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Asymptotics of q-difference equations 

Stavros Garoufalidis and JeffreyS. Geronimo 

ABSTRACT. In this paper we develop an asymptotic analysis for formal and ac-
tual solutions of q-difference equations, under a regularity assumption, namely 
the non-collision and non-vanishing of the eigenvalues. In particular, evalua-
tions of regular solutions of regular q-difference equations have an exponential 
growth rate which can be computed from the q-difference equation. 

The motivation for the paper comes from a problem in Quantum Topol-
ogy, the Hyperbolic Volume Conjecture, which states that a sequence on Lau-
rent polynomials (the so-called colored Jones function of a knot), appropriately 
evaluated, becomes a sequence of complex numbers that grows exponentially. 
Moreover, the exponential growth rate is proportional to the volume of the 
knot complement. 

The connection of the Hyperbolic Volume Conjecture with the paper 
comes from the fact that the colored Jones function of a knot is a solution 
of a q-difference equation, as was proven by TTQ. Le and the author. 
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1. Introduction 

1.1. The goal. The goal of the paper is to intiate an approach to the Hyper-
bolic Volume Conjecture, via asymptotics of solutions of difference equations with 
a small parameter. The Generalized Volume Conjecture links (conjecturally) the 
(colored) Jones polynomial of a knot to hyperbolic geometry of its complement. 

Since the colored Jones polynomial is a specific solution to a linear q-difference 
equation, it follows that the generalized volume conjecture is the WKB limit of a 
specific solution of a linear difference equation with a small parameter. 

Motivated by this, we study WKB asymptotics of formal and actual solutions 
of difference equations with a small parameter, under certain regularity asymptions. 

1.2. The colored Jones function. A knot in 3-space is a smooth embedding 
of a circle, considered up to isotopy. Two of the simplest knots, the Trefoil (31) 
and the Figure Eight (41) are shown here: 

By the very definition, knots are flexible objects defined up to isotopy, which 
allows the embedding to move in a smooth and arbitrary way as long as it does 
not cross itself. In algebraic topology, a common way of studying knots (and more 
generally, spaces) is to associate computable numerical invariants (such as Euler 
characteristic, or Homology). Invariants are useful in deciding whether two knots 

Licensed to Max-Planck Institut fur Mathematik.  Prepared on Tue Mar 17 18:04:53 EDT 2020for download from IP 195.37.209.189.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/publications/ebooks/terms



ASYMPTOTICS OF q-DIFFERENCE EQUATIONS 85 

are not the same. It is a much harder problem to construct computable invariants 
that separate knots. 

The invariant that we will consider in this paper is the Jones polynomial of a 
knot; [J], which is a Laurent polynomial with integer coefficients, associated to each 
knot. The quantum nature of the Jones polynomial is apparent both in the original 
definition of Jones (using Temperley-Lieb algebras) and in the reformulation, due to 
Witten, in terms of the expectation value of a Quantum Field Theory; see [J, W t ]. 

The combinatorics associated to a planar projection of a knot show that the 
Jones polynomial is a computable invariant. However, it is hard to see from this 
point of view the relation between the Jones polynomial and Geometry. In Quantum 
Field Theory, one often reproduces Geometry by moving carefully chosen parame-
ters of the theory to an appropriate limit. 

In our case, we will introduce a new parameter, a natural number which roughly 
speaking corresponds to taking a connected n-parallel of a knot. The resulting 
invariant is no longer a Laurent polynomial, but rather a sequence of Laurent 
polynomials. 

The colored Jones function of a knot K in 3-space is a sequence of Laurent 
polynomials 

JK: N ---t Z[q±]. 
The first term in the above sequence, JK(1) is the Jones polynomial of K; see 
[GLl]. 

1.3. The Hyperbolic Volume Conjecture. Although knots are flexible ob-
jects, Thurston had the idea that their complements have a unique decomposition 
in pieces of unique "crystaline" shape. The shapes in question are the 8 different ge-
ometries in dimension 3, and the idea in question was termed the "Geometrization 
Conjecture". The most common of the 8 geometries is Hyperbolic Geometry, that 
is the existence of a complete, finite volume, constant curvature -1 Riemannian 
metric on knot complements. Thurston proved that unless the knot is torus or a 
satellite, then it carries a unique such metric; see [Th]. 

The Hyperbolic Volume Conjecture (HVC, in short) connects two very different 
views of knot: namely Quantum Field Theory and Riemannian Geometry. The 
HVC states for every hyperbolic knot K 

lim log IJK(n)(e~)l = _..!._ vol(S3 _ K). 
n-+oo n 211' 

where vol( S3- K) is the volume of a complete hyperbolic metric in the knot comple-
ment S3 - K. The conjecture was formulated in this form by Murakami-Murakami 
[MM] following an earlier version due to Kashaev, [K]. More generally, Gukov (see 
[Gu]) formulated a Generalized Hyperbolic Volume Conjecture that identifies the 
limit 

l. log IJ K(n)( e 2 ".{") I 
liD 

n--+oo n 
of a hyperbolic knot with known hyperbolic invariants (such as the volume of cone 
manifolds obtained by hyperbolic Dehn filling), for a E (0, 1]-Ql or a= 1. Actually, 
the GHVC is stated for complex numbers a. For simplicity, we will study asympotics 
for real a E [0, 1]. 

At present, it is not known whether the limit in the HVC exists, let alone that it 
can be computed. Explicit finite multisum formulas for the colored Jones function 
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of a knot exist; see for example [GLl]. From these formulas alone, it is difficult 
to study the above limit. In a sense, the question is to understand the sequence 
of Laurent polynomials that appears in the HVC. If the sequence is in some sense 
random, then it is hard to expect that the limit exists, or that it can be computed. 

Since the first term of this sequence is the Jones polynomial, and since we know 
little about the possible values of the Jones polynomial, one would expect that there 
is even less to be said about the colored Jones function. 

1.4. q-difference equations. Luckily, the colored Jones function behaves in a 
better way than its first term, namely the Jones polynomial. This can be quantified 
by recent work of TTQ Le and the first author, who proved that the colored Jones 
function of a knot satisfies a q-difference equation. 

In other words, for every knot K there exist rational functions 

b1(u,v), ... ,bd(u,v) E Q(u,v) 

(which of course depend on K) such that for all n EN we have: 

d 

L bj(qn,q)JK(n + j) = 0. 
j=O 

This opens the possibility of studying the q-difference equation rather than 
one of its solutions, namely the colored Jones function. Although the q-difference 
equation is not unique, it was shown by the first author in [Gal] that one can 
choose a unique q-difference equation, which is a knot invariant. Moreover, it was 
conjectured in [Gal] that the characteristic polynomial of this q-difference equation 
determines the characters of SL2 (C) representations of the knot complement, viewed 
from the boundary. 

As was explained by the first author on several occasions, asymptotics of solu-
tions of q-difference equations would have consequences on the HVC. 

In this introductory article we review the history of asymptotics of solutions of 
q-difference equations. 

1.5. Asymptotics of differential equations with a parameter. Excel-
lent references for differential equations with a parameter are Olver's and Wasau's 
books; [OJ and [Wa]. In 1837, Liouville and Green independently studied system-
atically existence of formal (i.e., perturbative) and actual solutions for second order 
differential equations with a parameter; see [Gr, L]. Second order equations are 
very important for classical and quantum physics. 

In 1908 Birkhoff had the insight to introduce and study arbitrary order differ-
ential equation with a parameter (see [Bl]): 

(1) y(n) + pan-l (x, p)y(n-l) + · · · + pnao(x, p)y = 0 

where y = y(x, p), y(n) means n-th derivative with respect to x (assumed to be 
restricted to a real interval), and pis a large complex parameter, and where the 
coefficient aj(x, p) are complex coo functions with an expansion 

00 

aj(x, p) = L aj,s(x)p-s 
s=O 
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Birkhoff's working assumption was that the eigenvalues >.1 (x), ... , >.n(x) of the 
characteristic equation 

>.n + an-1,o(x)>.n-1 + · · · + ao,o(x) = 0 

were distinct but not necessarily nowhere vanishing. 
In 1926, three theoretical physicists, Wentzel-Krammer-Brillouin studied the 

second order differential equation (1) under the assumption that its eigenvalues do 
not collide, and developed connection formulas linking solutions in the exponential 
region with those in the oscillatory region. Their method is often referred to as the 
WKB method. 

