (012) (013) (023) (123)
0 1(130) 1(023) 1(021) 1(132)
1 0(032) 0(201) 0(013) 0(132)

The edges of T are given by:

tet edge 01 02 03 12 13 23
0 0 0 0 0 1 1
1 0 0 0 1 0 1

and the triangle faces of T are given by:

tet face 012 013 023 123
0 0 1 2 3
1 2 0 1 3

The gluing equations, in SnapPy format and with the Regina ordering of the edges, are
given by:

⎛

⎜⎜⎜
⎝

1 1 2 1 2 1
1 1 0 1 0 1
0 −1 0 1 0 0
0 0 2 0 0 0

⎞

⎟⎟⎟
⎠
.

The A, B and C matrices are given by:

A =
(
1 1
1 1

)

, B =
(
1 2
1 0

)

, C =
(
2 1
0 1

)

.
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The holonomy of the meridian and the longitude is given by:

μ = −β0 + α1, λ = 2γ0.

The ε variables are given by:

ε0 = α0 + β0 + 2γ0 + α1 + 2β1 + γ1 − 2π , ε1 = α0 + β0 + α1 + γ1 − 2π . (71)

Using αi + βi + γi = π for i = 0, 1, we can solve the above equations in terms of the
variables α0, ε0,μ, λ:

α0 = α0, α1 = π − α0 − λ/2 + μ,

β0 = π − α0 − λ/2, β1 = ε0 − λ/2,

γ0 = λ/2, γ1 = α0 − ε0 + λ − μ. (72)

This illustrates Proposition 3.2.
If xi are the variables of the ith edge for i = 0, 1 and θ is a pre-angle structure, then

B(T , x, θ )(q) = c(q)2Gq

(
(−q)

α0
π
x0x0
x0x1

)
Gq

(
(−q)

β0
π
x0x1
x0x0

)
Gq

(
(−q)

γ0
π
x0x1
x0x1

)

× Gq

(
(−q)

α1
π
x0x1
x0x0

)
Gq

(
(−q)

β1
π
x0x1
x0x1

)
Gq

(
(−q)

γ1
π
x0x0
x0x1

)

= c(q)2Gq

(
(−q)

α0
π
x0
x1

)
Gq

(
(−q)

β0
π
x1
x0

)
Gq

(
(−q)

γ0
π

)

× Gq

(
(−q)

α1
π
x1
x0

)
Gq

(
(−q)

β1
π

)
Gq

(
(−q)

γ1
π
x0
x1

)
. (73)

When θ is positive, the absolutely convergent state integral is given by:

IpreT ,θ (q) = c(q)2

(2π i)2

∫

T2
Gq

(
(−q)

α0
π
x0
x1

)
Gq

(
(−q)

β0
π
x1
x0

)
Gq

(
(−q)

γ0
π

)

× Gq

(
(−q)

α1
π
x1
x0

)
Gq

(
(−q)

β1
π

)
Gq

(
(−q)

γ1
π
x0
x1

)
dx0 dx1
x0x1

. (74)

After rescaling x0 → x0/x1, the integral is free of the x1-variable and is given by:

IpreT ,θ (q) = c(q)2

2π i
Gq

(
(−q)

γ0
π

)
Gq

(
(−q)

β1
π

)

×
∫

T
Gq

(
(−q)

α0
π x0

)
Gq

(
(−q)

β0
π

1
x0

)
Gq

(
(−q)

α1
π

1
x0

)
Gq

(
(−q)

γ1
π x0

) dx0
x0

.

(75)

Using Eq. (73), the above integral becomes:

IpreT ,θ (q) = c(q)2

2π i
Gq

(
(−q)

λ
2π

)
Gq

(
(−q)

ε0−λ/2
π

) ∫

T
Gq

(
(−q)

α0
π x0

)

× Gq

(
(−q)1+

−α0−λ/2
π

1
x0

)
Gq

(
(−q)1+

−α0−λ/2+μ

π
1
x0

)
Gq

(
(−q)

α0−ε0+λ−μ

π x0
) dx0

x0
.

