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A new algorithm for the recursion of hypergeometric
multisums with improved universal denominator

Stavros Garoufalidis and Xinyu Sun

Abstract. The purpose of the paper is to introduce two new algorithms.
The first algorithm computes a linear recursion for proper hypergeometric
multisums, by treating one summation variable at a time, and provides rational
certificates along the way. A key part in the search for a linear recursion is an
improved second universal denominator algorithm that constructs all rational
solutions x(n) of the equation

am(n)

bm(n)
x(n+m) + · · ·+ a0(n)

b0(n)
x(n) = c(n),

where ai(n), bi(n), c(n) are polynomials. Our second algorithm improves Abramov’s
universal denominator.
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1. Introduction

1.1. History. The paper introduces a new algorithm to find linear recursions
(with polynomial coefficients) for multidimensional sums of the form

(1) S(n) =
∑
k∈D

f(n, k),
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2 STAVROS GAROUFALIDIS AND XINYU SUN

where D ⊂ Z
r and the summand f(n, k) is a proper hypergeometric term in the

variables (n, k). By proper hypergeometric term (abbreviated by term) f(m) in the
variables m = (m1, . . . ,ms) we mean an expression of the form

(2) f(m) = P (m)

J∏
j=1

Aj(m)!εj

where P (m) is a polynomial in m and Aj(m) =
∑s

i=1 ajimj is a linear form in m
with integer coefficients aji and εj = ±1 for 1 ≤ j ≤ J . Throughout this paper,
f(n, k) will denote a proper hypergeometric term.

As observed by Zeilberger [Ze], and further explained in [WZ], Sister Celine’s
method [Fas] can be used to prove the existence of linear recursions of S(n) in a
constructive way. Zeilberger’s method is only efficient for single sums. A faster al-
gorithm was constructed by Zeilberger (also known as creative telescoping [PWZ]),
which employed Gosper’s indefinite summation algorithm [Gos]. Creative telescop-
ing is faster than Sister Celine’s method, and often returns the optimal (i.e., minimal
order) recursions. However, due to the nature of Gosper’s algorithm, Zeilberger’s
method only works for single sums, i.e., when r = 1 in (1).

Wegschaider in [Weg] improved Sister Celine’s algorithm for multisums; Zeil-
berger has a program EKHAD for creative telescoping, while Paule and Schorn [PSh]
implemented it in Mathematica; Schneider created a package called Sigma, the
framework of which was explained in [Sch]; Apagodu and Zeilberger [AZ] gener-
alized creative telescoping to multi-variable context which resulted in another fast
algorithm.

1.2. What is multivariable creative telescoping? Multivariable creative
telescoping for S(n) is the problem of finding a natural number J ∈ N, and rational
functions aj(n) ∈ Q(n), for 1 ≤ j ≤ J and rational functions Ci(n, k) ∈ Q(n, k) for
1 ≤ i ≤ r so that

(3)
J∑

j=0

aj(n)N
jf(n, k) =

r∑
i=1

(Ki − 1)(Ci(n, k)f(n, k)),

where N,Ki, n, ki are operators that act on functions f(n, k) as follows:

(Nf)(n, k) = f(n+ 1, k), (nf)(n, k) = nf(n, k),

(Kif)(n, k1, . . . , kr) = f(n, k1, . . . , ki−1, ki + 1, ki+1, . . . , kr),(4)

(kif)(n, k1, . . . , kr) = kif(n, k1, . . . , kr).

Note that the operators N,n,Ki, ki commute except in the following instance

(5) Nn = n+ 1, Kiki = ki + 1.

In Equation (3), the rational functions Ci(n, k) for 1 ≤ i ≤ r are called the cer-

tificates and the operator
∑J

j=0 aj(n)N
j is called the recursion for the sum S(n).

Given Equation (3), we can sum over k to obtain an inhomogeneous linear recursion
for S(n), whose inhomogeneous part consists of the contribution from the boundary
terms.

All known algorithms of creative telescoping convert (3) to a system of linear
equations with coefficients in the field Q(n, k). This is possible since dividing both
sides of (3) by f(n, k) and using the fact that f(n, k) is proper hypergeometric, it
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A NEW ALGORITHM FOR THE RECURSION OF MULTISUMS 3

follows that the ratios Nf(n, k)/f(n, k) ∈ Q(n, k) and Kif(n, k)/f(n, k) ∈ Q(n, k)
are rational functions. The number of unknowns and equations directly affect the
performance of the above mentioned algorithms.

