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Abstract Recent advances in Quantum Topology assign q-series to knots in at least
three different ways. The q-series are given by generalized Nahm sums (i.e., special
q-hypergeometric sums) and have unknown modular and asymptotic properties. We
give an efficient method to compute those q-series that come from planar graphs (i.e.,
reduced Tait graphs of alternating links) and compute several terms of those series
for all graphs with at most 8 edges drawing several conclusions. In addition, we give
a graph-theory proof of a theorem of Dasbach-Lin which identifies the coefficient of
qk in those series for k = 0, 1, 2 in terms of polynomials on the number of vertices,
edges, and triangles of the graph.

Keywords Knots · Colored Jones polynomial · Stability · Index · q-series ·
q-hypergeometric series · Nahm sums · Planar graphs · Tait graphs

Mathematics Subject Classification Primary 57N10 · Secondary 57M25

S.G. was supported in part by a National Science Foundation Grant DMS-0805078.

S. Garoufalidis (B) · T. Vuong
School of Mathematics, Georgia Institute of Technology, Atlanta, GA 30332-0160, USA
URL: http://www.math.gatech.edu/∼stavros
e-mail: stavros@math.gatech.edu

T. Vuong
URL: http://www.math.gatech.edu/∼tvuong
e-mail: tvuong@math.gatech.edu

123



502 S. Garoufalidis, T. Vuong

1 Introduction

1.1 q-series in quantum knot theory

Recent developments in Quantum Topology associate q-series to a knot K in at least
three different ways are as follows:

• via stability of the coefficients of the colored Jones polynomial of K ,
• via the 3D index of K , and
• via the conversion of state-integrals of the quantum dilogarithm to q-series.

The first method is developed of alternating knots in detail, see [1,3,4] and also [13].
The second method uses the 3D index of an ideal triangulation introduced in [6,7],
with necessary and sufficient conditions for its convergence established in [9] and its
topological invariance (i.e., independence of the ideal triangulation) for hyperbolic
3-manifolds with torus boundary proven in [11]. The third method was developed in
[12].

In all three methods, the q-series are multi-dimensional q-hypergeometric series
of generalized Nahm type; see [13, Sect. 1.1]. Their modular and the asymp-
totic properties remain unknown. Some empirical results and relations among these
q-series are given in [15,16].

The paper focuses on the q-series obtained by the first method. For some alternating
knots, the q-series obtained by the first method can be identified with a finite product
of unary theta or false theta series; see [1,2]. This was observed independently by the
first author and Zagier in 2011 for all alternating knots in the Rolfsen table [18] up
to the knot 84. Ideally, one might expect this to be the case for all alternating knots.
For the knot 85, however, the first 100 terms of its q-series failed to identify it with
a reasonable finite product of unary theta or false theta series. This computation was
performed by the first author at the request of Zagier, and the result was announced in
[10, Sect. 6.4].

The purpose of the paper was to give the details of the above computation and to
extend it systematically to all alternating knots and links with at most 8 crossings. Our
computational approach is similar to the computation of the index of a knot given in
[11, Sect. 7].

1.2 Rooted plane graphs and their q-series

By planar graph, we mean an abstract graph, possibly with loops and multiple edges,
which can be embedded on the plane. A plane graph (also known as a planar map)
is an embedding of a planar graph to the plane. A rooted plane map is a plane map
together with the choice of a vertex of the unbounded region.

In [13], Le and the first author introduced a function

� : {Rooted plane graphs} −→ Z[[q]], G �→ �G(q).

For the precise relation between �G(q) and the colored Jones function of the corre-
sponding alternating link LG , see Sect. 2. To define �G(q), we need to introduce some
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notation. An admissible state (a, b) of G is an integer assignment ap for each face p of
G and bv for each vertex v of G such that ap +bv ≥ 0 for all pairs (v, p), where v is a
vertex of p. For the unbounded face p∞, we set a∞ = 0, and thus bv = a∞ + bv ≥ 0
for all v ∈ p∞. We also set bv = 0 for a fixed vertex v of p∞. In the formulas below,
v and w will denote vertices of G, and p is the face of G and p∞ is the unbounded
face. We also write v ∈ p, vw ∈ p if v is a vertex and vw is an edge of p.

For a polygon p with l(p) edges and vertices b1, . . . , bl(p) in counterclockwise
order,

we define

γ (p) = l(p)a2
p + 2ap(b1 + b2 + · · · + bl(p)) .

Let
A(a, b) =

∑

p

γ (p) + 2
∑

e=(vi v j )

bvi bv j , (1)

where the p-summation (here and throughout the paper) is over the set of bounded
faces of G and the e-summation is over the set of edges e = (viv j ) of p, and

B(a, b) = 2
∑

v

bv +
∑

p

(l(p) − 2)ap, (2)

where the v-summation is over the set of vertices of G and the p-summation is over
the set of bounded faces of G.

Definition 1.1 [13] With the above notation, we define

�G(q) = (q)c2∞
∑

(a,b)

(−1)B(a,b) q
1
2 A(a,b)+ 1

2 B(a,b)

∏
(p,v):v∈p

(q)ap+bv

, (3)

where the sum is over the set of all admissible states (a, b) of G, and in the product
(p, v) : v ∈ p means a pair of face p and vertex v such that p contains v. Here, c2 is
the number of edges of G and

(q)∞ =
∞∏

n=1

(1 − q)n = 1 − q − q2 + q5 + q7 − q12 − q15 . . .

Convergence of the q-series of Eq. (3) in the formal power series ring Z[[q]] is
not obvious, but was shown in [13]. Below, we give effective (and actually optimal)
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bounds for convergence of �G(q). To phrase them, let bp = min{bv : v ∈ p}, where
p denotes a face of G.

Theorem 1.2 (a) We have

A(a, b) =
∑

p

(
l(p)(ap + bp)

2 + 2(ap + bp)
∑

v∈p

(bv − bp)

+
∑

vv′∈p

(bv − bp)(bv′ − bp)

⎞

⎠ +
∑

vv′∈p∞
bvbv′ (4)

Each term in the above sum is manifestly nonnegative.
(b) B(a, b) can also be written as a finite sum of manifestly nonnegative linear forms

on (a, b).
(c) If 1

2 (A(a, b) + B(a, b)) ≤ N for some natural number N, then for every i and
every j , there exist ci , c′

i and c j , c′
j (computed effectively from G) such that

ci N ≤ bi ≤ c′
i N , c′

j

√
N ≤ a j ≤ c j N + c′

j

√
N .

For a detailed illustration of the above Theorem, see Sect. 5.1.

1.3 Properties of the q-series of a planar graph

The next lemma summarizes some properties of the series �G(q). Part (a) of the
next lemma is taken from [13, Theorem 1.7] [13, Lemma 13.2]. Parts (b) and (c)
were observed in [1] and [13] and follow easily from the behavior of the colored
Jones polynomial under disjoint union and under a connected sum. Note that we use
the normalization that the colored Jones polynomial of the unknot is 1. Part (d) was
proven in [1] and [13, Lemma 13.3].