(76)
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Applying the change in variables

(−q)
α0
π x0 = y0, (77)

the above integral becomes:

IpreT ,θ (q) = c(q)2

2π i
Gq

(
(−q)

λ
2π

)
Gq

(
(−q)

ε0−λ/2
π

)

×
∫

Cα

Gq (y0)Gq

(
(−q)1−

λ/2
π

1
y0

)
Gq

(
(−q)1+

−λ/2+μ
π

1
y0

)

× Gq
(
(−q)

−ε0+λ−μ

π y0
) dy0

y0
, (78)

where Cα is the torus |y0| = |q α0
π | and the integrand depends on ε0,μ, λ and y0. Notice

that when θ is positive, Eq. (73) implies that ε0 = γ0 + β1 > 0 and ε1 = −γ0 − β1 < 0.
Moreover, we can set ε0 = 0 and obtain the uniformly convergent balanced integral

IbalT ,θ (q) = c(q)2

2π i
Gq

(
(−q)

λ
2π

)
Gq

(
(−q)

−λ/2
π

)

×
∫

Cα

Gq (y0)Gq

(
(−q)1−

λ/2
π

1
y0

)

× Gq

(
(−q)1+

−λ/2+μ
π

1
y0

)
Gq

(
(−q)

λ−μ
π y0

) dy0
y0

, (79)

which only depends on (eμ, eλ) = ((−q)μ/π , (−q)λ/(2π )). To simplify notation further, let
(s, t) = (eμ, eλ). Then, we get:

IT ,s,t (q) = c(q)2

2π i
Gq (t)Gq

(
t−1)

×
∫

C
Gq (y0)Gq

(
(−q)t−1y−1

0

)
Gq

(
(−q)st−1y−1

0

)
Gq

(
s−1t2y0

) dy0
y0

, (80)

where C is the torus |y0| = |q|δ0 for small δ0 > 0. This is the meromorphic function
of Theorem 1.1. Next, we compute its singularities, starting from the singularities of the
integrand. Using part (a) of Lemma 2.3, we see that the singularities of the integrand are
given by

y0 ∈ �−(s, t) ∪ �+(s, t),

where

�−(s, t) = q−N ∪ st−2q−N, �+(s, t) = (−q)t−1qN ∪ (−q)st−1qN.

The contour of integration has to separate �−(s, t) from �+(s, t). The integral can only
be singular when pinching occurs, that is, for (s, t) such that �−(s, t) intersects �+(s, t).
This happens precisely when

t ∈ −qZ\{0} or s−1t ∈ −qZ\{0}. (81)

Using the notation of the q-rays (1), the above set is given by

−q�0,1 ∪ −q−1�0,−1 ∪ −q�−1,1 ∪ −q−1�1,−1.
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Thus, the above integral is a meromorphic function which is regular on the complement
of the set �T . Note that some of the points of the set (81) might be regular points of
the integral, this happens for instance when the residue at simple poles vanishes. Note
also that the set (81) is disjoint from the real torus |s| = |t| = 1, so the integral can
be expanded into Laurent series convergent on the real torus |s| = |t| = 1. However,
the prefactor Gq(t)Gq(t−1) has singularities on the set t ∈ qZ (and those are actual, i.e.,
not removable), which prevent the meromorphic function IT ,s,t (q) from being expanded
into Laurent series on the torus |s| = |t| = 1. In conclusion, the meromorphic function
IT ,s,t (q) is regular in the complement of the shifted q-rays

�0,1 ∪ �0,−1 ∪ −q�0,1 ∪ −q−1�0,−1 − q�−1,1 ∪ −q−1�1,−1. (82)

4.2 The 41 knot

Next, we discuss the example of the 41 knot, giving the first and last steps of the above
computations, and asking the reader to fill in the intermediate steps.
The gluing equations, in SnapPy format and with the Regina ordering of the edges,

are given by:

⎛

⎜⎜⎜
⎝

2 1 0 2 1 0
0 1 2 0 1 2
1 0 0 0 0 −1
1 1 1 1 −1 −3

⎞

⎟⎟⎟
⎠
.

The above matrix determines the following information. The A, B and C matrices are
given by:

A =
(
2 2
0 0

)

, B =
(
1 1
1 1

)

, C =
(
0 0
2 2

)

.

The holonomy of the meridian and the longitude is given by:

μ = α0 − γ1, λ = α0 + β0 + γ0 + α1 − β1 − 3γ1.