1.6. Asymptotics of difference equations. As a motivation for our results, 
let us recall some fundamental results of Birkhoff and Trjitzinsky from 1930 on 
difference equations without a parameter; see [B2] and [BT]. 

A difference equation for a discrete function f : N -+ C has the form: 
d 

(2) L aj(n)f(n + j) = 0 
j=O 

where aj : N---> Care discrete functions so that a0 (n)ad(n) =f. 0 for all n EN. We 
will assume the existence of asymptotic expansions of aj ( n) around n -+ oo for all 
j = 1, ... ,d: 

( ) d-fw( -1/w -2/w ) aj n "'n--+oo n 3 aj,O + aj,1 n + aj,2n + ... 
where w E N. This certainly holds for w = 1 if aj are rational functions of n, as is 
often the case in combinatorial problems. 

Due to the nowhere vanishing of ad· ao, it follows that the set of solutions of 
(2) is a vector space of dimension d. 

There are two main problems of difference equations: 
• Existence of formal series solutions 1/;1, ... , 1/;d to (2). 
• Existence of a basis {¢I. ... , ¢d} of solutions so that ¢k(n) is asymptotic 

to 1/;k ( n) for large n. 

In [B2], Birkhoff solved the existence of formal solutions in complete generality 
(that is, without any assumptions on the eigenvalues of the characteristic equation). 
In a sequel paper [BT], Birkhoff-Trjitzinsky solved the second problem in complete 
generality. 

Among other things, the formal solutions of Birkhoff lead to the development 
of differential Galois theory, see [vPS]. 

Decades later, the results of Birkhoff and Trjitzinsky on difference equations 
have found applications to enumerative combinatorics and numerical analysis; see 
for example Wimp and Zeilberger in [Wi, WZ] and references therein. It is not 
surprising that difference equations are used in numerical analysis, since differ-
ence equations are numerical schemes of approximating differential equations. In 
enumerative combinatorics and complexity theory, difference equations appear in 
recursive computation. For example, the number f(n) of involutions of {1, 2, ... , n} 
(that is, permutations which are a product of 1 and 2-cycles) is given by 

f(n + 2) = f(n + 1) + (n + 1)/(n) 
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with f(1) = 1, f(2) = 2. Using the results of Birkhoff-Trjitzinsky and the fact that 
f(n) is monotone, it follows that 

f( ) K n/2 -n/2+n112 ( 1 C1 C2 C3 ) 
n ""n-->oo n e + nl/2 + -;- + n3/2 + · · · 

for nonzero constants ci and some K > 0. Actually, the Ck can be computed 
recursively from the difference equation; see [WZ, p.169]. 

1. 7. Asymptotics of difference equations with a parameter. By some 
historical accident, asymptotics of solutions of difference equations with a param-
eter was not discussed a century ago. The first paper that discusses second order 
difference equation with a parameter appears to be due to Deift-McLaughlin (see 
[DM]) which was generalized by Costin-Costin to arbitrary order difference equa-
tions, [CC]. 

The purpose in this paper is to show that for regular q-difference equations, a 
regular solution has a well-defined and computable exponential growth rate in terms 
of a relative entropy of the characteristic polynomial of the q-difference equation; 
see Theorem 1 below. 

This subject is classical and has been reinvented over the past hundred years 
by several groups, often unaware of each others results. In a sense, the problem of 
formal solutions of q-difference equations is a problem in differential Galois theory; 
[vPS], and a problem in numerical analysis; see for example [CC]. 

Our results are hardly new and are contained or can be obtained by minor mod-
ifications from results of Costin-Costin or from work of Birkhoff and collaborators, 
[Bl, BT, CC]. 

Since the presentation in the above papers varies by time and taste, we have 
decided to give a self-contained account of the theory with complete proofs. Hope-
fully, this will benefit the researchers in Quantum Topology and in Analysis. 

1.8. Statement of the results. In this paper, we will describe asymptotics 
of solutions of q-difference equations. 

A q-difference equation for a sequence (!(1), f(2), f(3), ... ) of smooth functions 
of q has the form: 

(3) 
d 

L bj(qk, q)J(k + j, q) = o 
j=O 

where b1(v,u) are smooth functions and f(k,q) = f(k)(q). 
Before we proceed further, let us remark that q is a variable in (3) and not 

a complex number of absolute value less (or more) than 1. In the usual analytic 
theory of q-difference equations, q is a complex number inside or outside the unit 
disk. 

Moreover, in the GHVC, we need to compute the nth term f(n, q) in the above 
q-difference equation, and then evaluate it at qn = e21riafn, for a fixed. In other 
words, in the GHVC, qn is a complex number that varies with n in such a way that 
it stays in the unit circle and approaches 1 as n-+ oo. 

With this in mind, E-difference equations (defined below) are obtained from 
q-difference equations by the substitution q = e2"Tri< where E is a small nonnegative 
real number, that plays the role of Planck's constant. 
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ASYMPTOTICS OF q-DIFFERENCE EQUATIONS 

The characteristic polynomial of the q-difference equation (3) is 
d 

P(v, A)= ~.:)j(v, 1)Aj 
j=O 

DEFINITION 1.1. We will say that (3) is regular if 

Dsc;.P(v,A) · bo(v, 1) · bd(v, 1) =f. 0 

89 

for all vEst, where Dsc;.P(v, A) is the discriminant of P(v, A), which is a polyno-
mial in the coefficients of P(v, A). 

Let At ( v), . .. , Ad( v) denote the roots of the characteristic polynomial, which 
we call the eigenvalues of (3). It turns out that (3) is regular iff the eigenvalues 
At(v), ... ,Ad(v) never collide and never vanish, for every vEst. Moreover, it 
follows by the implicit function theorem that the roots are smooth functions of 
vEst. 

Since we are interested in asymptotics of solutions of q-difference equations 
which, as we shall see, are governed by the magnitude of the eigenvalues, we need 
to partition the circle according to the magnitudes of the eigenvalues. 

Let st = UpEPip denote a partition of S1 into a finite union of closed arcs 
(with nonoverlapping interiors), such that the magnitude of the eigenvalues does 
not change in each arc. In other words, for each pEP, there is a permutation ap 

of the set {1, ... , d} such that 

IAav(l)(v)l ~ IAav(2)(v)l ~ · · · ~ IAav(d)(v)l for all v E Ip· 

The following definition introduces a locally fundamental set of solutions of 
q-difference equations. 

DEFINITION 1.2. Fix a partition of I as above. A set { ~ 1 , ... , ~d} is a locally 
fundamental set of solutions of (3) iff for every solution~ for every p E P and for 
every m = 1, ... , d there exist smooth functions c~ such that 

(4) 
for all (k, q) such that qk E Ip. 

THEOREM 1. Assume that (3) is regular. Then, there exists a locally funda-
mental set of solutions { ~t, ... , ~d} such that 

• For every m = 1, ... , d and (k, q) such that qk E Ip we have 

( 2"'") (n (ka a)) ~m k, e-n- = exp ~<I>m ---;:;-'-; . 

• for some smooth functions <I>m with uniform (with respect to x E I = [0, 1 ]) 
asymptotic expansion 

00 

s=O 

where <Pm,s E C00 (I) for all s 
• and leading term 

(5) <Pm,o(x) = lx log(Am(e21l"it))dt 

where we have chosen a branch for the logarithm of Am. 
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REMARK 1.3. For every j = 1, ... , d the smooth functions <hs for positives are 
uniquely determined from the coefficients bj ( u, v) of (3) by a hierarchy of first-order 
differential equations along with specified initial conditions. On the other hand, the 
smooth functions <Pm are not uniquely determined, since they are obtained by a 
smooth interpolation. Thus, the locally fundamental set of solutions is not uniquely 
determined from the q-difference equation, although its asymptotic behavior is. 