Lemma 1.3 [1,13]

(a) The series �G(q) depends only on the abstract planar graph G and not on the
rooted plane map.

(b) If G = G1 � G2 is disconnected, then

(1 − q)�G(q) = �G1(q)�G2(q) .

(c) If G has a separating edge (also known as a bridge) e and G \ {e} = G1 � G2,
then

�G(q) = �G1(q)�G2(q) .

(d) If G is a planar graph (possibly with multiple edges and loops) and G ′ denotes
the corresponding simple graph obtained by removing all loops and replacing all
edges of multiplicity more than with edges of multiplicity one, then

123



Alternating knots, planar graphs, and q-series 505

�G(q) = �G ′(q) .

So, we can focus our attention to simple, connected planar graphs. In the remain-
ing of the paper, unless otherwise stated, G will denote a simple planar graph. Let
〈 f (g)〉k denote the coefficient of qk of f (q) ∈ Z[[q]]. The next theorem was proven
in [8] using properties of the Kauffman bracket skein module. We give an independent
proof using combinatorics of planar graphs in Sect. 4. Our proof allows us to com-
pute the coefficient of q3 in �G(q), observing a new phenomenon related to induced
embeddings, and guesses the coefficients of q4 and q5 in �G(q). This is discussed in
a subsequent publication [14].

Theorem 1.4 [8] If G is a planar graph, we have

〈�G(q)〉0 = 1 (5a)

〈�G(q)〉1 = c1 − c2 − 1 (5b)

〈�G(q)〉2 = 1

2

(
(c1 − c2)

2 − 2c3 − c1 + c2

)
, (5c)

where c1, c2, and c3 denote the number of vertices, edges, and 3-cycle of G.

If G1 and G2 are the two planar graphs with distinguished boundary edges e1 and
e2, let G1 · G2 denote their edge connected sum along e1 = e2 depicted as follows:

Let Pr denote a planar polygon with r edges when r ≥ 3, and let P2 denote the
connected graph with two vertices and one edge, a reduced form of a bigon. For a
positive natural number b, consider the unary theta (when b is odd) and false theta
series (when b is even) hb(q) is given by

hb(q) =
∑

n∈Z

εb(n) q
b
2 n(n+1)−n,

where

εb(n) =

⎧
⎪⎨

⎪⎩

(−1)n if b is odd

1 if b is even and n ≥ 0

−1 if b is even and n < 0

.

Observe that

h1(q) = 0, h2(q) = 1, h3(q) = (q)∞ .
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Fig. 1 Three graphs G1, G2,
and G3, and the corresponding
alternating links L8a8, L8a8,
and 813

Fig. 2 A flyping move on a
planar graph

The following lemma (observed independently by Armond-Dasbach) follows from
the Nahm sum for �G(q) combined with a q-series identity (see Eq. (16) below). This
identity was proven by Armond-Dasbach [1, Theorem 3.7] and Andrews [2].

Lemma 1.5 For all planar graphs G and natural numbers r ≥ 3, we have

�G·Pr (q) = �G(q)�Pr (q) = �G(q)hr (q) .

Question 1.6 Is it true that for all planar graphs G1 and G2, we have

�G1·G2(q) = �G1(q)�G2(q)?

As an illustration of Lemma 1.5, for the three graphs of Fig. 1, we have

�L8a8(q) = �813(q) = h4(q)h3(q)2 .

Remark 1.7 Observe that the alternating planar projections of the graphs G1 and G2
of Fig. 1 are related by a flype move [17, Fig. 1].

Flyping a planar alternating link projection corresponds to the operation on graphs
shown in Fig. 2.

If the planar graphs G and G ′ are related by flyping, then �G(q) = �G ′(q), since
the corresponding alternating links are isotopic.

2 The connection between �G(q) and alternating links

In this section, we explain connection between �G(q) and the colored Jones function
of the alternating link LG following [13].
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2.1 From planar graphs to alternating links

Given a planar graph G (possibly with loops or multiple edges), there is an alternating
planar projection of a link LG given by

2.2 From alternating links to planar (Tait) graphs

Given a diagram D of a reduced alternating non-split link L , its Tait graph can be
constructed as follows: the diagram D gives rise to a polygonal complex of S

2 =
R

2 ∪ {∞}. Since D is alternating, it is possible to label each polygon by a color
b (black) or w (white) such that at every crossing, the coloring looks as follows in
Fig. 3.

There are exactly two ways to color the regions of D with black and white colors.
In this note, we will work with the one whose unbounded region has color w. In each
b-colored polygon (in short, b-polygon), we put a vertex and connect two of them with
an edge if there is a crossing between the corresponding polygons. The resulting graph
is a planar graph called the Tait graph associated with the link diagram D. Note that
the Tait graph is always planar but not necessarily reduced. Although the reduction
of the Tait graph may change the alternating link and its colored Jones polynomial, it
does not change the limit of the shifted colored Jones function in Theorem 2.1 because
of Lemma 1.3.

2.3 The limit of the shifted colored Jones function

When L is an alternating link, the colored Jones polynomial JL ,n(q) ∈ Z[q± 1
2 ]

(normalized to be 1 at the unknot, and colored by the n-dimensional irreducible
representation of sl2 [13]) has the lowest q-monomial with coefficient ±1, and
after dividing by this monomial, we obtain the shifted colored Jones polynomial

Fig. 3 The checkerboard
coloring of a link diagram
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ĴLG ,n(q) ∈ 1 + qZ[q]. Let 〈 f (q)〉N denotes the coefficient of q N in f (q). The
limit f (q) = limn fn(q) ∈ Z[[q]] of a sequence of polynomials fn(q) ∈ Z[q] is
defined as follows [13]. For every natural number N , there exists a natural number
n0(N ) such that 〈 fn(q)〉N = 〈 f (q)〉N for all n ≥ n0(N ).

Theorem 2.1 [13, Theorem 1.10] Let L be an alternating link projection and G be
its Tait graph. Then, the following limit exists:

lim
n→∞ ĴL ,n(q) = �G(q) ∈ Z[[q]]. (6)

Remark 2.2 (a) The convergence statement in the above theorem holds in the follow-
ing strong form [13]: for every natural number N , and for n > N , we have

〈 ĴL ,n(q)〉N = 〈�G(q)〉N . (7)

(b) �G(q) is the reduced version of the one in [13, Theorem 1.10] and differs from
the unreduced version �

TQFT
G (q) by

�G(q) = (1 − q)�
TQFT
G (q) ,

where

�
TQFT
G (q) = (q)c2∞

∑

(a,b)

(−1)B(a,b) q
1
2 A(a,b)+ 1

2 B(a,b)

∏
(p,v):v∈p

(q)ap+bv

, (8)

and the summation (a, b) is over all admissible states where we do not assume
that bv = 0 for a fixed vertex v in the unbounded face of G.