The ε variables are given by:

ε0 = 2α0 + β0 + 2α1 + β1 − 2π , ε1 = β0 + 2γ0 + β1 + 2γ1 − 2π .

Using αi + βi + γi = π for i = 0, 1, we can solve the above equations in terms of the
variables α0, ε0,μ, λ:

α0 = α0, α1 = α0 + λ/2 − μ,

β0 = π − 2α0 + ε0 − λ/2, β1 = π − 2α0 − λ/2 + 2μ,

γ0 = α0 − ε0 + λ/2, γ1 = α0 − μ. (83)

Let θ be a positive semi-angle structure. Rescaling x0 → x0/x1, applying the change in
variables

(−q)−
α0
π x0 = y0, (84)
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letting (s, t) = (eμ, eλ), and following the steps of the previous example we obtain that the
state integral is given by

IpreT41 ,θ
(q) = c(q)2

2π i

∫

Cα

dy0
y0

Gq
(
y−1
0

)
Gq

(
s−1y−1

0

)
Gq

(
(−q)−ε0 ty−1

0

)
Gq

(
s−1ty−1

0

)

× Gq
(−q(−q)ε0 t−1y20

)
Gq

(−qs2t−1y0
)
, (85)

where the contour of integration Cα (determined by (84)) is given by |y0| = |q− α0
π |.

Moreover, we can set ε0 = 0, and obtain the meromorphic function of the 41 knot:

IT41 ,s,t (q) = c(q)2

2π i

∫

C

dy0
y0

Gq
(
y−1
0

)
Gq

(
s−1y−1

0

)
Gq

(
ty−1

0

)
Gq

(
s−1ty−1

0

)

× Gq
(−qt−1y20

)
Gq

(−qs2t−1y0
)
, (86)

where C is the torus |y0| = 1+.

4.3 The sister of the 41 knot

Next, we present the invariant for the sister m003 of the 41 knot. The gluing equations,
in SnapPy format and with the Regina ordering of the edges, are given by:

⎛

⎜⎜⎜
⎝

2 0 1 2 0 1
0 2 1 0 2 1
0 − 2 0 2 0 0
0 − 1 0 2 − 1 0

⎞

⎟⎟⎟
⎠
.

Using the above matrix, we can compute the A, B, C matrices, the holonomy of the
meridian and longitude, the ε variables, and express all variables in terms of the variables
α0, ε0,μ, λ:

α0 = α0, α1 = α0 − ε0 + λ,

β0 = α0 − ε0 + λ − μ/2, β1 = α0 − ε0 + μ/2,

γ0 = π − 2α0 + ε0 − λ + μ/2, γ1 = π − 2α0 + 2ε0 − λ − μ/2. (87)

Let θ be a positive semi-angle structure. Rescaling x0 → x0/x1, applying the change in
variables

(−q)
α0
π x0 = y0, (88)

letting (s, t) = (eμ, eλ), and following the steps of the previous example we obtain that the
state integral is given by

IpreTm003 ,θ (q) = c(q)2

2π i

∫

Cα

dy0
y0

Gq
(
(−q)1+2ε0s−1/2t−2y−2

0

)

× Gq
(
(−q)1+ε0s1/2t−2y−2

0

)
Gq (y0)Gq

(
(−q)−ε0s1/2y0

)
Gq

(
(−q)−ε0 t2y0

)

× Gq
(
(−q)−ε0s−1/2t2y0

)
, (89)
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where the contour of integration Cα (determined by (88)) is given by |y0| = |(−q)
α0
π |.

Moreover, we can set ε0 = 0, and obtain the meromorphic function of the sister of the 41
knot:

ITm003 ,s,t (q) = c(q)2

2π i

∫

C

dy0
y0

Gq
(
−qs−1/2t−2y−2

0

)
Gq

(
−qs1/2t−2y−2

0

)

× Gq (y0)Gq
(
s1/2y0

)
Gq

(
t2y0

)
Gq

(
s−1/2t2y0

)
, (90)

where C is the torus |y0| = 1+.