It follows from Theorem 1 that each locally fundamental solution '1/Jm(n, q) of 
the q-difference equation (3) satisfies the GHVC in the sense that for every a E [0, 1] 
we have: 

lim log l'l/Jm(n, e¥)1 = 11 log I.Am(e21riat)ldt 
n->oo n 0 

Fix a solution 'l/J of (3). Theorem 1 expresses 'l/J as a linear combination of '1/Jm's 
in each arc Ip· For every pEP, let 

(6) Sp={mE{1, ... ,d}l ~;1:0}. 

Later (in Section 6.3) we will define the notion of a regular solution to a q-
difference equation. 

As a prototypical example, consider an q-difference equation that satisfies 
I.A1 ( v) I > I.Ai ( v) I for all j ;1: 1 and all v E 8 1 . Then, any solution that satisfies 
c1 ( 0) ;1: 0 (or more generally, c1 has a nonvanishing derivative at 0) is regular. 

REMARK 1.4. It is possible that Sp ;1: Sp+l· In other words, the restriction of a 
fixed solution 'l/J to different intervals Ip may be a linear combination of different '1/Jis. 
This is an important phenomenon, referred by the name of Stokes phenomenon; see 
[Wa]. 

Our next definition captures the growth rate of regular solutions to regular 
q-difference equations. 

DEFINITION 1.5. Fix a collectionS= {SpiP E P} of subsets of {1, ... , d}. The 
S-entropy 

as : [0, 1] -+ ~ 

of the q-difference equation ( 3) is defined by 

as(a) = 11 logxs(e21l'iat)dt. 

where Xs : [0, 1] -+ ~ is defined by 

xs(v) = n~ 1-AO'p(j)(v)l if 

The entropy of ( 3) is the set of functions 
{as:[0,1]-+~ I Sc{1, ... ,d}}. 

Notice that the entropy of a q-difference equation is not a real number, but 
rather a finite collection of functions. 

The main result is the following 

THEOREM 2. Iff is an S-regular solution of the regular q-difference equation 
(3), then for every a E [0, 1] we have: 

I. log lf(n)(e"'~" )I ( ) 
1m =as a 

n-+(X) n 
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Finally, let us define the J-entropy of a knot. In [Gal] the first author showed 
that to every knot K one can associate a canonical q-difference equation of degree 
d, and a specific solution of it, namely the colored Jones function of K. 

The q-difference equation itself is an invariant of a knot, which (by definition) 
is determined by the colored Jones function of the knot. Thus, any invariant of 
the q-difference equation is also an invariant of a knot, which is determined by the 
colored Jones function of the knot. 

DEFINITION 1.6. The J-entropy of a knot is the entropy of its associated q-
difference equation. We denote the J -entropy of a knot K by 

{a~,K: [0,1]----tlR Sc {l, ... ,d}}. 

1.9. What's next? The paper was written in the spring of 2004. Since then, 
a number of papers that discuss the asymptotics of the colored Jones function have 
appeared; see [Ga2, Ga3, GL2, GL3]. 

1.10. Acknowledgement. The results of this paper were announced in the 
JAMI 2003 meeting in Johns Hopkins. The first author wishes to thank J. Morava 
for the invitation, and P. Deligne who suggested the asymptotic behavior of so-
lutions of q-difference equations. The first author wishes to thank D. Boyd for 
sharing and explaining his unpublished work and also A. Riese, T. Morley, and D. 
Zeilberger. 

2. €-difference equations 

2.1. €-difference equations. In this section, we will translate asymptotics of 
solutions of q-difference equation in terms of asymptotics of solutions of €-difference 
equations. The latter are defined as follows. 

Fix a positive number €o, a compact interval I of lR and a natural number d. 
We will consider functions¢: A,0 ,J ----t C with domain 

(7) A,0 ,J := {(k€,€)1 k E N,€ E (0,€o], k€ E J}. 

(8) 

Consider the €-difference equation for a function ¢ : A,0 ,1 ----t C 
d L aj(k€, €)¢((k + j)€, €) = 0 

j=O 

where aj E C00 (J X [0, €o]). 
We will assume that for all j = 0, ... , d, aj(x, €) has a uniformly (with respect 

to x) asymptotic expansion 
00 

(9) aj(X, €) rv,_,o L aj,s(X)€8 

s=O 

where aj,s E C00 (1). 
As we mentioned before, €-difference equations are obtained from q-difference 

equations by the substitution q = e21rif where € is a small nonnegative real number, 
that plays the role of Planck's constant. 

The characteristic polynomial of (8) is 
d 

P(x, ,\) = L aj(x, 0),\J 
j=O 
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DEFINITION 2.1. We will say that (8) regular if 

Dsc,xP(x, .X)· ao(x, 0) · ad(x, 0) # 0 
for all x E I. 

Let .X1(x), ... , Ad(x) denote the roots of the characteristic polynomial, which 
we call the eigenvalues of (8). 

It turns out that (8) is regular iff the eigenvalues .X1(x), ... , Ad(x) never collide 
and never vanish, for every x E I. Moreover, it follows by the implicit function 
theorem that the roots are smooth functions of x E I. 

Since we are interested in asymptotics of solutions of E-difference equations 
which, as we shall see, are governed by the magnitude of the eigenvalues, we need 
to partition the interval I according to the magnitudes of the eigenvalues. 

Let I = UpE'Pip denote a partition of I into a finite union of closed intervals 
(with nonoverlapping interiors), such that the magnitude of the eigenvalues does 
not change in each interval. In other words, for each p E P, there is a permutation 
ap of the set {1, ... , d} such that 

I.Xap{l)(x)l2: I.Xap{2)(x)l2: · · · 2: I.Xap{d)(x)l for all x E Ip. 

The following definition introduces a locally fundamental set of solutions of 
E-difference equations. 

DEFINITION 2.2. Fix a partition of I as above. A set { 1/;1, ... , 1/Jd} is a locally 
fundamental set of solutions of (8) iff for every solution 1/J : 6.€,! ---+ C, for every 
pEP and for every m = 1, ... , d there exist smooth functions c~ E c=[o, E] such 
that 

1/J(kf, E)= q(E)'l/Jap(l)(kE, E)+···+ ~(E)'l/Jap(d)(kf, E) 
for all (kE, E) E 6.£,1· Here, the notation c~ does not indicate the pth power of Cm. 

The next theorem summarizes the results of Costin-Costin. 

THEOREM 3. ([CC]) Assume that (8) is regular. Then, there exists a positive 
E1 ~ Eo and a locally fundamental set of solutions { 1/;1, ... , 1/Jd} of (8) such that 

(10) 

(11) 

• For every m = 1, ... , d and (kE, E) E l:l.e',J we have 

1/Jm(kE, E)= exp {E-1<I>m(kE, E)). 

• for some smooth functions <I>m E C00 (I x (0, E']) with uniform (with respect 
to x E I) asymptotic expansion 

00 

<I>m(x, E) ""'£--+0 :~::>/>m,s(x)E 8 
s=O 

where </>m,s E C 00 (I) for all s 
• and leading term 

exp(¢~, 0 (x)) = Am(x). 

Fix a solution 1/J of (8). Theorem 3 expresses 1/J as a linear combination of the 
1/Jj's in each interval Ip. For every p E P, let 

(12) Sp ={mE {1, ... ,d}l ~ # 0}. 
Later (in Section 6.2) we will define the notion of a regular solution to an 

E-difference equation. 
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ASYMPTOTICS OF q-DIFFERENCE EQUATIONS 93 

As a prototypical example, consider an €-difference equation that satisfies I.A1 (x) I > 
I .Xi ( x) I for all j =1- 1 and all x E I = [a, b]. Then, any solution that satisfies c1 (a) =1- 0 
(or more generally, c1 has a nonvanishing derivative at a) is regular. 

Our next definition captures the growth rate of regular solutions to regular 
€-difference equations. 