3 Proof of Theorem 1.2

In this section, we prove Theorem 1.2. Part (a) follows from completing the square in
Eq. (1):

A(a, b)=
∑

p

(
l(p)a2

p + 2ap

(
∑

v∈p

bv

))
+ 2

∑

e=(vi v j )

bvi bv j

=
∑

p

⎛

⎝l(p)(ap + bp)
2+2ap

(
∑

v∈p

bv−l(p)bp

)
−l(p)b2

p+2
∑

e=(vi v j )

bvi bv j

⎞

⎠

=
∑

p

(
l(p)(ap + bp)

2 + 2(ap + bp)

(
∑

v∈p

bv − l(p)bp

)

+
∑

e=(vi v j )∈p

(bvi − bp)(bv j − bp)

⎞

⎠ +
∑

e=(vi v j )∈p∞
bvi bv j .
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For the remaining parts of Theorem 1.2, fix a 2-connected planar graph G, a vertex
v0 of G and a bounded face p0 of G that contains v0.

Lemma 3.1 There exists a graph � which depends on G, v0, and p0 such that

• The vertices of � are vertices of G as well as one vertex vp for each bounded face
p of G.

• The edges of � are of the form vvp, where v is a vertex of G and p is a bounded
face that contains v.

• v0vp0 is an edge of �.
• Every vertex v in G has degree nv in � where

nv =
{

2 if v is not a boundary vertex

≤ 2 if v is a boundary vertex
.

Proof First, we can assume that each face p of G is a triangle. Indeed, if a face p is
not a triangle, we can divide it into a union of triangles by creating new edges inside p.
Once we have succeeded in constructing a � for the resulted graph, we can remove the
added edges in p and collapse all the interior vertices of the newly created triangles
in p into one single vertex vp. The figures below illustrate the above process.

Now, assuming that all faces of G are triangles, let us proceed by induction on the
number of vertices of G. If there is no interior vertex in G then since the unbounded
face p∞ is also a triangle, then G itself is a triangle and we are done. Therefore, let
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us assume that there is an interior vertex v of G. Locally, the graph at v looks like the
following:

Next, we remove v and all of the edges incident to it from G and denote the resulted
face by p. Let w be a vertex of p and connect w to each of the vertices of p by an
edge. Denote the resulted graph by Gw. By induction hypothesis, there exists a graph
�w for Gw. At w, make another copy of the vertex called w′. Now, drag w′ into the
interior of p while keeping it connected to vertices of p and at the same time, delete
the edges that are incident to w and that lie in the interior of p. This has to be done
in such a way that all the vertices of �w still lie in the interior of the new triangles
that have w′ as a vertex. Create two new vertices in the interior of the two triangles in
p that contain w as a vertex and connect them to w′. The resulted graph satisfies the
requirements of the lemma. The figures below explain the process. ��

Proof (of part (b) of Theorem 1.2) We can decompose B(a, b) into a finite sum of
nonnegative terms as follows:

B(a, b) =
∑

ê=(vvp)

(ap + bv) +
∑

v

(2 − nv)bv, (9)

where the summation is over all edges of �. ��
Corollary 3.2 For a pair (p, v), where p is a face of G and v is a vertex of p, the
B(a, b) ≥ ap + bv .

Proof This is a direct consequence of Eq. (9) since by Lemma 3.1, there exists a graph
� that contains vvp as an edge. ��
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Proof (of part (c) of Theorem 1.2) Let us prove the linear bound on the bv first. Let
us set bv0 = 0, where v0 is a boundary vertex of G. Let p0 be a bounded face that
contains v0, so we have ap0 + bv0 ≥ 0 . Since 0 ≤ B(a, b) ≤ 2N by part (b) of
Theorem 1.2 and Corollary 3.2, we have that 0 ≤ ap0 + bv0 ≤ 2N . Since bv0 = 0 this
means that 0 ≤ ap0 ≤ 2N . Similarly, if v is another vertex of p0, then by Corollary
3.2, we have 0 ≤ ap0 + bv ≤ 2N which implies that −2N ≤ bv ≤ 2N . Let G ′ be the
graph obtained from G by removing the boundary edges of p0. Choose a face p′ of
G ′ and a vertex v′ ∈ p′ that also belongs to the removed face p0. Repeating the above
process with (p′, v′), we have that −4N ≤ bv′′ ≤ 4N for any v′′ ∈ p′. Continuing
this process until all faces of g are covered, we have that |bv| ≤ d N for all vertices v

of G.
To prove the bound for the ap’s, note that from part (a) of Theorem 1.2, we have

that e(p)
2 (ap + bv)

2 ≤ N for all bounded faces p and all vertices v of G. This implies

that |ap + bv| ≤
√

2
ep

√
N . Since |bv| ≤ d N this implies that |ap| ≤

√
2

ep

√
N + d N .

For the lower bound of ap, note that since ap + bv ≥ 0, we have ap ≥ −bv ≥ −d N .
��

4 The coefficients of 1, q, and q2 in �G(q)

4.1 Some lemmas

In this section, we prove Theorem 1.4, using the unreduced series �
TQFT
G (q) of Eq.

(8). Our admissible states (a, b) in this section do not satisfy the property that bv = 0
for some vertex v of the unbounded face of G.

Since A(a, b) + B(a, b) ≥ 0 for an admissible state (a, b) with equality if and
only if (a, b) = (0, 0) (as shown in Theorem 1.2), it follows that the coefficient of
q0 in �G(q) is 1. For the remaining of the proof of Theorem 1.4, we will use several
lemmas.

Lemma 4.1 Let G be a 2-connected planar graph whose unbounded face has V∞
vertices. If (a, b) is an admissible state such that

(1) bv = bv′ = 1 where vv′ is an edge of p∞,
(2) ap + bp = 0 for any face p of G, and
(3) (bv1 − bp)(bv2 − bp) = 0 for any face p of G and edge v1v2 of p,

then

• bv ≥ 1 for all vertices v,
• ap = −1 for all faces p �= p∞, and
• B(a, b) ≥ 2 + V∞.

Proof Let p be the bounded face that contains v, v′. We have (bv −bp)(bv′ −bp) = 0
so bp = 1 since bv = bv′ = 1. (2) then implies that ap = −bp = −1, and thus
bw ≥ bp = 1 for all w ∈ p. Let v1v

′
1 be another edge of p and let p1 �= p be a
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face that contains v1v
′
1. Since (bv1 − bp)(bv′

1
− bp) = 0, we have min{bv1, bv′

1
} =

bp = 1. So from (bv1 − bp1)(bv′
1

− bp1) = 0, we have that bp1 = 1. Therefore,
ap1 = −1 and bw ≥ bp1 = 1 for any vertex w ∈ p1. By a similar argument, we
can show that bv ≥ 1 for every vertex v and ap = −1 for every face p of G. Let
p1, p2, . . . , p f be the bounded faces of G, where f = FG − 1. Then, from Eq. (2),
we have

B(a, b) = −
f∑

j=1

(l(p j ) − 2) + 2
∑

v

bv

≥ −
f∑

j=1

l(p j ) + 2 f + 2c1

= −(2c2 − V∞) + 2FG − 2 + 2c1

= 2(c1 − c2 + FG) − 2 + V∞
= 2 + V∞.