1.3. Abramov’s universal denominator algorithm. A key part of our
search for a linear recursion of hypergeometric multisums is an improved universal
denominator algorithm that finds all rational solutions x(n) ∈ Q(n) to a linear
difference equation

am(n)

bm(n)
x(n+m) + · · ·+ a0(n)

b0(n)
x(n) = c(n),

where ai(n), bi(n), c(n) are polynomials. The idea is to correctly predict the de-
nominator u(x) of x(n) (also known as the universal denominator), so that the
problem can be reduced into finding a polynomial solution to a linear difference
equation. In [Ab] Abramov developed a universal denominator algorithm. In this
paper, we develop a new algorithm that improves Abramov’s algorithm by possibly
reducing the number of factors in the universal denominator. The new algorithm is
used repeatedly to convert the problem of finding recursions of multivariate hyper-
geometric sums into the problem of solving system of linear equations. And fewer
factors in the universal denominator implies fewer numbers of variables and fewer
equations in the system.

1.4. Acknowledgment. The authors wish to thank D. Zeilberger for a careful
reading of an earlier version of the paper and for detailed suggestions and comments.

2. Two algorithms

2.1. A new algorithm for the recursion of hypergeometric multisums.
To describe our algorithm for the recursion of multisums, let us introduce some
useful notation.

Definition 2.1. Fix a term f(n, k) where k = (k1, . . . , kr) and 1 ≤ i, j ≤ r.
We say that two operators P and Q in the variables n, ki, N and Ki are f -equivalent
modulo Ki − 1, . . . ,Kj − 1, and write

(6) P ≡f Q mod (Ki − 1,Ki+1 − 1, . . . ,Kj − 1),

if there exist rational functions bs(n, k) for i ≤ s ≤ j so that

(7) (P −Q)f(n, k) =

j∑
s=i

(Ks − 1)(bs(n, k)f(n, k)).

If i > j, the right-hand side of the last equation is 0.
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4 STAVROS GAROUFALIDIS AND XINYU SUN

Our algorithm will construct operators RECi for 0 ≤ i ≤ r and RECj,i for
0 ≤ i < j ≤ r of the following form

RECi =

di∑
s=0

ai,s(n, k1, . . . , ki)K
s
i , i �= 0; REC0 =

d0∑
s=0

a0,s(n)N
s;

RECj,i = Ki +

dj,i∑
s=0

aj,i,s(n, k1, . . . , kj)K
s
j , i �= 0;

RECj,0 = N +

dj,0∑
s=0

aj,0,s(n, k1, . . . , kj)K
s
j ,

that satisfy

(8)
RECi ≡f 0 mod (Ki+1−1, . . . ,Kr−1) RECj,i ≡f 0 mod (Kj+1−1, . . . ,Kr−1).

We will call such operators RECi,RECj,i f -compatible.
Observe that REC0 is exactly Equation (3). Here are the steps for the algo-

rithm.

INPUT: A proper hypergeometric term f(n, k1, . . . , kr).

OUTPUT: A recursion
∑I

i=0 ai(n)N
i certificates Ci(n, k1, . . . , kr) that satisfy (3).

Step 1. Set l := r, k0 = n and K0 := N ;

Step 2. Set RECr,0 := N − Nf
f , RECr,i := Ki − Kif

f , 1 ≤ i ≤ r − 1

and RECr := Kr − Krf
f ;

Step 3. Construct RECr−1 using Proposition 4.4.
Step 4. If l = 1, print REC0 and stop; otherwise, continue;
Step 5. Construct RECl−1,i for 0 ≤ i ≤ l − 2 using Proposition 4.3.
Step 6. Construct RECl−2 using Proposition 4.4.
Step 7. Set l = l − 1, and go to Step 4.

There is some similarity between our algorithm and results of Schneider [Sch]; we do
believe however the underlying algorithm to obtain the certificates is different from
Schneider’s program Sigma, although he did employ some version of Abramov’s
algorithm.

The subtle part of the above algorithm are steps 5 and 6 which compute the
proper denominators for the certificates that appear in Equations (8). This is
done using Propositions 4.3 and 4.4, which follow from Theorem 5.1, which are
implemented in our improved denominator algorithm of Section 2.2.