4.4 The unknot

Next, we compute the invariant for the unknot, and find a surprise: We can compute
the integral exactly. The unknot has three triangulations with two tetrahedra given in
Table 3 of [11]. One of them has isometry signature cMcabbgds. The gluing equations,
in SnapPy format and with the Regina ordering of the edges, are given by:

⎛

⎜⎜⎜
⎝

1 2 2 2 2 2
1 0 0 0 0 0
0 0 0 0 0 − 2
1 0 0 0 − 1 0

⎞

⎟⎟⎟
⎠
.

Following the steps of the previous examples, we have:

ε0 = α0 + 2β0 + 2γ0 + 2α1 + 2β1 + 2γ1 − 2π , ε1 = α0 − 2π , (91)

which simplifies to ε0 = −α0 + 2π and in particular is bigger than π when θ is positive.
We can express all variables in terms of the variables α0, ε0,μ, λ:

α0 = 2π − ε0, α1 = −π + ε0 + λ + μ/2,

β0 = β0, β1 = 2π − ε0 − λ,

γ0 = −π − β0 + ε0, γ1 = −μ/2. (92)

After rescaling x0 → x0/x1, applying the change in variables

(−q)
−β0
π x0 = y0, (93)

letting (s, t) = (eμ, eλ), and following the steps of the previous example we obtain that the
state integral is given by

IpreTunknot ,θ (q) = c(q)2

2π i
Gq

(
(−q)2−ε0

)
Gq

(
s−1/2)Gq

(
(−q)2−ε0 t−2)Gq

(
(−q)−1+ε0s1/2t2

)

×
∫

Cα

dy0
y0

Gq
(−q−1y0

)
Gq

(
y−1
0

)
, (94)

where Cα is the torus |y0| = |(−q)−
β0
π |. On the other hand, Eqs. (7) and (8) give that

Gq
(−q−1y0

)
Gq

(
y−1
0

)
= 1

(1 + y0)(1 + q−1y0)
,
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so that

IbalTunknot ,θ (q) = c(q)2

2π i
Gq

(
(−q)2−ε0

)
Gq

(
s−1/2)Gq

(
(−q)2−ε0 t−2)Gq

(
(−q)−1+ε0s1/2t2

)

×
∫

Cα

dy0
y0

1
(1 + y0)(1 + q−1y0)

. (95)

When θ is positive, the contourCα encircles both singularities−1 and−q of the integrand,
and a residue calculation reveals that the integral is zero. It follows that

ITunknot ,s,t (q) = 0. (96)

4.5 The trefoil

Next, we compute the invariant for the trefoil. The gluing equations, in SnapPy format
and with the Regina ordering of the edges, are given by:

⎛

⎜⎜⎜
⎝

1 0 0 0 1 0
1 2 2 2 1 2
0 0 − 1 1 0 0
1 0 − 4 4 − 1 0

⎞

⎟⎟⎟
⎠
.

The state integral is given by

IpreT31 ,θ
(q) = c(q)2

2π i
Gq

(
(−q)1+ε0/2s2t−1)Gq

(
(−q)1+ε0/2s−2t

)

×
∫

Cα

dy0
y0

Gq
(
y−1
0

)
Gq

(
s−1y−1

0

)
Gq

(
(−q)−ε0/2s3t−1y0

)
Gq

(
(−q)−ε0/2s−2ty0

)
,

(97)

where the contour of integration Cα is given by |y0| = |(−q)
−α1
π |. Moreover, we can set

ε0 = 0 and obtain the meromorphic function given by:

IT31 ,s,t (q) = c(q)2

2π i
Gq

(−qs2t−1)Gq
(−qs−2t

)

×
∫

C

dy0
y0

Gq
(
y−1
0

)
Gq

(
s−1y−1

0

)
Gq

(
s3t−1y0

)
Gq

(
s−2ty0

)
, (98)

where C is the torus |y0| = 1+.