DEFINITION 2.3. Fix a collectionS= {SpiP E P} of subsets of {1, ... , d}. The 
S-entropy 

as: I ~R 
of the €-difference equation ( 8) is defined by 

as(x) =fox logxs(t)dt. 

where xs : I ~ R is defined by 

xs(x) = ~~I.Aup(j)(x)l if 

THEOREM 4. If'¢ is an S-regular solution to a regular €-difference equation, 
and x E I, we have: 

lim dog l'¢(x, E)l = as(x) 
e--+O+ 

The next remarks concern the uniqueness of a set of locally fundamental solu-
tions to (8). 

REMARK 2.4. For every m = 1, ... , d the smooth functions cf>m,s for positive 
s are uniquely determined by (3) and the initial condition cf>m,s(O) = 0. Indeed, 
applying Taylor series (with respect to E) in (8) and collecting terms, we get for 
example: 

1/2¢~, 0 (x) ~1=o ai (x, O)j2 .A~(x) + ~1=o 8,ai (x, 0)..\~(x) 
~1=o aj(x, O)j.A~(x) 

( 1 ,P)..).. P, ) I - 2..\ P>. + P>..A >.=>.m(x) 

where fx(x, .A)= 8/8xf(x, .A) and f>.(x, .A)= 8/8>-.f(x, .A). 
Similarly, for s ;::: 1 we have: 

¢' (x) = _ H 8 (x) . 
m,s ~1=o aj(X, O)j.A?n(x) 

where H 8 (x) is a function of derivatives of aj(x,O) and cf>m,t fort< s. Notice that 
the denominator vanishes nowhere since the roots do not collide and do not vanish 
for every x E I. 

REMARK 2.5. If the coefficients aj(x, E) of the regular €-difference equation 
(8) are analytic functions, then the functions cf>m,s of Theorem 3 are also analytic, 
for every m and s. This follows by induction from the differential hierarchy which 
these functions satisfy, and from the fact that the eigenvalues are analytic functions. 
Even though cf>m,s is analytic for every m and s, the series 

s=O 

is in general divergent, and the functions 4'>m,s of Theorem 3 are not analytic. 

Licensed to Max-Planck Institut fur Mathematik.  Prepared on Tue Mar 17 18:04:53 EDT 2020for download from IP 195.37.209.189.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/publications/ebooks/terms
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REMARK 2.6. Even though the functions <Pm,s are uniquely determined by the 
€-difference equation, the smooth functions Fm (and thus the locally fundamental 
set of solutions '1/Jm) are not uniquely determined by the €-difference equation. The 
problem is that smooth interpolation is not unique. Recently developed ideas of 
exponentially small corrections might construct a unique set of locally fundamental 
solutions when the coefficients of (8) are analytic functions. We will elaborate on 
this in a separate occasion. 

2.2. Converting q-difference equations to €-difference equations. The 
translation of q-difference equations to €-difference equations is as follows. If f 
satisfies the q-difference equation 

then set 

d L: bj(qk, q)J(k + j, q) = o 
j=O 

and consider the €-difference equation for a function¢ (with domain !::leo,! for some 
t:o > 0 and I= [0, 211']): 

d 

L a3(kt:, t:)¢((k + j)t:, t:) = 0 
j=O 

The following lemma, although elementary, is the key to translating q-difference 
equations to €-difference equations. 

LEMMA 2.7. For every (kt:, t:) E I x [0, t:o] we have: 

(13) 

Consequently, for every a E (0, 1], we have: 

(14) lim -k1 log lf(k, e211'iafk)l = a-1 lim dog I¢( a, t:)l. 
k-+oo e-+0 

Thus, Theorem 3 implies Theorem 1. 

PROOF. Observe that a3(kt:,t:) = b3(e211'ike,e211'ie), thus (k,t:)---+ ¢(kt:,t:) satis-
fies the equation 

d L bj ( e211'ike' e211'ie)¢( ( k + j)t:, f) = 0 
j=O 

and so does (k, t:) ---+ f(k, e211'ie). Since solutions with matching initial conditions 
are unique, (13) follows. 

Equation (14) follows from equation (13) by the substitution t: = ajk: 

~log lf(k, e211'iafk)l =~log l¢(kt:, a/k)l = a- 1dog I¢( a, t:)l. 

0 
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3. Some linear algebra 

In this section we will review some linear algebra. It is obvious that the complex 
roots of a monic polynomial uniquely determine it. It is also known [GLR] that the 
eigenvalues of a companion matrix uniquely determine it, in case they are distinct. 

Consider a companion d by d matrix 

A= 

0 
0 
0 
0 

1 
0 
0 
0 

0 
1 
0 
0 

The characteristic polynomial of A is 
d-1 

Ad+ LaiAi 
j=O 

0 
0 
0 

1 

with roots AI, ... , Ad· Let M = (A~-l )i,j be the Vandermonde matrix, and D = 
diag(AI. ... , Ad) be the diagonal matrix with diagonal entries AI. ... , Ad. 

LEMMA 3.1. If a companion matrix has distinct eigenvalues, then with the above 
notation we have: 

A=MDM-1 

PROOF. Observe that Vj = (1, Aj, ... , A1-l)T is an eigenvector of A with eigen-
value Aj. Thus, M = ( v1, ... , vd) and AM = MD. The result follows. 0 

Now, consider a companion matrix A(u) whose entries in the bottom row are 
smooth functions in a variable u, with roots A1(u), ... , Ad(u) which we assume are 
distinct for all u. 

The next lemma is a key estimate for the norm of long products of slowly 
varying matrices. In the language of physics, A( u) is the transfer matrix and 
A(n) ... A(2)A(1) is the transition matrix. 

LEMMA 3.2. Assume that the eigenvalues Al(u), ... , Ad(u) of A(u) are distinct 
for all u and 

m?Jesup IAj(u)l ~ 1 + C€. 
J ... 

Then form~ n, n€ E /, we have 

IIA(n)A(n -1) ... A(m)ll ~ C' 

PROOF. By Lemma 3.1, we have: 

A(u) = M(u)D(u)M(u)-1 

If m ~ n, it follows that 

A(n)A(n- 1) ... A(m) = M(n)D(n)M(n)-1 

·M(n- 1)D(n- 1)M(n -1)-1 ... 
·M(m)D(m)M(m)-1, 
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which implies that 

IIA(n)A(n -1) ... A(m)ll < IIM(n)IIM(m)-1 II·IID(n)ll·. -IID(m)ll 
IIM(n)-1 M(n- 1)11· .. 
·IIM(m + 1)-1 M(m)ll· 

Now, we have 

IID(k)ll ::=; 1+C€ for k=m, ... ,n 

IIM(k)M(k -1)-1 11 :::; 1 + C'€ by Lemma 3.3. 

If I= [a, b], using the fact that m, m€ E I, we obtain: 

IIA(n)A(n- 1) ... A(m)ll ::=; (1 + C€)n-m(1 + C' €)n-m 
< (1+C"€)2(n-m) 

< (1+C"€)2b~a 
< e2C"(b-a). 

D 

LEMMA 3.3. If M = (x;-1 )i,j and N = (yj-1 )i,j are Vandermonde matrices, 
such that M is nonsingular, then 

(M-1 N)i,j = II Yi -X!. 
l#i Xi- X! 

4. Existence of formal solutions 

In this section we will prove that (8) has a unique set of formal solutions. Let 
us define those first. 

DEFINITION 4.1. A formal series '¢(x, €) is one of the form 

(15) '¢(x, €) = exp ( €- 1 ~ ¢ 8 (x)€8 ) 

where ¢ 8 E C 00 (/) are smooth functions for all s. 

Note that dog'¢(x, €) lies in the ring C 00 (l)[[€]] of formal power series with 
coefficients smooth functions on I. 