��
The proof of the next lemma is similar to the one of Lemma 4.1 and is, therefore,

omitted.

Lemma 4.2 Let G be a 2-connected planar graph whose unbounded face has V∞
vertices. If (a, b) is an admissible state such that

(1) bv = bv′ = 0 and (bv − bp)(bv′ − bp) = 1 where p is a boundary face and vv′
is a boundary edge that belongs to p,

(2) ap + bp = 0 for any face p of G, and
(3) (bv1 − bp)(bv2 − bp) = 0 for any face p of G and edge v1v2 not on the boundary

of p,

then bw ≥ −1 for all vertices w, ap = 1 for all faces p �= p∞, and B(a, b) ≥ V∞−2.
Furthermore, B(a, b) = V∞ − 2 if and only if

• bv = 0 for all boundary vertices v and bw = −1 for all other vertices w.
• ap = 1 for all faces p.

Lemma 4.3 Let G be a 2-connected planar graph, p0 be a boundary face, and (a, b)

be an admissible state such that

(1) ap0 + bp0 = 0,
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(2) There exists a boundary edge vv′ of p0 such that bvbv′ = 0 and (bv − bp0)(bv′ −
bp0) = 0, and

(3) Let G0 be the graph obtained from G by deleting the boundary edges of p0, and
let (a0, b0) be the restriction of the admissible state (a, b) on G0.

Then,

(a) (a0, b0) is an admissible state for G0,
(b) A(a0, b0) = A(a, b) − ∑

e=(vv′):v,v′∈p0∩p∞
bvbv′ ,

(c) B(a0, b0) = B(a, b) − 2
∑

v∈V0

bv , where V0 is the set of boundary vertices of p0

that do not belong to any other bounded face,
(d) B(a, b) ≥ 2

∑
v∈V0

bv ,

(e) If furthermore B(a, b) ≤ 1, then A(a, b) = A(a0, b0), B(a, b) = B(a0, b0).

Proof From (2), we have either bv = 0 or bv′ = 0, and it follows from (bv −
bp0)(bv′ −bp0) = 0 that bp0 = 0. This means that we have bv ≥ 0 for all v ∈ p0. This
implies (a). Furthermore, (1) implies that ap0 = 0, and thus A(a, b) − A(a0, b0) =
l(p0)a2

p0
+ 2ap0(

∑
v∈p0

bv) + ∑
e=(vv′):v,v′∈p0∩p∞

bvbv′ = ∑
e=(vv′):v,v′∈p0∩p∞

bvbv′ and

B(a, b)− B(a0, b0) = ap0 +2
∑

v∈V0

bv = 2
∑

v∈V0

bv . This proves (b) and (c). (d) follows

from (c) since we have 0 ≤ B(a0, b0) = B(a, b)− 2
∑

v∈V0

bv , and (e) is a consequence

of (b), (c), and (d) since 1 ≥ B(a, b) ≥ 2
∑

v∈V0

bv implies that
∑

v∈V0

bv = 0.

��

4.2 The coefficient of q in �G(q)

We need to find the admissible states (a, b) such that 1
2 (A(a, b)+ B(a, b)) = 1. Parts

(a) and (b) of Theorem 1.2 imply that A(a, b), B(a, b) ∈ N. Thus, if 1
2 (A(a, b) +

B(a, b)) = 1, then we have the following cases:

A(a, b) 2 1 0
B(a, b) 0 1 2

123



514 S. Garoufalidis, T. Vuong

Case 1: (A(a, b), B(a, b)) = (2, 0). Since l(p) ≥ 3, we should have ap + bp = 0
for all faces p. This implies that ap + bv = ap + bp + bv − bp = bv − bp, and
it follows from Corollary 3.2 that 0 = B(a, b) ≥ ap + bv = bv − bp. This means
bv − bp = ap + bv = 0 for all faces p and vertices v of p, so Eq. (4) is equivalent to

∑

vv′∈p∞
bvbv′ = 2 . (10)

If vv′ is an edge of G and p is a face that contains vv′, then we have ap + bv = 0 =
ap +bv′ , and therefore bv = bv′ . So, by Eq. (10), there exists a boundary edge vv′ such
that bv = bv′ = 1. Lemma 4.1 implies that B(a, b) ≥ 2+V∞ > 0 which is impossible.
Therefore, there are no admissible states (a, b) that satisfy (A(a, b), B(a, b)) = (2, 0).

Case 2: (A(a, b), B(a, b)) = (1, 1). As above, we have that ap + bp = 0 for all
faces p. Since A(a, b) = 1, there is either a bounded face p1 with an edge v1v

′
1 such

that (bv1 − bp1)(bv′
1
− bp1) = 1 or a boundary edge v2v

′
2 such that bv2 bv′

2
= 1, and

all other terms in Eq. (4) are equal to zero. Let p2 be the bounded face that contains
v2v

′
2 and let p �= p1, p2 be a bounded face. Let G ′ be the graph obtained from G

by deleting the boundary edges of p and (a′, b′) be the restriction of (a, b) on G ′.
By part (e) of Lemma 4.3, we have A(a′, b′) = A(a, b) and B(a′, b′) = B(a, b).
Continue this process until either G = p1 or G = p2. If G = p2, then bv2 bv′

2
= 1,

and therefore B(a, b) ≥ 2(bv2 + b′
v2

) = 4 which is impossible. If G = p1, then
v1, v2 are now boundary vertices and so bv1 bv′

1
= 0 and we can assume that bv1 = 0.

But this implies that −bp1(bv′
1
− bp1) = 1, and hence bp1 = −1. This is impossible

since bp1 is a boundary vertex. Thus, there are no admissible states (a, b) that satisfy
(A(a, b), B(a, b)) = (1, 1).

Case 3: (A(a, b), B(a, b)) = (0, 2). Since A(a, b) = 0, we should have

• ap + bp = 0 for all faces p,
• bvbv′ = 0 for all boundary edges vv′, and
• (bv − bp)(bv′ − bp) = 0 for all bounded faces p and edges vv′ ∈ p.

Let p be a bounded face of G. Let G ′ be the graph obtained from G by deleting the
boundary edges of G, and (a′, b′) be the restriction of (a, b) on G ′. By part (e) of
Lemma 4.3, we have A(a′, b′) = A(a, b) and B(a′, b′) = B(a, b) − 2n p, where
n p ∈ N. Since B(a, b) = 2, n p ≤ 1, and n p = 1 if and only if there exists exactly one
boundary vertex v ∈ p such that bv = 1 and b′

v = 0 for any other boundary vertex v′
of p. Continuing this process, it is easy to show that an admissible state (a, b) such
that (A(a, b), B(a, b)) = (0, 2) must satisfy the following:

• ap = 0 for all p, and
• bv = 1 for a vertex v and bv′ = 0 for any other vertex v′ of G.

The contribution of this state to �G(q) is q
(1−q)deg(v) = q + O(q2).