4.6 The 52 knot

Next, we present the invariant of the 52 knot. The gluing equations, in SnapPy format
(we use the homological longitude and the Regina ordering of the edges), are given by:

⎛

⎜⎜⎜⎜⎜⎜
⎝

1 1 0 1 0 0 1 1 0
0 1 1 0 0 2 0 1 1
1 0 1 1 2 0 1 0 1

− 1 0 0 0 0 1 0 0 0
2 0 − 3 1 0 − 2 0 0 1

⎞

⎟⎟⎟⎟⎟⎟
⎠

.
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After rescaling xi → xi/x2 and a change in variables x0 = (−q)α0y0 and x1 =
(−q)−α1/2s1/2t1/2y1, the state integral is given by

IpreT52 ,θ
(q) = c(q)3

(2π i)2

∫

Cα

dy0dy1
y0y1

Gq
(
y−1
0

)
Gq

(
sy−1

0

)
Gq

(
(−q)−ε1 s2y−1

0

)

× Gq
(
−qs−2t−1t−1y0y−2

1

)
Gq

(
(−q)1+ε0/4y0y−1

1

)

× Gq
(
(−q)1+3ε0/4+ε1 s−3t−1y0y−1

1

)

× Gq
(
(−q)−ε0/4y1

)
Gq

(
(−q)−3ε0/4sty1

)
Gq

(
sty21

)
, (99)

where Cα is the torus given by |y0| = |(−q)
−α0
π | and |y1s1/2t1/2| = |(−q)

α1
2π |. Moreover,

we can set ε0 = ε1 = 0 and obtain the meromorphic function given by:

IT52 ,s,t (q) = c(q)3

(2π i)2

∫

C

dy0 dy1
y0y1

Gq
(
y−1
0

)
Gq

(
sy−1

0

)
Gq

(
s2y−1

0

)
Gq

(
−qs−2t−1t−1y0y−2

1

)

× Gq
(
−qy0y−1

1

)
Gq

(
−qs−3t−1y0y−1

1

)
Gq (y1)Gq (sty1)Gq

(
sty21

)
, (100)

where C is the torus given by |y0| = 1+ and |y1s1/2t1/2| = 1−.

4.7 The 61 knot

Finally, we present the invariant of the 61 knot. The gluing equations, in SnapPy format
(we use the homological longitude and the Regina ordering of the edges), are given by:

⎛

⎜⎜⎜⎜⎜⎜⎜⎜
⎝

1 0 0 0 0 0 1 1 0 1 1 0
0 1 0 1 0 0 1 0 0 0 0 1
0 1 1 0 0 2 0 1 1 1 0 0
1 0 1 1 2 0 0 0 1 0 1 1

− 1 0 0 0 0 1 0 0 0 0 0 0
− 1 1 0 0 1 1 0 − 1 0 0 0 − 2

⎞

⎟⎟⎟⎟⎟⎟⎟⎟
⎠

.

After rescaling xi → xi/x3 and a change in variables

x0 = (−q)α2y0, x1 = (−q)α0y1, x2 = (−q)−α1/2t1/2y2 (101)

the state integral is given by

IpreT61 ,θ
(q) = c(q)4

(2π i)3

∫

Cα

dy0 dy1 dy2
y0y1y2

Gq
(
y−1
0

)
Gq

(
y−1
1

)
Gq

(
sy−1

1

)
Gq

(
(−q)ε2 s−2y−1

0 y1
)

× Gq
(
−qs−1t−1y1y−2

2

)
Gq

(
(−q)1/2−ε0/4+ε1/4t−1y−1

2

)

× Gq
(
(−q)3/2+ε0/4+3ε1/4y0y−1

2

)

× Gq
(
(−q)3/2+3ε0/4+ε1/4t−1y0y1y−1

2

)
Gq

(
(−q)−1/2−3ε0/4−ε1/4ty−1

1 y2
)

× Gq
(
(−q)1/2+ε0/4−ε1/4−ε2 s2ty0y−1

1 y2
)
Gq

(
(−q)−1/2−ε0/4−3ε1/4y−1

0 y1y2
)

× Gq
(−qty22

)
, (102)
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whereCα is the torus given by |y0| = |(−q)
−α2
π |, |y1| = |(−q)

−α0
π | and |y2t1/2| = |(−q)

α1
2π |.