Note further that if '¢(x, €) is a formal series, so is '¢(x + j€, €) for every j E .Z, 
where the latter may be defined using the Taylor series of 

as fommows: 

00 1 
¢8(x + j€) = L tftP~t)(x)l€t 

t=O 

exp (€- 1 ~ (ta ~¢~t2t(x)) €8
) 

'¢(x,€)exp(¢~(x)j+ (¢~(x)j+ ¢~ 2~x)j 2 )€ 

+ ( ¢~(x)j + ¢~ 2~x) j2 + ¢~~~x) j3) €2 + ... ) 
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ASYMPTOTICS OF q-DIFFERENCE EQUATIONS 97 

It follows that if ;fi(x, E) is a formal series, then the ratio ;fi(x + E, E)/;fi(x, E) lies 
in the ring C00 (l)([E]J. 

Using the language of difference Galois theory (see [vPS, p.4]) this implies that 

LEMMA 4.2. C00 (l)[[E]J is a finite difference ring, under the map X- X+ E. 

DEFINITION 4.3. We say that a formal series'¢ of (15) is a formal series solution 
to (8) iff 

(16) 
1 d ----L aj(X, E)'lj;(x + jE, E)= 0 E C00 (l)[[E)). 

'lj;(x, E) j=O 

It is easy to see that if'¢ is a formal solution to (8), then the leading term ¢0 
satisfies the equation 

(17) exp(¢~(x)) = >.(x) 

where .>.(x) is an eigenvalue of (8). 

PROPOSITION 4.4. Assume that (8) is regular. Then, (8) has d unique formal 
series solutions ;fib ... , ;fid with leading terms corresponding to the eigenvalues of 
(8). 

PROOF. First we need to show that (16) is indeed an equation in the power 
series ring C00 (l)[[E]J, i.e., that the terms involving negative powers of E cancel. 

Suppose that '¢ is given by (15). It follows from the calculation preceding 
Lemma 4.2 that for every sEN, we have: 

(18) ff ( s ;fi(x + jE, E)) {exp(jcp~(x)) if s = 0 coe E, _ = 
'lj;(x, E) j exp(j¢~(x))¢~(x) + terms8 if s > 0 

where coeff(E8 ,g(E)) denotes the coefficient of E8 in a power series g(E), and where 
terms8 is a polynomial in the derivatives of ¢t for t < s. 

Expand the terms of Equation (16) into power series in E using the above 
equation and (9), and collect terms of powers of E. It follows that (16) is equivalent 
to a hierarchy of first order differential equations: 

d 

L aj(x, 0) exp(j¢~(x)) = 0 
j=O 

d 

L aj(X, O)j exp(j¢~(x))¢~(x) + Terms8 = 0 
j=O 

where for positive s, Terms8 is a polynomial in the derivatives of ¢t and aj(x, 0) 
fort< s. 

Now fix an mE {1, ... , d}, and choose ¢m,o such that exp(¢~. 0 (x)) = Am(x), 
where .>.1 (x ), ... , >.d(x) are the eigenvalues of (8). Since (8) is regular, it follows that 
the roots .>.1 (x ), ... , Ad(x) of the characteristic polynomial P(x, .>.) never collide, and 
never vanish for x E I. Thus, 
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for all x E I. Thus, after we choose ¢m,o, it follows that we can find functions ¢m,s 
for s 2:: 0 that satisfy the above hierarchy. Moreover, for every m, the sequence 
of functions ¢m,s is uniquely determined by the above hierarchy and the initial 
conditions ¢m,s{O) = 0. 0 

4.1. An alternative formal series. In this section we present an alternative, 
and slightly more general form, of formal series. In case of regular e-difference 
equations this alternative form will not be needed. However, when eigenvalues 
collide or vanish, one must use this alternative form of formal series. Thus, in the 
present paper we will not use this alternative form of formal series, and the reader 
may skip this section. 

DEFINITION 4.5. An alternative formal series tP(x, e) is one of the form 
00 

{19) tP(x,e) = exp (e-1¢(x)) L¢s(x)e8 

s=O 

where ¢,cPs E C00 {l) are smooth functions for all s, and ¢o(x) f 0 for all x E l. 

In the remainder of this subsection, we will refer to alternative formal series 
simply by formal series. 

Note that if tP(x, e) is a formal series, so is tP(x + je, e) for any j E Z, where the 
latter may be defined using the Taylor series of ¢8 (x + je) and ¢(x + je) around x. 
It follows that 

tP(x+je,e) = exp(e-1¢(x)) 

·(¢0 (x) + (¢C1l(x)¢o(x) + ¢~ 1 )(x) + ¢I(x))e + ... ). 

Moreover, if tP(x, e) is a formal series, then the ratio tP(x + e, e)ftP(x, e) lies in 
the ring C00 {l)[(e)). This follows from {20) and the following computation, valid 
for every j EN: 

tP(x + je, e) = exp(e-1¢{x + je))(¢o(x + je) + ¢I(x + je)e + O{e2)) 

= exp ( C 1¢(x) + ¢C1l(x)j + ¢C 2 ~(x) ie + O(e2)) 

· ( ¢o(x) + (¢~ 1 ) (x)j + ¢I(x))e + O{e2)) 

= tP(x, e) exp(¢C1l(x)j) 

. (1 + (¢C2l(x) j2 + ¢~1)(x)) f + O{e2)) 
2 ¢o(x) 

In analogy with Lemma 4.2, this implies that 

LEMMA 4.6. C00 {J)[(e)) is a finite difference ring, under the map X-+ X+ f. 

DEFINITION 4.7. We say that a formal series tP of {19) is a formal series solution 
to {8) iff 

{20) 
1 d -

--- L aj(X, e)'I/J(x + je, e)= 0 E C00 {l)[(e)). 
,P(x, e) j=O 
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It is easy to see that if'¢ is a formal solution to (8), then the leading term ¢ 
satisfies the equation 

(21) exp(¢'(x)) = .A(x) 
where .A(x) is an eigenvalue of (8). 

In analogy with Proposition 4.4, we have the following: 

PROPOSITION 4.8. Assume that (8) is regular. Then, (8) has d unique formal 
series solutions '¢1, ... , 'if;d with leading terms corresponding to the eigenvalues of 
(8). 

5. Proof of Theorem 3 

In this section we prove Theorem 3. The strategy is to 
(a) prove that there exists a solution '¢1 with the stated properties where 

.A1(x) is an eigenvalue with maximum magnitude. 
(b) use this solution '¢1 to reduce Theorem 3 to the case of a E-difference 

equation of degree one less than the original one. 
(c) prove that the constructed set of solutions is a locally fundamental set. 

Without loss of generality, we will assume that the eigenvalues of (8) satisfy 
the inequality: 

I.A1(x)j;:::: I.A2(x)j;:::: · · ·;:::: I.Ad(x)l 
for all x E I. Otherwise, we can partition I into subintervals where this is true. 

5.1. Existence of a solution corresponding to the eigenvalue of max-
imum magnitude. Consider first a formal solution '¢1 of (8) given in Proposition 
4.4, which satisfies (15) and (17). Consider the smooth functions ¢1,8 E C00 (I) of 
(17). 

The proof of the following lemma (due to Borel in case ¢1,s are constant func-
tions, for all s) can be found in (GG, Lemma 2.5]: 

LEMMA 5.1. There exists a smooth function ~1 E C00 (I x (0, Eo]) such that we 
have (uniformly in x E I): 

00 

~1(x, E) '""<-->0 L ¢1,s(x)E8 • 

j=O 

Now, consider the unique solution '¢1 of (8) with initial conditions 

'¢1(kE,E) = exp(E- 1 ~1(kE,E)) for k = 0, ... ,d -1 

and for small enough E, where without loss of generality, we assume that I= (0, b]. 
Of course, for large k it may not be true that 

'I/J1(kE, E)= exp(E- 1 ~1(kf, E)). 
The next proposition estimates the error, uniformly with respect to k: 

PROPOSITION 5.2. There exists an E1 > 0 and constants C8 such that for all 
(kE, E) E f:l.,,,J and all sEN, we have (uniformly ink): 

(22) 
I 

'I/J1(kf, E) 11 C 8 
A - < 8 E 

exp(c1cf>1(kE, E)) 
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PROOF. Let us make a change of variables: 

(23) 

where 

We will show that for a fixed s0 , and for every s there exists a constant C8 such 
that for all (kE, E) E ~•oJ we have: 

(24) 

(25) 

Since '¢1 satisfies (8), it follows that () satisfies 
d 

I>j(kE, E)()((k + j)E, E)= 0 
j=O 

where 

It is easy to see that 

(26) 

• bj(X, E) E C 00 (I X [0, Eo]), has uniform (with respect to x) €-asymptotic 
expansion as in (9), 

• bj,s(x,O) = aj(x,O).X{(x), 
• and since '¢ is a formal series solution to (8) and <f, 1 is given by Lemma 

5.1, if follows that for every s we have: 
d 

:~:::>j(X, E)= 0(E8 ) 

j=O 

The characteristic polynomial of (25) has roots f..Lm(x) := Am(x)/.X1(x) for 
j = 1, ... , d. If (8) is regular, so is (25). Notice that .X1(x) vanishes nowhere since 
(25) is regular. 