Thus, from Theorem 2.1 and cases 1–3, we have

〈�TQFT
G (q)〉1 =

〈
(q)c2∞

(
1 +

∑

v

q + O(q2)

)〉

1

= c1 − c2 .
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Therefore,

〈�G(q)〉1 =
〈
(1 − q)�

TQFT
G (q)

〉

1
= c1 − c2 − 1 .

4.3 The coefficient of q2 in �G(q)

We need to find the admissible states (a, b) such that 1
2 (A(a, b)+ B(a, b)) = 2. Since

A(a, b), B(a, b) ∈ N, we have the following cases:

A(a, b) 4 3 2 1 0
B(a, b) 0 1 2 3 4

Case 1: (A(a, b), B(a, b)) = (4, 0). If there is a face p such that ap +bp > 0, then
by Corollary 3.2, we have B(a, b) ≥ ap +bv ≥ ap +bp > 0, where v is a vertex of p.
Therefore, ap + bp = 0 for all faces p. Similarly, if there exists a face p and a vertex
v ∈ p such that bv − bp > 0, then 0 = B(a, b) ≥ ap + bv = ap + bp + bv − bp ≥
bv − bp > 0. Therefore, ap + bv = bv − bp = 0 for all v ∈ p. Thus, A(a, b) = 4 is
equivalent to ∑

vv′∈p∞
bvbv′ = 4 . (11)

If vv′ is an edge of G and p is a bounded face that contains vv′, then we have
ap + bv = 0 = ap + bv′ , and therefore bv = bv′ . So, by Eq. (10), there exists
a boundary edge vv′ such that bv = bv′ = 1. Lemma 4.1 implies that B(a, b) ≥
2 + V∞ > 0 which is impossible. Therefore, there are no admissible states (a, b) that
satisfy (A(a, b), B(a, b)) = (4, 0).

Case 2: (A(a, b), B(a, b)) = (3, 1). If there exists a face p0 such that ap0 +bp0 > 0,
then we must have l(p0) = 3 and

• ap0 + bp0 = 1, ap + bp = 0 for any p �= p0,
• bvbv′ = 0 for all boundary edges vv′, and
• (bv − bp)(bv′ − bp) = 0 for all bounded faces p and and edges vv′ ∈ p.

Let p �= p0 be a bounded face of G. Let G ′ be the graph obtained from G by deleting
the boundary edges of p, and (a′, b′) be the restriction of (a, b) on G ′. By part (e) of
Lemma 4.3, we have A(a′, b′) = A(a, b) and B(a′, b′) = B(a, b). We can continue
this process until G = p0. Let v0, v

′
0, v

′′
0 be the vertices of p0, then bv0 bv′

0
= 0 so

that we can assume that bv0 = 0. Since (bv0 − bp0)(bv′
0
− bp0) = 0, we have bp0 = 0

and, hence, ap0 = ap0 + bp0 = 1. Since 1 = B(a, b) = ap0 + 2(bv0 + bv′
0
+ bv′′

0
), it

implies that bv′
0

= bv′′
0

= 0. This gives us the following set of admissible states (a, b):

• ap = 1 for a triangular face p, ap′ = 0 for p′ �= p, and
• bv = 0 for all vertices v.

The contribution of this state to �G(q) is (−1)1 q2

(1−q)l(p) = − q2

(1−q)3 = −q2 + O(q3).
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On the other hand, if ap + bp = 0 for all p, then we have

∑

p

∑

vv′∈p

(bv − bp)(bv′ − bp) +
∑

vv′∈p∞
bvbv′ = 3 . (12)

There are at most three positive terms in the above equation. If a boundary face p
has a boundary edge vv′ that does not correspond to any positive term, then we have
bvbv′ = (bv − bp)(bv′ − bp) = 0 so bp = 0 which implies that ap = 0. Let G ′ be
the graph obtained from G by deleting the boundary edges of p and (a′, b′) be the
restriction of (a, b) on G ′. By part (e) of Lemma 4.3, we have A(a′, b′) = A(a, b)

and B(a′, b′) = B(a, b). We can continue to do this until all boundary edges of G are
viv

′
i , i = 1, 2, 3. This only happens if these three edges together form a triangle. Let

us denote the triangle’s vertices by v, v′, v′′ and let p, p′, p′′ be the bounded faces
that contain vv′, v′v′′, v′′v, respectively. Note that since the positive terms in Eq. (12)
correspond to different edges, we must have

bvbv′ + (bv − bp)(bv′ − bp) = 1

bv′bv′′ + (bv′ − bp′)(bv′′ − bp′) = 1

bv′′bv + (bv′′ − bp′′)(bv − bp′′) = 1.

Case 2.1: If the positive terms are bvbv′ , bv′bv′′ , bv′′bv , then we must have simul-
taneously bvbv′ = bv′bv′′ = bv′′bv = 1 and (bw − bp̃)(bw′ − bp̃) = 0 for all faces p̃
and edge ww′. The former implies that bv = bv′ = bv′′ = 1. Therefore, from Lemma
4.1, we have B(a, b) ≥ 2 + 3 = 5 which is impossible.

Case 2.2: If, for instance, bvbv′ = 0, then we must also have (bv−bp)(bv′−bp) = 1.
Thus, we can assume that bv = 0 and so −bp(bv′ −bp) = 1. This implies that bp = −1
and bv′ = 0. In particular, we have bv′bv′′ = 0, and hence (bv′ − bp′)(bv′′ − bp′) = 1.
Since bvbv′′ = 0, we also have (bv′′−bp′′)(bv−bp′′) = 1. In particular, this implies that
(bw −bp̃)(bw′ −bp̃) = 0 for all faces p̃ and edges ww′ ∈ p̃ not on the boundary. Since
B(a, b) = 1, Lemma 4.2 implies that we must have bw = −1 for all w �= v, v′, v′′
and ap = 1 for all p �= p∞.

This corresponds to the following admissible state of G:

• ap = 1 for all bounded faces p,
• bv = bv′ = bv′′ = 0, where v, v′, v′′ are the vertices of a 3-cycle in G,
• bw = −1 for all vertices w inside the 3 circle mentioned above, and
• bw̃ = 0 for any other vertex w.
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The contribution of this state to �G(q) is

(−1)1 q2

(1 − q)deg�(v)+deg�(v′)+deg�(v′′)−3
= −q2 + O(q3),

where deg�(v) is the degree of v in the triangle � = vv′v′′.
Case 3: We consider the two cases (A(a, b), B(a, b)) = (2, 2) and (A(a, b),

B(a, b)) = (1, 3) together. Since A(a, b) ≤ 2, we should have ap + bp = 0 for
all faces p, and A(a, b) = 2 is equivalent to

∑

p

∑

vv′∈p

(bv − bp)(bv′ − bp) +
∑

vv′∈p∞
bvbv′ = 2.