Example 2.2. When r = 3 the algorithm computes RECi for 0 ≤ i ≤ 3 and
RECi,j for 0 ≤ j < i ≤ 3 in the following order:

REC3,0,REC3,1,REC3,2,REC3 → REC2 → REC2,0,REC2,1 → REC1 → REC1,0 → REC0

A Maple implementation of the above algorithm is available at [GS2]. A
Mathematica implementation will be developed later. A q-version of the above
algorithm is possible and will also be developed later.
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A NEW ALGORITHM FOR THE RECURSION OF MULTISUMS 5

2.2. An improved universal denominator algorithm. In this section we
present our universal denominator algorithm. Let K denote a fixed field, which in
applications it is the field of rational functions with rational coefficients in a finite
set of variables.

INPUT: An equation with rational coefficients am(s)
bm(s)x(s+m) + · · ·+ a0(s)

b0(s)
x(s) = c(s),

where ai(s), bi(s), c(s) ∈ K[s] are polynomials.

OUTPUT: A rational solution x(s) = R(s)P (s)
Q(s) to the equation,

where P (s), Q(s), R(s) ∈ K[s].

Step 1. Set P (s) = 1;

Step 2. Set σ(s) = lcm (b0(s), . . . , bm(s)), and τi(s) = ai(s− i) σ(s−i)
bi(s−i) , 0 ≤ i ≤ m;

Step 3. Set Q(s) = gcd(τ0(s), . . . , τm(s));
Step 4. Find the largest possible nonnegative integer � such that

gcd( τ0(s)Q(s) ,
τm(s−�)
Q(s) ) = φ(s) �= 1;

Step 5. If such an � does not exists, continue to Step 9;

Step 6. Otherwise, set Q(s) = Q(s)
∏�

i=0 φ(s+ i);

Step 7. Set τ0(s) =
τ0(s)
φ(s) and τm(s) = τm(s)

φ(s+�) ;

Step 8. Go to Step 4;

Step 9. Set R(s) = lcm0≤i≤m

{
bi(s−i)Q(s)

gcd(bi(s−i)Q(s),ai(s−i)d(s−i)P (s)
∏

j �=i bj(s−i)Q(s+j−i))

}
;

Step 10. If R(s) = 1, STOP;
Step 11. Otherwise, set P (s) = P (s)R(s);
Step 12. Go to Step 9.

2.3. Plan of the proof. The structure of the paper is as follows. In Section 3,
we explain the usage of the Maple program. We present a few examples and compare
the results and performance against the programs discussed above. In Section 2, we
introduce the terminology used in the paper, and present the general structure of
the method as a sequence of steps. In Section 4, we prove the validity of each step
of the structure, and also explain the method in detail. In Section 5, we prove a
new algorithm that generates universal denominators with possibly less factors than
those generated by Abramov’s algorithm, that also partially predict the numerators
for rational solutions to linear difference equations.

3. Use of the program and examples

Example 3.1. Define

f(n, k1, k2) = (−1)n+k1+k2

(
n

k1

)(
n

k2

)(
n+ k1
k1

)(
n+ k2
k2

)(
2n− k1 − k2

n

)
g(n, k) =

(
n

k

)4

.

Using our algorithm, we will prove that∑
k1,k2

f(n, k1, k2) =
∑
k

g(n, k).
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6 STAVROS GAROUFALIDIS AND XINYU SUN

See also [PWZ, Page 33] and [Sch]. After running our program, both sides of the
above equation are annihilated by the operator

(n+ 2)3N2 − 2(2n+ 3)(3n2 + 9n+ 7)N − 4(4n+ 5)(4n+ 3)(n+ 1).

Since they have the same initial conditions for n = 0, 1, the two sides agree for all
natural numbers n.

Please see [GS2] for the syntax of input and output.

Example 3.2. Define

f(n, k1, k2) =

(
n

k1

)(
n

k2

)(
n+ k1
k1

)(
n+ k2
k2

)(
2n− k1 − k2

n

)
.

Please see [GS2] for complete information. The recursion for the multisum∑
k1,k2

f(n, k1, k2) is of degree 4.

Example 3.3. Define

f(n, k1, k2, k3) = (−1)n+k1+k2+k3

(
n

k1

)(
n

k2

)(
n

k3

)
(
n+ k1
k1

)(
n+ k2
k2

)(
n+ k3
k3

)(
2n− k1 − k2 − k3

n

)
.