Moreover, we can set ε0 = ε1 = ε2 = 0 and obtain the meromorphic function given by:

IT61 ,s,t (q) = c(q)4

(2π i)3

∫

Cα

dy0 dy1 dy2
y0y1y2

Gq
(
y−1
0

)
Gq

(
y−1
1

)
Gq

(
sy−1

1

)
Gq

(
s−2y−1

0 y1
)

× Gq
(
−qs−1t−1y1y−2

2

)
Gq

(
(−q)1/2t−1y−1

2

)
Gq

(
(−q)3/2y0y−1

2

)

× Gq
(
(−q)3/2t−1y0y1y−1

2

)
Gq

(
(−q)−1/2ty−1

1 y2
)

× Gq
(
(−q)1/2s2ty0y−1

1 y2
)
Gq

(
(−q)−1/2y−1

0 y1y2
)
Gq

(−qty22
)
, (103)

where C is the torus given by |y0| = 1+, |y1| = 1+ and |y2t1/2| = 1−.
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Appendix A: A quantum dilogarithm over the LCA groupT× Z

The function (19) with q real has been introduced and studied in the functional analytic
context of Hilbert spaces and quantum E(2) group byWoronowicz in [21]. In this section,
we derive some of its operator properties by using the theory of quantum dilogarithms
over Pontryagin self-dual LCA groups developed in [2,15].
Throughout the section, for a Hilbert space H , we write A : H → H , if A is a not

necessarily bounded linear operator in H whose domain is dense in H . The Hermitian
conjugate of A will be denoted A∗. Below, we will use freely the standard Dirac’s bra-ket
notation.
The groupT × Z is a self-dual LCA group with the gaussian exponential

〈·〉 : T × Z → T, 〈z,m〉 = zm, for all (z,m) ∈ T × Z. (104)

The Fourier kernel is fixed as the co-boundary of the gaussian exponential

〈z,m;w, n〉 := 〈zw,m + n〉
〈z,m〉〈w, n〉 = znwm. (105)

We define a unitary Fourier operator F : L2(T × Z) → L2(T × Z) by the integral kernel

〈z,m|F|w, n〉 = 〈z,m;w, n〉. (106)

For any (measurable) function f : T × Z → C, we associate three normal operators as
follows. The multiplication operator by f :

f (q) : L2(T × Z) → L2(T × Z), 〈z,m|f (q) = f (z,m)〈z,m|, (107)
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its unitary conjugate by the Fourier operator

f (p) := Ff (q)F∗, (108)

and the unitary conjugate of the latter by the inverse of the (unitary) multiplication oper-
ator 〈q〉 by the gaussian exponential (104):

f (p + q) := 〈q〉∗f (p)〈q〉. (109)

We remark that all three operators f (q), f (p) and f (p + q) have spectrum given by the
closure of the image of f .

Lemma A.1 The function

η : T × Z → C�=0, (z,m) �→ −zq1−m, (110)

satisfies the following operator equations:

η(q)η(p) = q2η(p)η(q), η(q)∗η(p) = η(p)η(q)∗, η(p + q) = −η(p)η(q). (111)

Proof In the Hilbert space L2(Z), define a self-adjoint operator h by

〈m|h = m〈m|, for all m ∈ Z, (112)

and a unitary operator z by

〈m|z = 〈m − 1|, for all m ∈ Z. (113)

These operators satisfy the commutation relation

[h, z] := hz − zh = z, (114)

which is verified as follows:

〈m|[h, z] = 〈m|hz − 〈m|zh = m〈m − 1| − (m − 1)〈m − 1| = 〈m|z. (115)

Similarly, in the Hilbert space L2(T), we define a self-adjoint operator H by

〈z|H = z
∂

∂z
〈z|, for all z ∈ T, (116)

and a unitary operator Z by

〈z|Z = z〈z|, for all z ∈ T. (117)

It is easily verified that

[H,Z] := HZ − ZH = Z. (118)
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Moreover, if J : L2(Z) → L2(T) is the isomorphism defined by the integral kernel

〈z|J|m〉 = zm, for all (z,m) ∈ T × Z, (119)

then we have the equalities

Jh = HJ, Jz = ZJ. (120)

Identifying H,Z,h, z with their natural counterparts in L2(T × Z), we have

Fh = HF, Fz = ZF, FH = −hF, FZ = z−1F, (121)

and

h〈q〉 = 〈q〉h, Z〈q〉 = 〈q〉Z, H〈q〉 = 〈q〉(H + h), z〈q〉 = 〈q〉zZ−1 (122)

so that

f (q) = f (Z,h), f (p) = f (z−1,H), f (p + q) = f (z−1Z,H + h) (123)

for any f : T × Z → C, where, in the right-hand sides, the functions with operator
arguments are understood in the spectral sense. In the case of f = η, we thus have