There are at most two positive terms in the above equation. If a boundary face p
has a boundary edge vv′ that does not correspond to any positive term, then we have
bvbv′ = (bv − bp)(bv′ − bp) = 0 so bp = 0 which implies that ap = 0. By part
(d) of Lemma 4.3, it follows that if w is a boundary vertex of p, then B(a, b) ≥
2bw and since B(a, b) ≤ 3, we have bw = 0 or 1. Therefore, by parts (b,c) of
Lemma 4.3, we can remove the boundary edges of p to obtain a new graph G ′ that
satisfies A(a, b) = A′(a, b) and B(a, b) = B ′(a, b) or B(a, b) = B ′(a, b)+ 1 where
A′(a, b), B ′(a, b) are the restrictions of A(a, b) and B(a, b) on G ′. By continuing this
process until G = ∅, it is easy to see that we must have A(a, b) = 0, B(a, b) ≤ 1,
and B(a, b) = 1 if and only if there exists a unique boundary vertex w of p such that
bw = 1. Thus, there are no admissible states that satisfy (A(a, b), B(a, b)) = (2, 2)

or (A(a, b), B(a, b)) = (1, 3).
Case 4: (A(a, b), B(a, b)) = (0, 4). Since A(a, b) = 0, we should have

ap + bp = 0 for all faces p, (13)

(bv − bp)(bv′ − bp) = 0 for all faces p and edges vv′ ∈ p, and (14)

bvbv′ = 0 for all edges vv′ ∈ p. (15)

Let p be a boundary face of G, and vv′ ∈ p be a boundary edge. Eqs. (14) and (15)
imply that bp = 0 and so ap = 0 by Eq. (13). Let G ′ be the graph obtained from G
by deleting the boundary edges of G, and (a′, b′) be the restriction of (a, b) on G ′.
By part (e) of Lemma 4.3, we have A(a′, b′) = A(a, b), B(a′, b′) = B(a, b) − 2n p

where n p ∈ N. Since B(a, b) = 4, we have n p ≤ 2 and

• n p = 2 if and only if there exist either exactly two boundary vertices v,w ∈ p
that are not connected by an edge such that bv = bv′ = 1 or exactly one boundary
vertex v ∈ p such that bv = 2 and bv′ = 0 for all other boundary vertices v′ ∈ p,
and

• n p = 1 if and only if there exists exactly one boundary vertex v ∈ p such that
bv = 1 and b′

v = 0 for any other boundary vertex v′ of p.

Similarly, by continuing this process, it is easy to show that an admissible state (a, b)

such that (A(a, b), B(a, b)) = (0, 4) must satisfy one of the following.
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• bv = bv′ = 1 for a pair of vertices that are not connected by an edge of G, bw = 0
for any other vertex w, and

• ap = 0 for all faces p.

The contribution of this state to �G(q) is q2

(1−q)deg(v)+deg(v′) = −q2 + O(q3).

• bv = 2 for a vertex v, bw = 0 for any other vertex w, and
• ap = 0 for all faces p.

The contribution of this state to �G(q) is q2

(1−q)
deg(v)
2

= −q2 + O(q3).

It follows from Theorem 2.1, Sect. 4.2, and cases 1–4 that

〈
�

TQFT
G (q)

〉

2
=

〈
(q)

c2∞
(

1 +
∑

v

q

(1 − q)deg(v)
+

(
−c3 + c1 + c1(c1 − 1)

2
− c2

))
q2

〉

2

=
〈
(q)

c2∞
(

1 + q(c1 + 2c2q) +
(

c1(c1 + 1)

2
− c2 − c3

))
q2

〉

2

=
〈(

1 − c2q + c2(c2 − 3)

2
q2

) (
1 + c1q +

(
c1(c1 + 1)

2
+ c2 − c3

))
q2

〉

2

= (c1 − c2)2

2
− c3 + c1 − c2

2
.

Therefore,

〈�G(q)〉2 = 〈(1 − q)�
TQFT
G (q)〉2

=
〈
(1 − q)

(
1 + (c1 − c2)q +

(
(c1 − c2)

2

2
− c3 + c1 − c2

2

)
q2

)〉

2

= 1

2

(
(c1 − c2)

2 − 2c3 − c1 + c2

)
.

This completes the proof of Theorem 1.4. ��

4.4 Proof of Lemma 1.5

Fix a planar graph G and consider G · Pr , where Pr is a polygon with r sides and
vertices b1, . . . , br as in the following figure:
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Fig. 4 The planar graph of the
link L8a7

Consider the corresponding portion S(br−1, br ) of the formula of �G·Pr (q)

S(br−1, br ) =
∑

a,b1,...,br−2

(−1)ra q
r
2 a2+a(b1+...br )+∑r−2

i=1 bi bi+1+b1br +∑r−2
i=1 bi + r−2

2 a

(q)b1(q)b2 . . . (q)br−2(q)b1+a(q)b2+a . . . (q)br +a

(16)

for fixed br−1, br ≥ 0. Armond-Dasbach [1, Theorem 3.7] and Andrews [2] prove
that

S(br−1, 0) = (q)−r+1∞ hr (q),

for all br−1 ≥ 0. Summing over the remaining variables in the formula for �G·Pr (q)

concludes the proof of the Lemma. ��

5 The computation of �G(q)

5.1 The computation of �L8a7(q) in detail

In this section, we explain in detail the computation of �L8a7(q). Consider the planar
graph of the alternating link L8a7 shown in Fig. 4, with the marking of its vertices by
bi for i = 1, . . . , 6 and its bounded faces by a j for j = 1, 2, 3.

Consider the minimum values of the b-variables at each bounded face:

b̄1 = min{b1, b4, b5, b6}
b̄2 = min{b3, b4, b5, b6}
b̄3 = min{b1, b2, b3, b6} .

We have

1

2
A(a, b) = 2(a1 + b̄1)

2 + (a1 + b̄1)(b1 + b4 + b5 + b6 − 4b̄1)

+ 2(a2 + b̄2)
2 + (a1 + b̄2)(b3 + b4 + b5 + b6 − 4b̄2)

+ 2(a3 + b̄3)
2 + (a3 + b̄3)(b1 + b2 + b3 + b6 − 4b̄3)

+ 1

2

(
(b1 − b̄1)(b6 − b̄1) + (b6 − b̄1)(b5 − b̄1) + (b5 − b̄1)(b4 − b̄1)
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+(b4 − b̄1)(b1 − b̄1)
)

+ 1

2

(
(b3 − b̄2)(b4 − b̄2) + (b4 − b̄2)(b5 − b̄2) + (b5 − b̄2)(b6 − b̄2)

+(b6 − b̄2)(b3 − b̄2)
)

+ 1

2

(
(b1 − b̄3)(b2 − b̄3) + (b2 − b̄3)(b3 − b̄3) + (b3 − b̄3)(b6 − b̄3)

+(b6 − b̄3)(b1 − b̄3)
)

+ 1

2
(b1b2 + b2b3 + b3b4 + b4b1)

= C(a1, a2, a3, b1, b2, b3, b4, b5, b6) + D(b1, b2, b3, b4, b5, b6) (17)

and

1

2
B(a, b) = a1 + a2 + a3 + b1 + b2 + b3 + b4 + b5 + b6

= a1 + b1

2
+ a1 + b5

2
+ a2 + b5

2
+ a2 + b6

2
+ a3 + b1

2
+ a3 + b6

2
+ b2 + b3 + b4 . (18)