Please see [GS2] for complete information. The recursion for the multisum∑
k1,k2,k3

f(n, k1, k2, k3) is of degree 4.

4. Proof of the multisum algorithm

4.1. Two Lemmas. We fix a term f(n, k) where k = (k1, . . . , kr), and con-
sider a fixed variable kv and the corresponding operator Kv. The moduli are always
(kv+1, . . . , kr), which we suppress for simplicity.

Lemma 4.1. If
∑I

i=0 bi(n, k1, . . . , kv)K
i
v ≡f 0 and N+

∑I−1
i=0 ai(n, k1, . . . , kv)K

i
v

≡f 0, then for any integer m and rational functions {αi(n, k1, . . . , kv)}0≤i≤m, there
exist rational functions {βj(n, k1, . . . , kv)}0≤j≤I−1 so that

(9)

m∑
i=0

αi(n, k1, . . . , kv)N
i ≡f

I−1∑
j=0

βj(n, k1, . . . , kv)K
j
v .

Furthermore, Equation (9) is a linear system of equations with unknowns
{βj(n, k1, . . . , kv)} and coefficients in the field Q(n, k1, . . . , kv).

Proof. Since the operators are linear over the field Q(n, k1, . . . , kv), we only
need to show the result for Nm for m ≥ 1 by induction. The conclusion is true for
m = 1. Suppose it is true for m− 1, i.e.,

Nm−1 ≡f

I−1∑
j=0

γj(n, k1, . . . , kv)K
j
v
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A NEW ALGORITHM FOR THE RECURSION OF MULTISUMS 7

for some {γi}. Then we have

Nm ≡f N(Nm−1) ≡f N(

I−1∑
j=0

γj(n, k1, . . . , kv)K
j
v)

≡f

I−1∑
j=0

γj(n+ 1, k1, . . . , kv)K
j
vN

≡f

I−1∑
j=0

γj(n+ 1, k1, . . . , kv)K
j
v

(
−

I−1∑
i=0

ai(n, k1, . . . , kv)K
i
v

)

≡f

I−1∑
i=0

βi(n, k1, . . . , kv)K
i
v,

for some rational βi(n, k1, . . . , kv). The last equation is because the order of re-
cursion in kv satisfied by f is at most I. Since the reduction of Nm does not de-
pend on {αi(n, k1, . . . , kv)}, it follows that {βj(n, k1, . . . , kv)} are linear functions
of {αi(n, k1, . . . , kv)}. �

Lemma 4.2. Given Kp
v +

∑p−1
i=0 ai(n, k1, . . . , kv)K

i
v ≡f 0 and

−
p−1∑
j=0

ap−1−j(n, k1, . . . , kv + j)bp−1(n, k1, . . . , kv + 1 + j)− bp−1(n, k1, . . . , kv)

=

p−1∑
j=0

cp−1−j(n, k1, . . . , kv + j),

where {ci(n, k1, . . . , kv)}0≤i≤p−1 and bp−1(n, k1, . . . , kv) are rational functions. De-
fine, for 0 ≤ i < p− 1,

bi(n, k1, . . . , kv) = bp−1(n, k1, . . . , kv − p+ 1 + i)

+

p−i−1∑
j=1

ai+j(n, k1, . . . , kv − j)bp−1(n, k1, . . . , kv − j + 1)

+

p−i−1∑
j=1

ci+j(n, k1, . . . , kv − j).

Then
p−1∑
i=0

ci(n, k1, . . . , kv)k
i
v ≡f (kv − 1)

p−1∑
i=0

bi(n, k1, . . . , kv)k
i
v.

Proof. From the definition of bi(n, k1, . . . , kv), it is easy to check that

bi−1(n, k1, . . . , kv + 1) = bi(n, k1, . . . , kv) + ai(n, k1, . . . , kv)bp−1(n, k1, . . . , kv + 1)

+ci(n, k1, . . . , kv),

b0(n, k1, . . . , kv) = −bp−1(n, k1, . . . , kv + 1)a0(n, k1, . . . , kv)− c0(n, k1, . . . , kv).