η(q) = −Zq1−h, η(p) = −z−1q1−H, η(p + q) = −z−1Zq1−H−h (124)

and the relations (111) are verified straightforwardly. ��

Next, observe that the function

μ : T × Z → C, (z,m) �→ (
η(z,m); q2

)
∞ , (125)

nowhere vanishes and satisfies the operator five-term identity

μ(p)μ(q) = μ(q)μ(p + q)μ(p) (126)

as a consequence of Lemma A.1 and the formal power series identity in non-commuting
indeterminates

(
v; q2

)
∞

(
u; q2

)
∞ = (

u; q2
)
∞

(−vu; q2
)
∞

(
v; q2

)
∞ , uv = q2vu, (127)

which is equivalent to the q-binomial formula

∞∑

n=0

(
a; q2

)
n(

q2; q2
)
n
zn =

(
az; q2

)
∞(

z; q2
)
∞

, (128)

see [14]. Indeed, by substituting u by η(q) and v by η(p), we convert (127) into (126).
Lemma A.1 also implies that the function

φq : T × Z → T, (z,m) �→ μ(z,m)/μ(1/z,m) = μ(z,m)/μ(z,m), (129)
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satisfies the unitarized version of identity (126):

φq(p)φq(q) = φq(q)φq(p + q)φq(p). (130)

Moreover, φq satisfies an inversion relation, see below (131), which allows us to identify
it as an example of a quantum dilogarithm overT × Z.

Lemma A.2 The function (129) satisfies the following inversion relation:

φq(z,m)φq(1/z,−m) = zm = 〈z,m〉, for all (z,m) ∈ T × Z. (131)

Proof We have

φq(z,m)φq(1/z,−m) =
(−q1−mz; q2

)
∞

(−q1+m/z; q2
)
∞(−q1−m/z; q2

)
∞

(−q1+mz; q2
)
∞

= θq(zq−m)
θq(zqm)

= θq(q−2mzqm)
θq(zqm)

= q−m2
(zqm)m = zm, (132)

where in the second equality we have used (26) and in the fourth equality the functional
equation (32). ��

Appendix B: The quantum dilogarithm and the Beta pentagon relation
In this section, we generalize the result of [2] to include the LCA groups which do not
admit division by 2. Note that most of the equations of this section (for instance, (137),
(140), (145), (149)) are valid as distributions.
Let A be a self-dual LCA group with a gaussian exponential 〈·〉 : A → T and the Fourier

kernel

〈x; y〉 = 〈x + y〉
〈x〉〈y〉 , for all (x, y) ∈ A2. (133)

For a nonnegative integer n ∈ N, denote

[n] := Z≥0 ∩ Z≤n, for all n ∈ Z≥0. (134)

According to [2], a bounded function

f : [4] × A → C, (i, x) �→ fi(x), (135)

is called of Faddeev type if it satisfies the non-constant version of the operator pentagon
relation

f1(p)f3(q) = f4(q)f2(p + q)f0(p). (136)

The latter is equivalent to the functional integral identity

f̃1(x)f̃3(u)〈x;u〉 =
∫

A
f̃4(u − z)f̃2(z)f̃0(x − z)〈z〉 dz, for all (x, u) ∈ A2, (137)

where

f̃i(x) := (F−1fi)(x) =
∫

A
〈x;−y〉fi(y) dy. (138)
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Defining

f̂i(x) := f̃i(x)〈x〉, (139)

we rewrite (137) in the form

f̂1(x)f̂3(u) =
∫

A
〈x − z; z − u〉f̂4(u − z)f̂2(z)f̂0(x − z) dz, for all (x, u) ∈ A2, (140)

We call a subgroup B ⊂ A isotropic if it satisfies the condition

〈b; b′〉 = 1, for all (b, b′) ∈ B2. (141)