We now show (24). Let us write the difference equation (25) in matrix form 

(27) 

where 

and 

A(x, E)= 

e((k + 1)E, E)= A(kE, E)e(kE, E) 

6(x, E)= 

0 1 
0 0 
0 0 
0 0 

()(x, E) 
{)(x+E,E) 
()(x + 2E, E) 

()(x + (d- 1)E, E) 

0 
1 
0 
0 

-co(x, E) -c1 (x, E) -c2(x, E) 

0 
0 
0 

1 
-Cd-1 (x, E) 
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and cj(x, E)= bj(x, E)/bd(x, E). Iterating, we obtain that 

8(kE, E)= A(kE, E)A((k- 1)E, E) 0 0 0 A(E, E)8(0, E) 

for all k;::: 1, where 8(0, E) = W:, a column vector with all entries equal to 1. 
Equation (26) gives: 

(28) 
where lllEk(E)II < C uniformly ink and E. Feeding in the above equation, we obtain: 

k-1 

(29) 8(kE, E) = W: + E8 lEk(E) + E8 L A(kE, E)A((k- 1)E, E) ... A((j + 1)E, E)lEj(E). 
j=1 

Now, let us look at the roots 111 (x, E), ... , Jld(x, E) of 
d L bj(X, E)Jlj = 0. 

j=O 

Since maxj supxEI IJ.lj(x, O)l = 1, it follows that 

max sup IJ.lj(x, E)l ~ 1 + CE. 
J xEI 

Since kE lies in I, a compact set, Lemma 3.2 and Equation (29) imply that 

(30) ll8k(E) -W:II ~ kC~E 8 + 1 ~ C8 Es-so+1 

for all kE E I, where s0 = 1. This completes the proof of (24). 
Equations (24) and (22) differ in the presence of s0 • It is easy to see that iff 

is a function such that for a fixed so and any s E N we have: 
s+so 

lf(E)- L CtEtl < D 8 E8 +1 , 

t=O 

then 
8 

If( E)- L CtEtl < (Ds + ICs+11 + ... ICs+soi)E8 +1. 
t=O 

This observation shows that (24) implies (22) and concludes the proof of the Propo-
ili~. 0 

PROPOSITION 5.3. (a) There exists a smooth function <1> 1 E 0 00 (I x [0, E']) such 
that 

(a) For all (kE, E) E f).,, ,I, we have: 

'I/J1 (kE, E) = exp ( E-1<J>1 (kE, E)) , 

(b) <1> 1 has an asymptotic expansion (uniform with respect to x): 

<I>1(x,E) "'<--->0 exp (E-1 ~¢1,s(x)E 8 ) 
where ¢ 1,s are as in Lemma 5.1. As a result, we have an asymptotic 
expansion (uniform with respect to k): 

'1/Jl(kE, E) "'<--->0 exp (E-l ~ tPl,s(kE)E8
) • 
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PROOF. Consider the change of variables() as in (23). 
Due to our choice of initial conditions it follows that for every fixed k = 

0, ... , d- 1, the function E-+ B(kE, E) is smooth. Using this and the smoothness of 
the coefficients of (8), it follows that for every fixed k, the function E-+ B(kE, E) is 
smooth. 

So far, the function () is defined on ~:;): 

E 

(O,c) 1-x_=_O _____ , x= E 

x=2E 
x=3E 
x=4E 

X 

which is a union of line segments in a rectangle I x [0, E1], and satisfies (22). 
The complement of these line segments in [0, E1] consists of an infinite union 

of open triangles, together with the horizontal segment I x 0. We can smoothly 
interpolate () inside these open triangles so that it is defined on I x (0, E1] and 

(31) 

for all (x, E) E I x (0, E1] and all s E N. 
Let us extend () to I x [0, E1] by defining B(x, 0) = 1 for all x E I. 
We claim that() is smooth on I x [0, E1]. We need only to check this at the points 

(x, 0) for x E I. This follows easily from (31). For example, to check continuity at 
(x, 0), consider a sequence (xn, En) such that limn_,00 (Xn, En) = (x, 0). Then, (31) 
for s = 1 implies that IB(xn, En) -11 < CsEn "'n-+oo 0, thus() is continuous at (x, 0). 
Using (31) for s + 1 it follows that 88 jaE8 B(x, E)l,=o = 0 for all s > 0, and we find 
that() has an E-asymptotic expansion (uniform with respect to x): 

B(x, E) "'<-+0 1 

Restricting further E1 if needed, we may assume that IB(x, E)l > 0 for all (x, E) E 
I x [O,E']; in other words logB(x,E) makes sense for all (x,E) E I x [O,E']. 

Now, we can finish the proof of Proposition 5.3. 
Let us define 

<I>1 (x, E) = 4>1 (x, E)+ dog B(x, E) 
Then, (23) implies (a). Since B(x, E) is asymptotic to 1 (uniformly on x), it follows 
that <I>1 (x, E) is asymptotic to 4>1 (x, E). Using the asymptotic of 4>1 given by Lemma 
5.1, (b) follows. 0 

5.2. A reduction to an E-difference equation of smaller degree. We will 
now prove Theorem 3 by induction on the degree d of the E-difference equation. For 
d = 1, it follows from Proposition 5.3. The inductive step is the next Proposition. 

PROPOSITION 5.4. Assume that Theorem 3 holds for regular E-difference equa-
tions of degree less than d. Then it holds for regular E-difference equations of degree 
d. 
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ASYMPTOTICS OF q-DIFFERENCE EQUATIONS 103 

Proof. Consider a €-difference equation (8) of degree d. We will use the solution 'lj;1 
of it constructed in Proposition 5.3 to reduce it to an equivalent equation of degree 
d- 1, and an inhomogeneous €-difference equation of degree 1. 

Consider the dependent change of variables 

(32) 

This is well-defined since 1/J1 is nowhere zero. Then, 4> satisfies (8) iff(} satisfies 
d 

(33) :L bj(k€, €)e((k + j)€, €) = o 
j=O 

where 
1/J1 (x + j€, €) 

bj(X, €) = aj(X, €) 1/J ( ) . 
1 X,€ 

The characteristic polynomials of (8) and (33) are related by 

P(33)(.X) = .X1(x)dP(s)(.X/.X1(x)). 

As in the proof of Proposition 5.3, it is easy to see that (33) is a regular €-difference 
equation. Moreover, it is easy to see that Theorem 3 holds for (8) iff it holds 
for (33). Indeed, check that the change of variables given by (32) preserves the 
asymptotics of the solutions of (8) and (33). 

Thus, it suffices to work with (33). In that case, (} = 1 is a solution of (33), 
since 1/J is a solution of (8). It follows that 

d 

(34) Lbj(X,€) = 0. 
j=O 

(Compare this with (26)). Let us define 

(35) ((k€, €) = (}( (k + 1)€, €) - (}(k€, €). 

Then, we get that ( is a solution of the €-difference equation 
d-1 

(36) L Cj(k€, €)(((k + j)€, €) = 0 
j=O 

where 
d 

C8 (X,€) = L bj(X,€). 
j=s+1 

The characteristic equations of (33) and (36) are related by 
d d-1 

L bi(x, O).Xi =(.X- 1) L ci(x, O).Xi 
j=O j=O 

Since eo(x,€) = E:=1 bi(x,€) = -bo(x,€) (by (34)) and cd(x,€) = bd(x,€), the 
same arguments of Proposition 5.3 imply that (36) is regular, assuming that (33) 
is regular. 