If 1
2 (A(a, b) + B(a, b)) ≤ N , then 1

2 B(a, b) ≤ N , so

0 ≤ b2 ≤ N (19)

0 ≤ b3 ≤ N − b2 (20)

0 ≤ b4 ≤ N − b2 − b3 . (21)

Let us set

b1 = 0. (22)

Equation (18) implies that 0 ≤ a1+b1
2 ≤ N − b2 − b3 − b4 which implies that

0 ≤ a1 ≤ 2(N − b2 − b3 − b4). It follows from 0 ≤ a1+b5
2 ≤ N that

− 2(N − b2 − b3 − b4) ≤ b5 ≤ 2(N − b2 − b3 − b4) . (23)

Since 0 ≤ a2+b5
2 ≤ N − b2 − b3 − b4 from (23), we have −2(N − b2 − b3 − b4) ≤

a2 ≤ 4(N − b2 − b3 − b4). Therefore, since 0 ≤ a2 ≤ a2+b6
2 , we have

− 4(N − b2 − b3 − b4) ≤ b6 ≤ 4(N − b2 − b3 − b4) . (24)

Equations (19)–(24) in particular bound b2, b3, b4, b5, and b6 from above and from
below by linear forms in N . But even better, Eqs. (19)–(24) allow for an iterated
summation for the bi variables which improve the computation of the �L8a7(q) series.
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To bound a1, a2, and a3, we will use the auxiliary function

u(c, d) =
[−c + √

c2 + 2d

2

]
,

where the integer part [x] of a real number x is the biggest integer less than or equal
to x . The argument of u(c, d) inside the integer part is one of the solutions to the
equation 2x2 + cx − d = 0. Let

b̃1 = b1 + b4 + b5 + b6 − 4b̄1

b̃2 = b3 + b4 + b5 + b6 − 4b̄2

b̃3 = b1 + b2 + b3 + b6 − 4b̄3

D̃ = D(b1, b2, b3, b4, b5, b6) + b2 + b3 + b4.

Since

2(a1 + b̄1)
2 + (a1 + b̄1)b̃1 ≤ N − D̃,

we have

− b̄1 ≤ a1 ≤ −b̄1 + u(b̃1, N − D̃), (25)

where the left inequality follows from the fact that a1 ≥ −bi , i = 1, 4, 5, 6. Similarly,
we have

− b̄2 ≤ a2 ≤ −b̄2 + u(b̃1, N − D̃ − 2(a1 + b̄1)
2 − (a1 + b̄1)b̃1) (26)

and

−b̄3 ≤ a3 ≤ −b̄3 + u(b̃1, N − D̃ − 2(a1 + b̄1)
2

−(a1 + b̄1)b̃1 − 2(a2 + b̄2)
2 − (a2 + b̄2)b̃2). (27)

Note that Eqs. (25)–(27) allow for an iterated summation in the ai variables, and in
particular imply that the span of the ai variables is bounded by a linear form of

√
N .

It follows that

�L8a7(q) + O(q)N+1

= (q)8∞
∑

(a,b)

q
1
2 (A(a,b)+B(a,b))

(q)a1+b1(q)a1+b4(q)a1+b5(q)a1+b6(q)a2+b3(q)a2+b4(q)a2+b5(q)a2+b6

· 1

(q)a3+b1(q)a3+b2(q)a3+b3(q)a3+b6(q)b1(q)b2(q)b3(q)b4

+ O(q)N+1,

where (a, b) = (a1, a2, a3, b1, b2, b3, b4, b5, b6) satisfy the inequalities (19)–(24) and
(25)–(27). We give the first 21 terms of this series in Fig. 12.
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5.2 The computation of �G(q) by iterated summation

Our method of computation requires not only the planar graph with its vertices and
faces (which is relatively easy to automate), but also the inequalities for the bi and a j

variables which lead to an iterated summation formula for �G(q). Although Theorem
1.2 implies the existence of an iterated summation formula for every planar graph, we
did not implement this algorithm in general.

Instead, for each of the 11 graphs that appear in Figs. 6, 7, and 13, we com-
puted the corresponding inequalities for the iterated summation by hand. These
inequalities are too long to present them here, but we have them available. A
consistency check of our computation is obtained by Eq. (7), where the shifted
colored Jones polynomial of an alternating link is available from [5] for several
values. Our data matche those values.
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Appendix 1: Tables

In this section, we give various tables of graphs, and their corresponding alter-
nating knots (following Rolfsen’s notation [18]) and links (following Thistleth-
waite’s notation [5]) and several terms of �G(q). In view of an expected posi-
tive answer to Question 1.6, we will list irreducible graphs, i.e., simple planar 2-
connected graphs which are not of the form G1 · G2 (for the operation · defined in
Sect. 1.3).

Fig. 5 The irreducible planar
graphs G3

0, G4
0, and G5

0 with 3,
4, and 5 edges

Fig. 6 The irreducible planar
graphs with 6 and 7 edges:
G6

0, G6
1, and G6

2 on the top and

G7
0, G7

1, and G7
2 on the bottom
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Fig. 7 The irreducible planar graphs with 8 edges: G8
0, . . . , G8

3 on the top (from left to right) and

G8
4, . . . , G8

7 on the bottom

Fig. 8 The irreducible planar graphs with 9 edges: G9
0, . . . , G9

5 on the top, G9
6, . . . , G9

11 on the middle

and G9
12, . . . , G9

16 on the bottom

K G −G K G −G K G −G K G −G

01 P2 P2 72 P6 P3 84 P3 P4 ·P5 813 P3 ·P3 ·P4 P3 ·P3

31 P3 P2 73 P5 P4 85 G8
7 P3 814 P3 ·P4 P3 ·P3 ·P3

41 P3 P3 74 P4 ·P4 P3 86 P3 ·P4 P5 815 P3 ·P3 ·P3 G6
2

51 P5 P2 75 P3 ·P4 P4 87 P3 ·P5 P4 816 G8
4 G6

1

52 P4 P3 76 P3 ·P4 P3 ·P3 88 P3 ·P5 P3 ·P3 817 G7
1 G7

1

61 P5 P3 77 P3 ·P3 ·P3 P3 ·P3 89 P3 ·P4 P3 ·P4 818 G8
1 G8

1

62 P3 ·P4 P3 81 P7 P3 810 G7
2 P3 ·P3

63 P3 ·P3 P3 ·P3 82 P3 ·P6 P3 811 P3 ·P4 P3 ·P4

71 P7 P2 83 P5 P5 812 P3 ·P4 P3 ·P4

Fig. 9 The reduced Tait graphs of the alternating knots with at most 8 crossings
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• The first table gives number of alternating links with at most 10 crossings and the
number of irreducible graphs with at most 10 edges

Crossings = edges 3 4 5 6 7 8 9 10
Alternating links 1 2 3 8 14 39 96 297

Irreducible graphs 1 1 1 3 3 8 17 41
(28)

To list planar graphs, observe that they are sparse: if G is a planar graph which is
not a tree, with V vertices and E edges, then

V ≤ E ≤ 3V − 6 .