It follows that
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8 STAVROS GAROUFALIDIS AND XINYU SUN

(Kv − 1)

p−1∑
i=0

bi(n, k1, . . . , kv)K
i
v

≡f bp−1(n, k1, . . . , kv + 1)Kp
v +

p−2∑
i=0

bi(n, k1, . . . , kv + 1)Ki+1
v

−
p−1∑
i=0

bi(n, k1, . . . , kv)K
i
v

≡f −
p−1∑
i=0

bp−1(n, k1, . . . , kv + 1)ai(n, k1, . . . , kv)K
i
v

+

p−1∑
i=1

(bi−1(n, k1, . . . , kv + 1)− bi(n, k1, . . . , kv))K
i
v

−b0(n, k1, . . . , kv)

≡f −
p−1∑
i=0

bp−1(n, k1, . . . , kv + 1)ai(n, k1, . . . , kv)K
i
v

+

p−1∑
i=1

(ai(n, k1, . . . , kv)bp−1(n, k1, . . . , kv + 1)

+ci(n, k1, . . . , kv))K
i
v

+bp−1(n, k1, . . . , kv + 1)a0(n, k1, . . . , kv) + c0(n, k1, . . . , kv)

≡f

p−1∑
i=0

ci(n, k1, . . . , kv)K
i
v.

�

Lemma 4.2 also appeared in [Sch] in a different form. It is included here for
completeness of the proofs.

4.2. Two propositions for the algorithm. In this section we state and
prove Propositions 4.3 and 4.4 which are used in our algorithm. Fix a term f(n, k)
where k = (k1, . . . , kr). Recall we set k0 = n and K0 = N .

Proposition 4.3. Let 1 ≤ v < r. Given f-compatible operators RECv+1,
RECv, RECv+1,u, RECv+1,v for 0 ≤ u ≤ v ≤ r, it is possible to construct an
f-compatible operator RECv,u for 0 ≤ u < v in Step 5.

Proposition 4.4. Let 1 ≤ v ≤ r. Given f-compatible operators RECv,RECv,v−1

for 0 ≤ u ≤ v, it is possible to construct f-compatible operator RECv−1 in Steps
3 and 6.

4.3. Proof of Proposition 4.3. Let

RECv+1 := KJ
v+1 +

J−1∑
i=0

ai(k0, k1, . . . , kv+1)K
i
v+1(10)

RECv+1 ≡f 0 mod (Kv+2 − 1, . . . ,Kr − 1).
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A NEW ALGORITHM FOR THE RECURSION OF MULTISUMS 9

We can always divide the operator by the leading coefficient if it is not 1, since it
does not involve variables kv+2, . . . , kr. Let us look for

RECv,u := Ku +

I−1∑
i=0

φi(k0, k1, . . . , kv)K
i
v(11)

RECv,u ≡f 0 mod (Kv+1 − 1, . . . ,Kr − 1),

for some rational functions φi(k0, k1, . . . , kv). To prove the existence of RECv,u,
borrow the idea in the proof of [WZ] by solving

(12)

[
Ku +

Uv∑
iv=0

· · ·
Um∑

im=0

(
σiv···im(k0, k1, . . . , kv)

m∏
l=v

Kil
l

)]
f(k0, k1, . . . , kr) = 0,

with σiv···im(k0, k1, . . . , kv) being the unknown rational functions. Divide both sides
by the hypergeometric function f(k0, . . . , kr) to obtain an equation of rational func-
tions. By comparing the coefficients of the powers of kv+1, . . . , kr, we can set up
a system of linear equations over the field Q(k0, k1, . . . , kv), whose unknowns are
σiv···im(k0, k1, . . . , kv). The number of unknowns is

∏m
l=v(Ul+1), while the number

of equations, which equals the degree of the numerator in Equation (12), is propor-

tional to (
∏m

l=v Ul)
(∑m

l=v
1
Ul

)
. It follows that when Uv, . . . , Um are large enough,

we have more unknowns than equations in the system, which guarantees a nontriv-
ial solution. Replacing Kv+1, . . . ,Kr in Equation (12) with 1, we get a solution to
Equation (11). The maximum power of I − 1 on Kv is ensured by the existence of
a recursion of order I. The readers may also compare with [PWZ, Theorem 4.4.1]
or [AZ, Theorem MZ] for a detailed discussion on the method in similar cases.
With the proof of existence completed, we can introduce a new method to find the
functions {φi} and {bj}.