By the induction hypothesis, it follows that (36) satisfies Theorem 3. 
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For the remainder of this section, fix a solution (of (36) which satisfies the prop-
erties of Theorem 3. In other words, (satisfies (33) and ((kf., E)= exp(c1 Z(kE, E)) 
where Z is a smooth function with uniform (with respect to x) asymptotics: 

00 

Z(x, E) "'<--+0 L Z8 (x)E8 • 

s=O 

LEMMA 5.5. There exists a formal solution 

B(x, E)= exp(E-18(x, E)) 

of (36) such that 
00 

s=O 

PROOF. We need to solve the formal power series Equation 

exp ( E-1 ~ 8 8 (x + E)E8 ) - exp ( E-1 ~ 8 8 (x)E8 ) = exp ( E-1 ~ Z8 (x)E 8
) 

fore in terms of z. Using the Taylor expansion 8o(x+E) = 8o(x)+8~(x)E+0(E 2 ) 
it is easy to see that the above equation equals to 

exp (E-18 0(x) + 0(1))- exp (E-18o(x) + 0(1)) = exp (E-1 Zo(x) + 0(1)) 

from which follows that 8 0 = Z0 . Dividing the equation by exp(c18 0) we get 
an equation in formal power series with nonnegative powers of E. Moreover, the 
coefficient of E8 in that power series (for s ~ 0) equals to 

(exp(8~(x)) - 1) exp(8s+1 (x))Hs(x) 

where Hs(x) is a function of e1 and z1 for j = 1, ... , s. Since exp(8~(x)) 
exp(Zb(x)) is an eigenvalue of (36), it is never equal to 1. 

This and induction prove the lemma. D 

LEMMA 5.6. (a) There exists a solution to the equation 

(37) ((kE, E)= B((k + 1)E, E)- 8(kE, E) 

for () in terms of ( with appropriate initial condition. 
(b) For all (kf.,E) E ~~, 1 we have: 

' 
((kE, E) "'<--+O exp(Z(kf., E)) 

where 
exp(Z(x, E))= exp(8(x + E, E))- exp(8(x, E)) 

PROOF. Fix E > 0 and let I= [a, b]. Consider a natural number k such that 
kE E I and (k + 1)E E I. This is equivalent to k1 ~ k ~ k2 where k1 and k2 are 
natural numbers that depend on E and I, although we do not indicate this in our 
notation. 

Then equation (37) implies that 

((k1E, E) 8((k1 + 1)E, E)- 8(k1E, E) 
(((k1 + 1)E, E) 8((k1 + 2)E, E)- 8((k1 + 1)E, E) 
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Summing up, we obtain that 
k2-1 

O(k2E, E)= O(ktE, E)+ L ((jE, E). 
j=kl 

Choose initial conditions so that O(k1E, E) = exp(Z(ktE, E)). This completes part 
(a). 

Part (b) follows by a telescoping calculation. 0 

To finish the proof of Proposition 5.4, it suffices to show that the solution ( of 
Lemma 5.6 is asymptotic to the formal solution 0 of Lemma 5.5. 

Since 

and 
exp(Z(kE, E))= exp(S((k + 1)E, E))- exp(8(kE, E)) 

it follows by the definition of (} given in Lemma 5.6 and by a telescopic sum, that: 

= 
k-1 

O(ktE, E)+ L ((jE, E) 
j=kl 

k-1 
"'e-+O O(ktE, E)+ L (exp(S((j + 1)E, E))- exp(S(jE, E))) 

j=l 

O(ktE, E)+ exp(8(kE, E))- exp(S(kE, E)) 
exp(8(kE, E)) 

This concludes the proof of Proposition 5.4. 0 

5.3. The solutions form a locally fundamental set. Let us summarize 
what we have obtained so far. 

Consider a partition I = UpEPip of I = [xo, xp] given by Ip = [xp, Xv+tl for 
p = 1, ... , P- 1, and consider a permutation ap of {1, ... , d} such that 

I.Aup(1)(x)l ~ I.Aup(2)(x)l ~ · · · ~ I.Aup(d)(x)l for all x E Ip. 

We have constructed solutions smooth functions ci>m for m = 1, ... , d with asymp-
totic expansion given by (10) and (11). 

Let us define 

(38) 
where cPm are smooth functions with asymptotic expansions as in Equations (10) 
and (11). 

Moreover, we have shown that for every interval Ip (as in the discussion prior 
to Theorem 3), 

{ 1/J1 (kf, E), ... , 1/Jd(kE, E)} 
is a set of solutions of (8) when kE E Iv· 

Fix a solution 1/J(kE, E) of (8) and an interval Ip. The following lemma certainly 
implies that {1/Jt, ... , 1/Jd} is a locally fundamental set of solutions of (8). This 
concludes the proof of Theorem 3. 0 

In addition, the next lemma motivates the definition of a regular solution, given 
in the following section. 

Licensed to Max-Planck Institut fur Mathematik.  Prepared on Tue Mar 17 18:04:53 EDT 2020for download from IP 195.37.209.189.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/publications/ebooks/terms
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LEMMA 5.7. (a) Fix 'lj; and Iv as above. Then, there exist smooth functions c~ 
such that 

(39) 

for all kE E Iv· 
(b) Moreover, for every p and m = 1, ... , d we have 

(4Q) ~(E)= 'l/Jcrp-l(m)(X~f.- f., E) "(~(E) 
'l/Jcrp(m)(X~E, E) 

for some smooth functions"(~, with the understanding that 'l/Jcr_ 1 (m) = 1. Here [x] 
is the largest integer smaller than x, and 

X~= [X:] + 1. 

PROOF. Without loss of generality, let us assume that ap(j) 
1, ... , d. Equation (39) is a linear equation in c~, with solutions 

j for j 

det Wm(x~, E) 
~ (E) - --:---==:-:~-,--

m - det W(x~, E) 

where Iv = [xv, Xp+I], 

( 
.P1(x, <) 

W(x,<)= 'i>l(x+<,<) 

1/Jl(X + (d- 1)<, <) 

and 

( 
.P1(x, <) 

Wm(x, <) = 'i>l (x + <, <) 

.P1(x + (d- 1)<, <) 

1/Jm(X,<) 
1/Jm(X + <,<) 

.Pm(X + (d- 1)<, <) 

1/J(x, <) 
,P(x + <, <) 

.P(x + (d- 1)<, <) 

'i>d(x, <) ) 
'i>d(x + <, <) 

'i>d(x + (d- 1)<, <) 

'i>d(x, <) ) 
'i>d(x + <, <) 

'i>d(x + (d- 1)<, <) 

where the 'lj;'s are in the mth column of Wm. 
We will show that for small enough E, W(x, E) is nonsingular. 
Using Equations (38), (10) and (11), it follows that 

det(exp(j¢~(x))) + O(E) 

det(-\m(x)i) + O(E) 

±IT (-\i(x)- Aj(x)) + O(E) 
iof.j 

uniformly in x, where Am are the eigenvalues of (8). Since (8) is regular, its eigen-
values never collide. 

Similarly, using Equation (38), we have: 

_ 1 det(Wm(x;e, e)) = det Bm,o(x;e, e)+ O(e) 
'lPI(XpE, e) ... 'l/!m(Xpe, e) ... 'l/!d(Xpe, e) 

where 

( 
AI(x)-1 
-\1(x)1-j 

AI(x)d-1-J 

'lj;(x, E) 
'lj;(x + E, E) 

'lj;(x + (d- 1)E, E) 

Ad(x)-1 ) 
Ad(x)l-j 

Ad(x)d-l-J 
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where the 'lj;'s are in the mth column of Bm,j· Thus, 

(41) ~(E)= 1 det(Bm,o(x~E, E)) + O(E). 
'1/Jm(X~E, E) TI#m Aj(X~E)- Am(X~E) 

The idea now is to move the recursion relation backwards d times. Using the 
solution 'lj;(kE, E) for kE E lp-1 will allow us to compute the smooth functions c~. 