L G −G L G −G L G −G L G −G

2a1 P2 P2 7a2 P3 ·P3 G6
2 8a4 P3 ·P4 P3 ·P3 ·P3 8a13 P4 ·P4 P4

4a1 P4 P2 7a3 G7
2 P3 8a5 P4 P3 ·P3 ·P4 8a14 P8 P2

5a1 P3 ·P3 P3 7a4 P5 P3 ·P3 8a6 P6 P3 ·P3 8a15 P5 P3 ·P3 ·P3

6a1 P4 P3 ·P3 7a5 P3 ·P4 P3 ·P3 8a7 G8
2 G6

1 8a16 G8
3 G6

1

6a2 P4 P4 7a6 P3 ·P5 P3 8a8 P3 ·P4 ·P3 P3 ·P3 8a17 P3 ·P4 G6
2

6a3 P6 P2 7a7 P4 G6
2 8a9 P3 ·P3 ·P3 P3 ·P3 ·P3 8a18 G8

6 P3

6a4 G6
1 G6

1 8a1 G7
1 P3 ·G6

1 8a10 P3 ·P4 P3 ·P3 8a19 G7
1 G7

1

6a5 P3 G6
2 8a2 P3 ·P3 P3 ·G6

2 8a11 P3 ·P5 P4 8a20 G6
2 G6

2

7a1 G7
1 G6

1 8a3 G7
2 P3 ·P3 8a12 P6 P4 8a21 P4 G8

5

Fig. 10 The reduced Tait graphs of the alternating links with at most 8 crossings

G6
1 L6a4 −L6a4 −L7a1 −L8a7 −816 −L8a16

G6
2 −L6a5 − L7a2 − L7a7 − L8a17 − 815 L8a20 −L8a20

G7
1 L7a1 L8a1 817 − 817 L8a19 − L8a19

G7
2 810 L7a3 L8a3

G8
1 818 −818

G8
2 L8a7

G8
3 L8a16

G8
4 816

G8
5 −L8a21

G8
6 L8a18

G8
7 85

Fig. 11 The irreducible planar graphs with at most 8 edges and the corresponding alternating links
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• The next table gives the number of planar 2-connected irreducible graphs with at
most 9 vertices

Vertices 3 4 5 6 7 8 9
Graphs 1 2 5 19 106 897 10160

(29)

• Figures 5, 6, 7 and 8 give the list of irreducible graphs with at most 9 edges. These
tables were constructed by listing all graphs with n ≤ 9 vertices, selecting those
which are planar, and further selecting those that are irreducible. Note that if G is a
planar graph with E ≤ 9 edges, V vertices, and F faces, then E − V = F − 2 ≥ 0,
and hence V ≤ E ≤ 9.

• Figures 9 and 10 give the reduced Tait graphs of all alternating knots and links (and
their mirrors) with at most 8 crossings. Here, Pr is the planar polygon with r sides,

G ΦG(q) + O(q)21

G6
1 1 − 3q − q2 + 5q3 + 3q4 + 3q5 − 7q6 − 5q7 − 8q8 − 6q9 + 6q10

+7q11 + 12q12 + 15q13 + 16q14 − 3q15 − q16 − 15q17 − 21q18 − 31q19 − 30q20

G6
2 1 − 2q + q2 + 3q3 − 2q4 − 2q5 − 3q6 + 3q7 + 4q8 + q9 + 3q10

−6q11 − 5q12 − 3q13 + q15 + 7q16 + 9q17 + 3q18 − 6q20

G7
1 1 − 3q + q2 + 5q3 − 3q4 − 3q5 − 6q6 + 6q7 + 8q8 + 3q9 + 6q10

−13q11 − 14q12 − 9q13 − q14 + 3q15 + 21q16 + 27q17 + 14q18 + 3q19 − 17q20

G7
2 1 − 2q + q2 + q3 − 3q4 + q5 + q6 + 3q7 − 2q8 − 4q9 + q10

+4q12 + 5q13 − 2q14 − 5q15 − 4q16 − 2q17 − 2q18 + 5q19 + 8q20

G8
1 1 − 4q + 2q2 + 9q3 − 5q4 − 8q5 − 14q6 + 10q7 + 21q8 + 14q9 + 19q10

−29q11 − 42q12 − 42q13 − 20q14 + 3q15 + 64q16 + 104q17 + 88q18 + 55q19 − 25q20

G8
2 1 − 3q + 3q2 + 4q3 − 8q4 − 2q5 + 2q6 + 12q7 + 3q8 − 15q9 − 4q10

−14q11 + 10q12 + 25q13 + 15q14 − 18q16 − 22q17 − 39q18 − 12q19 + 19q20

G8
3 1 − 3q + q2 + 3q3 − 3q4 + 3q5 + 4q7 − 6q8 − 10q9 + q10

−q11 + 9q12 + 13q13 + 3q14 − 9q15 − 3q16 − 6q17 − 4q18 + 5q19 + 13q20

G8
4 1 − 3q + 2q2 + 3q3 − 6q4 + q5 + 2q6 + 8q7 − 3q8 − 13q9

−3q11 + 13q12 + 19q13 + q14 − 15q15 − 20q16 − 16q17 − 13q18 + 15q19 + 37q20

G8
5 1 − 3q + 3q2 + 5q3 − 8q4 − 5q5 − q6 + 15q7 + 12q8 − 8q9 − 7q10

−31q11 − 11q12 + 14q13 + 30q14 + 35q15 + 27q16 + 8q17 − 48q18 − 66q19 − 72q20

G8
6 1 − 2q + q2 + q3 − q4 + 2q5 − 2q6 − q7 − 2q8 + 2q9 + 5q10

−q11 − q12 − 3q13 − 2q14 + 5q16 − 2q18 − q19 − q20

G8
7 1 − 2q + q2 − 2q4 + 3q5 − 3q8 + q9 + 4q10

−q11 − 2q12 − 2q13 − 3q14 + 3q15 + 7q16 + 2q17 − 4q18 − 4q19 − 4q20

Fig. 12 The first 21 terms of �G (q) for the irreducible planar graphs with at most 8 edges
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Fig. 13 Plot of the coefficients of �G6
2
(q) on the top and h4(q)2 (keeping in mind that G6

2 has two bounded

square faces) on the bottom

and −K denotes the mirror of K . Moreover, the notation G = G1 ·G2 ·G3 indicates
that �G(q) = �G1(q)�G2(q)�G3(q) by Lemma 1.5.

• Figure 11 gives the alternating knots and links with at most 8 crossings for the
irreducible graphs with at most 8 edges.

• Figure 12 gives the first 21 terms of of �G(q) for all irreducible graphs with at most
8 edges (Fig. 13). Many more terms are available from
http://www.math.gatech.edu/~stavros/publications/phi0.graphs.data/
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