Reduce Ku+
∑I−1

i=0 φi(k0, k1, . . . , kv)K
i
v into

∑J−1
i=0 ci(k0, k1, . . . , kv+1)K

i
v+1 for

some rational
ci(k0, k1, . . . , kv+1), using Lemma 4.1 below. This implies that

J−1∑
i=0

ci(k0, k1, . . . , kv+1)K
i
v+1 ≡f (Kv+1 − 1)

(
J−1∑
i=0

bi(k0, k1, . . . , kv+1)K
i
v+1

)
.

Since the coefficient of KJ
v+1 is 1 in (10), it follows from Lemma 4.2 below that we

only need to find bJ−1(k0, k1, . . . , kv+1) such that

−
J−1∑
j=−1

aJ−1−j(k0, k1, . . . , kv+1 + j)bJ−1(k0, k1, . . . , kv+1 + 1 + j)

=

J−1∑
j=0

cJ−1−j(k0, k1, . . . , kv+1 + j).(13)

In the equation, {ai(k0, k1, . . . , kv+1)}0≤i≤J−1 are known; bJ−1 is a rational func-
tion of k0, . . . , kv+1, i.e., an element of the field Q(k0, k1, . . . , kv); and {ci}0≤i≤J−1

are linear combinations of {φj}0≤j≤I−1. So the right-hand side can be written as∑I−1
j=0 Uj(k0,k1,...,kv+1)φj(k0,k1,...,kv)

V (k0,k1,...,kv+1)
, with polynomials

φj(k0, k1, . . . , kv) unknown; and Uj(k0, k1, . . . , kv+1) and V (k0, k1, . . . , kv+1) known.
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Multiply both sides of Equation (13) by V (k0, k1, . . . , kv+1) to obtain

J−1∑
j=−1

−aJ−1−j(k0, k1, . . . , kv+1 + j)bJ−1(k0, k1, . . . , kv+1 + 1 + j)V (k0, k1, . . . , kv+1)

=

I−1∑
j=0

Uj(k0, k1, . . . , kv+1)φj(k0, k1, . . . , kv).(14)

In the above equation, consider bJ−1(k0, . . . , kv+1) ∈ Q(k0, . . . , kv)(kv+1), and ap-
ply Theorem 5.1 to the field K = Q(k0, . . . , kv) and the variable s = kv+1. It
follows that we can write

bJ−1(k0, k1, . . . , kv+1) =
R(k0, k1, . . . , kv+1)P (k0, k1, . . . , kv+1)

Q(k0, k1, . . . , kv+1)
,

with polynomials R(k0, k1, . . . , kv+1) ∈ Q[k0, . . . , kv+1] and Q(k0, k1, . . . , kv+1) ∈
Q[k0, . . . , kv+1] known, and P (k0, k1, . . . , kv+1) ∈ Q[k0, . . . , kv+1] unknown. By
multiplying both sides by the common denominator of the left-hand side, and com-
paring the degree of kv+1, we can determine the degree of kv+1 in P (k0, k1, . . . , kv+1),
say, L. By writing

P (k0, k1, . . . , kv+1) =

L∑
i=0

ψi(k0, k1, . . . , kv)k
i
v+1

plugging it back into Equation (14), and comparing the coefficients of powers of
kv+1, we can set up a system of linear equations with {φj}0≤j≤I−1 and {ψi}0≤i≤L

as unknowns. The system is guaranteed to have a nontrivial solution because of
the existence of the recursion. �

4.4. Proof of Proposition 4.4. The existence of the recursion can be proved
in a way similar to Theorem 4.3. And the method of the new algorithm is also the
same. Basically we again rewrite the left-hand side of the equations into powers of
Kv, compare their coefficients on both sides, and solve the resulting linear equations.
Details are omitted. �

5. Proof of the universal denominator algorithm

In this section we state and prove Theorem 5.1 which determines the denomina-
tor and partially the numerator of the rational function bJ−1 in Equation (14). This
is crucial for the performance of the algorithm as a whole, because it reduces the
number of variables and number of equations in the final system of linear equations
to be solved. The most straight-forward guess for the denominator bJ−1 in Equa-
tion (14), i.e., the denominator of the right-hand side of the equation, will give us
an algorithm whose performance is compatible to that of Sister Celine’s method on
a single step. Theorem 5.1 also improves Abramov’s universal denominator [Ab].

Let K denote a field, which for our applications it will be the field of rational
functions with rational coefficients in a finite set of variables. Let s denote a fixed
variable that does not appear in K. As usual, if p(s), q(s) ∈ K[s] are polynomials,
then we write p(s) |q(s) if p(s) divides q(s).