Lemma B.1 Let a bi-character χ : A2 → T be such that

〈x; y〉 = χ (x, y)χ (y, x), for all (x, y) ∈ A2, (142)

and B ⊂ A an isotropic subgroup. Then, for any function fi(x) of Faddeev type, the function

g : [4] × A2 → C, (i, x, y) �→ gi(x, y) := χ (x, y)
∫

B
f̂i(x + b)〈b; y〉 db (143)

is automorphic, i.e., satisfies

gi(x + b, y) = χ (−y, b)gi(x, y), gi(x, y + b) = χ (x, b)gi(x, y),

for all (i, b, x, y) ∈ [4] × B × A2, (144)

and satisfies the integral identity

g1(x, y)g3(u, v) =
∫

A/B
g4(u − z, v + z − x)g2(z, y + v)g0(x − z, y + z − u) dz (145)

Proof The automorphicity properties (144) are verified in a straightforward manner,
while to derive the integral identity (145), we write

g1(x, y)g3(u, v)
χ (x, y)χ (u, v)

=
∫

A×B2
〈x + b − z; z − u − c〉〈b; y〉〈c; v〉f̂4(u + c − z)f̂2(z)

× f̂0(x + b − z) d(z, b, c)

=
∫

A×B2
〈x − z; z − u〉〈b; y + z − u〉〈c; v + z − x〉f̂4(u + c − z)f̂2(z)

× f̂0(x + b − z) d(z, b, c)

=
∫

A

〈x − z; z − u〉g4(u − z, v + z − x)f̂2(z)g0(x − z, y + z − u)
χ (u − z, v + z − x)χ (x − z, y + z − u)

dz

=
∫

A

g4(u − z, v + z − x)f̂2(z)g0(x − z, y + z − u)
χ (u − z, v)χ (x − z, y)

dz (146)
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so that

g1(x, y)g3(u, v) =
∫

A
χ (z, y + v)g4(u − z, v + z − x)f̂2(z)g0(x − z, y + z − u) dz

=
∫

(A/B)×B
χ (z + b, y + v)g4(u − z − b, v + z + b − x)f̂2(z + b)

× g0(x − z − b, y + z + b − u) d(z, b)

=
∫

(A/B)×B
χ (z + b, y + v)χ (v + y, b)g4(u − z, v + z − x)f̂2(z + b)

× g0(x − z, y + z − u) d(z, b)

=
∫

A/B
g4(u − z, v + z − x)g2(z, y + v)g0(x − z, y + z − u) dz. (147)

��

Now,we point out that the integral identity (145) is an equivalent formof the automorphic
Beta pentagon identity. Namely, if we define

φi(x, y) := gi(−y, x + y) ⇔ gi(x, y) = φi(x + y,−x), (148)

then

φ1(x, y)φ3(u, v) =
∫

A/B
φ4(u+y, v−z)φ2(x+ y+ u+ v− z, z)φ0(x+ v, y− z) dz. (149)

In the case of the quantum dilogarithm φq constructed in Appendix A, we have

A = T × Z, 〈z,m〉 = zm, 〈z,m;w, n〉 = znwm (150)

so that

φ̂q(z,m) = zm
∫

T×Z

φq(t, k)〈z,m; 1/t,−k〉 d(t, k) = zm
∫

T×Z

φq(t, k)z−k t−m d(t, k)

= zm
∫

T×Z

ψ(1/t, k)z−k t−m d(t, k) = zm
∫

T

ψ0(1/t, 1/z)t−m dt
2π it

.

We choose

B = Z ⊂ T × Z (151)

and

χ ((z,m), (w, n)) = wm, (152)

so that the automorphic factors are trivial:

χ ((z,m), (1, n)) = 1, for all (z,m, n) ∈ T × Z2. (153)
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Thus,

g((z,m), (w, n)) = χ ((z,m), (w, n))
∑

k∈Z
φ̂q(z,m + k)〈1, k ;w, n〉

= wm
∑

k∈Z
φ̂q(z,m + k)wk =

∑

k∈Z
φ̂q(z, k)wk

=
∫

T

∑

k∈Z
(zw/t)kψ0(1/t, 1/z)

dt
2π it

=
∫

T

δT(zw/t)ψ0(1/t, 1/z)
dt
2π it

= ψ0(1/(zw), 1/z)

and

φ(((z,m), (w, n)) = g((1/w,−n), (zw,m + n)) = ψ0(1/z, w). (154)

Taking into account the symmetry of the Beta pentagon identity under the negation of
all arguments, we conclude that ψ0(1/z, w) and ψ0(z, 1/w) both satisfy the Beta pentagon
identity.
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