Consider the equation

(15)
m∑
i=0

ai(s)

bi(s)
x(s+ i) = c(s),
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where ai(s), bi(s), c(s) ∈ K[s] are polynomials, and gcd(ai, bi) = 1. Define

σ(s) = lcm (bi(s) |0 ≤ i ≤ m) ,

τi(s) =
ai(s− i)

bi(s− i)
σ(s− i), 0 ≤ i ≤ m,

τ̂ (s) = gcd (τ0(s), . . . , τm(s))

and

Q(s) = τ̂(s)
I∏

i=0

Ji∏
j=0

φi(s+ j), where φi(s)

∣∣∣∣τ0(s)τ̂ (s)
, φi(s+ Ji)

∣∣∣∣τr(s)τ̂ (s)
,

(16)

where each Ji is the maximum of such numbers for the function φi,

and the outer product is over all such φi,

R(s) = lcm0≤i≤m

⎧⎨⎩ bi(s− i)Q(s)

gcd
(
bi(s− i)Q(s), ai(s− i)

∏
j �=i bj(s− i)Q(s+ j − i)

)
⎫⎬⎭

(17)

Obviously, R(s), Q(s) ∈ K[s] are polynomials.

Theorem 5.1. With the above conventions, every rational solution of (15) has
the form

x(s) =
R(s)P (s)

Q(s)
,

where P (s) ∈ K[s] is a polynomial.

Proof. Suppose x(s) = A(s)
B(s) , with gcd(A(s), B(s)) = 1. Then

m∑
i=0

ai(s)σ(s)

bi(s)

A(s+ i)

B(s+ i)
= c(s)σ(s).

So
m∑
i=0

ai(s)

B(s+ i)

A(s+ i)σ(s)

bi(s)
= c(s)σ(s),

c(s)σ(s)
m∏
j=0

B(s+ j) =
m∑
i=0

A(s+ i)τi(s+ i)
∏
j �=i

B(s+ j).

Since τi(s) are polynomials for all i, it follows that

B(s+ i)

∣∣∣∣∣∣A(s+ i)τi(s+ i)
∏
j �=i

B(s+ j) .

Since gcd(A(s), B(s)) = 1, it follows that

B(s)

∣∣∣∣∣∣τi(s)
m∏
j �=i

B(s+ j − i) .
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Write B(s) =
∏U

i=0

∏Vi

j=0 fi(s + j)
∏W

j=0 gj(s), where U, Vi,W are constants; and

gcd(gi(s), gj(s + L)) = 1 for any i, j, L; and gcd(gj(s), fi(s + l)) = 1 for any i, j,
and −m ≤ l ≤ m. We call the functions gj(s) singletons, and {fi(s + j)}0≤j≤Vj

chains, in which fi(s) are the heads of chains, and fi(s+ Vi) the tails of chains. So
we are writing B(s) uniquely as a product of chains and singletons.

There are two cases:
Case I: The tail of one chains is always far apart from the head of another in

B(s), i.e., gcd(fi(s+Vi), fj(s+v)) = 1 for all 0 ≤ i, j ≤ U and −m ≤ v ≤ m. Then

U∏
i=0

fi(s)
W∏
j=0

gj(s) =
B(s)

gcd(B(s),
∏m

j=1 B(s+ j))

∣∣∣∣∣∣ gcd(B(s), τ0(s)),

U∏
i=0

fi(s+ Vi)

W∏
j=0

gj(s) =
B(s)

gcd(B(s),
∏m

j=1 B(s− j))

∣∣∣∣∣∣ gcd(B(s), τm(s)),

W∏
j=0

gj(s) =
B(s)

gcd(B(s),
∏

j �=i B(s+ j − i))

∣∣∣∣∣∣ gcd(B(s), τi(s)), i �= 0,m.

Thus the singletons have the property

W∏
j=0

gj(s)

∣∣∣∣∣∣ gcd (τi, 0 ≤ i ≤ m) .

At the same time, the heads of the chains fi(s) in B(s) are factors of τ0, and

the tails fi(s+Vi) factors of τr. Therefore each chain in B(s) factors
∏J�

j=0 φ�(s+j)

for some �. Recalling the definition of Q(s) from Equation (16), it follows that B(s)
divides Q(s).

Case II: The heads and tails of chains are close, i.e., gcd(fi(s+Vi), fj(s+v)) �= 1

for some 0 ≤ i, j ≤ U and −m ≤ v ≤ m. In this case,
∏I

i=0

∏Ji

j=0 φi(s + j) will

contain a chain whose head is fi(s) and tail is fj(s+ Vj) in Q(s). This is a longer
chain than what B(s) really needs, but it still guarantees that B(s) divides Q(s).

So far, this proves that x(s) = A(s)
Q(s) where A(s) ∈ K[s] is a polynomial. To

finish the proof, it suffices to show that R(s) (given by Equation (17)) divides A(s).
Since

m∑
i=0

ai(s)

bi(s)

A(s+ i)

Q(s+ i)
= c(s),

with ai, bi, c polynomials, any polynomial factor that appears only once in the m+1
denominators on the left-hand side must also divide the corresponding numerator,
which means

bi(s)Q(s+ i)

gcd
(
bi(s)Q(s+ i), ai(s)

∏
j �=i bj(s)

∏
j �=iQ(s+ j)

)
∣∣∣∣∣∣A(s+ i).

�
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Remark 5.1. When m = 1, Theorem 5.1 becomes Gosper’s algorithm. Recall
that Gosper’s algorithm tries to find rational solution x(s) such that

a(s)c(s+ �)

b(s)c(s)
x(s+ 1)− x(s) = 1

for some integer �. Based on our propositions, we get a chain
∏�−1

i=0 c(s+ i) as the
denominator and b(s − 1) as part of the numerator, which agrees with Gosper’s
result.

Remark 5.2. Abramov’s universal denominator treats the singletons in Theo-
rem 5.1 as chains of length 1, and then tries to find all chains. However, by picking
singletons out first, we reduce the possibility of generating redundant chains in
the denominator, because factors in the leading coefficient may mingle with the
singletons and generate unwanted factors in chains. We illustrate the effect by
example.

Example 5.3. This is Example 1 in [Ab].

(n+ 4)(2n+ 1)(n+ 2)x(n+ 3)− (2n+ 3)(n+ 3)(n+ 1)x(n+ 2)

+ n(n+ 2)(2n− 3)x(n+ 1)− (n− 1)(2n− 1)(n+ 1)x(n) = 0.

Abramov’s algorithm gives the denominator u(n) = n3 −n for all rational function
solutions x(n) ∈ Q(n) of the above equation, and computes the general polynomial
solution C(2n2 − 3n). However our algorithm finds two singletons (n + 1)(n − 1)
and no chains. So the denominator is Q(n) = n2 − 1, which strictly divides u(n).

Example 5.4. In one of the intermediate steps for Example 3.3, we get

x(n, k1, k2)

+
−(2k2

2 + k2 + 4k2k1 − 6k2n− 3n+ k1 + 3n2 − 6k1n+ 2k2
1)(n+ k2 + 2)(−n+ k2 + 1)

(k2 + 2)2(k1 + 1− n+ k2)(k1 − 3n+ k2)

· x(n, k1, k2 + 1)

+
(k1 + 1− n+ k2)

2(n+ k2 + 3)(n+ k2 + 2)(−n+ k2 + 2)(−n+ k2 + 1)

(k2 + 3)2(k2 + 2)2(k1 + 2− n+ k2)(k1 − 3n+ k2 + 1)
x(n, k1, k2 + 2)

=
c(n, k1, k2)

(n+ k2 + 1)(−n+ k2)
∏2

j=0 [(k1 − 3n+ k2 + j)(k1 − n+ k2 + 1 + j)(k1 + 1 + j)2]
,

to solve for x(n, k1, k2) with c(n, k1, k2) a polynomial. After multiplying both sides
by the denominator of the right-hand side, we find four singletons (n+k2+1)(−n+
k2)(k1 − 3n+ k2)(k1 − n+ k2 +1); no chain in the denominator of x(n, k1, k2); and
k22(k2 + 1)2 as factors of the numerator of x(n, k1, k2). Hence

x(n, k1, k2) =
k22(k2 + 1)2

(n+ k2 + 1)(−n+ k2)(k1 − 3n+ k2)(k1 − n+ k2 + 1)
P (n, k1, k2),

where P (n, k1, k2) is a polynomial.

Our method keeps finding the best possible denominators in all the steps of the
examples discussed in the paper.
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