In detail, consider the matrix Bm,o(x~E, E) and move the recursion relation 
backwards once. Using Equation (27) and the fact that the the jth column of 
Bm,j(x~, E) for j =f. m is an eigenvector of A(x~E, E) (up to O(E)) with eigenvalue 
Aj(X~E), it follows that 

Bm,o(X~E, E)= A(x~E, E)Bm,1(X~E- E, E)+ O(E). 

Iterating d - 1 more times, it follows that 

Bm,o(X~E, E)= A(x~E, E) ... A(x~E- (d- 1)E, E)Bm,d(X~E- dE, E)+ O(E). 

Since x~E- dEE lp-1, it follows (as in the computation of Wm(x, E) above) that: 

· det 

A1(X~E- E) 1-d 

A1(X~E- E) 2-d 

'lj!"p- 1 (m) (x~E-dE,E) 
1/Jup_ 1 (m) (X~E-E,E) 

1/Jup_ 1 (m) (x~E+(1-d)E,E) 
1/Jup_ 1 (m) (x~E-E,E) 

1/Jup_ 1 (m) (X~E-E,E) 
1/Jup_ 1 (m) (X~E-E,E) 

Ad(X~E- E) 1-d 

Ad(X~E- E) 2-d 

= 'l/Juv_ 1 (m)(X~E- E, E) II (\- 1 (x~E- E)- Aj 1 (x~E- E)) 
i#j,#m 

· II (Ai 1 (x~E- E)- A,;P 1_ 1 (m)(x~E- E))+ O(E). 
i#m 

This, together with Equation (41) proves (40). 

6. Regular solutions and their asymptotics 

0 

In this section we discuss regular solutions of q and E-difference equations and 
their asymptotics. 

6.1. Regular solutions to E-difference equations. According to Lemma 
5.7, a solution 'lj; to (8) determines a collection S = {SpiP E P} of subsets of 
{1, ... , d}, where 

Sp ={mE {1, ... ,d}lf:;, =/:- 0}. 

DEFINITION 6.1. Fix a collection S = {Bpi pEP} of subsets of {1, ... , d}. We 
say that a solution 'lj; of a regular equation (8) is S-regular iff for every p E P we 
have: 

• 1:;, = 0 if m f/_ SP" 
• ,:;, are not fiat at 0 for all m E Sp. That is, some derivative of~~ atE= 0 

does not vanish. 
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• For every p E P there exists an element ry(p) E Sp such that 

I>-7J(p)(x)l > I.Aj(x)l for all j E Sp- {ry(p)}, x E Interior(Ip)· 

In other words, in the interior of the interval lp, and among the eigen-
values Aj(x) for j E Sp, there is a unique eigenvalue of strictly maximum 
magnitude. 

We will say that a solution to (3) is regular if it is S-regular for some S. 

6.2. Asymptotics of regular solutions of €-difference equations. 

PROOF. (of Theorem 4) Let 1/J be an S-regular solution to (8). Let us assume 
that S = {1, ... , d}, and I.A1(x)l > 1>-m(x)l form= 2, ... , d and all x in the interior 
Interior(!) of the closed interval I= [0, b]. Fix an x E I. 

Then, we have: 

1/J(x, E)= c1(E)1/J1(x, E)+···+ cd(E)'l/Jd(x, E). 

for x = kE, where c1(E) = C1En1 + 0(En1+1), and c1 =f. 0. 
Then, we have: 

(43) 

Recall from Theorem 3 that 

1/Jm(x, E) 
<I>m(x, E) 
<I>~,o(x) 

exp(E-1<I>m(x, E)) 

<I>m,o(x) + O(E) 
log Am(x). 

Thus, 
Re( <I>m,o)' (x) = Re(log Am(x)) =log 1>-m(x)l. 

Combined with 1>-m(x)l < I.X1(x)l form~ 2, and <I>m,o(O) = 0 = <I>1,o(O), it follows 
that 

for all x E I and 
Re(<I>m,o)(x) < Re(<I>l,o)(x) 

Re(<I>l,o)(x) =fox log I.X1(t)ldt. 

Therefore, 

lim ( 1 + t Cj(E) 1/Jm(x, E)) = 1. 
e---+O+ m=2 C1 ( €) 1/J1 (X, €) 

and 
lim dog ic1(E)I = 0. 

€---+0+ 

Thus, Equation (43) implies that 

lim dog 11/J(x, E)l lim dog I1/J1(x, E)l 
€---+0+ €---+0+ 

lim dog I exp(E-1<I>m(x, E))l 
€---+0+ 

lim dog I exp(E-1<I>m(x, 0) + 0(1))1 
€---+0+ 

Re(<I>1,o(x)) 

fox log I.A1(t)ldt 
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The result follows. 
In the general case, we partition the interval Ip as in the discussion prior to 

Theorem 3 and repeat the above proof using Equation ( 44). The result follows. D 

6.3. Asymptotics of regular solutions of q-difference equations. First, 
we need to define what is a regular solution to a q-difference equation. 

Consider a solution 7/J of a q-difference equation and a partition of 8 1 as in 
Section 1.8. Then, at each interval Ip, we can write the solution as a linear combi-
nation of fundamental solutions, as in Equation (4). Let Sp be the indexing set of 
the fundamental solutions that we use in each interval Ip; see (6). 

Suppose that the partition of 8 1 is given by Ip = [e27rixv, e27rixv+l] for p = 
0, ... ,P -1, with q0 = 1, qp = e21ri. 

(44) 

Then, with q = e27ri< it turns out that for every p and m = 1, ... , d we have 

d.: ( )= 7/Jap-l(m)(X~E-E,E) P() 
m q .1, ( < ) 'Ym q 

'f"av(m) XPE' E 

for some smooth functions"(~, with the understanding that 7/Ja_ 1 (m) = 1. 

DEFINITION 6.2. Fix a collection S = { Svl pEP} of subsets of {1, ... , d}. We 
say that a solution 7/J of a regular equation (3) is S-regular iff for every p E P we 
have: 

• 'Y~ = 0 if m rj. Sv-
• 'Y~ are not fiat at 0 for all m E Sp. That is, some derivative of 'Y~ atE= 0 

does not vanish. 
• For every p E P there exists an element ry(p) E Sp such that 

IA1 (p)(v)l > l.\j(v)l for all j E Sp- {'Y(p)}, v E Interior(Ip)· 
In other words, in the interior of the interval Ip, and among the eigen-
values Aj(v) for j E Sp, there is a unique eigenvalue of strictly maximum 
magnitude. 

We will say that a solution to (3) is regular if it is S-regular for some S. 

PROOF. (of Theorem 2) It follows from Equation (14) of Lemma 2.7 and The-
orem 4. D 

7. Applications to Quantum Topology 

7.1. The A-polynomial of a knot and its noncommutative version. 
In this section we discuss general features of q-difference equations for the colored 
Jones function of a knot. 

The coefficients of the q-difference equations are rational functions of q and 
qn = Q. In order to simplify the typesetting, we will give the q-difference equation 

d 

in operator form 
(45) 
where 

L bj(qn, q)f(n + j) = 0 
j=O 

Pf=O 

d 

p = Lbj(Q,q)Ej 
j=O 
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and where the operators E, Q and q, act on a discrete function f: N --t Z[q±] by 

(qf)(n) = qf(n) (Qf)(n) = qn f(n) (Ef)(n) = f(n + 1). 
Note that q commutes with Q and E, and that EQ = qQE. 

It follows by definition that the characteristic polynomial chP(v, .A) of (45) is 
obtained from P by setting q = 1, replacing (E, Q) by (.A, v). In other words, we 
have: 

d 

chP(v,.A) = L)3(v,1).A3. 
j=O 

In [Gal], the first author showed that the colored Jones function JK of a knot 
K satisfies an essentially unique smallest degree q-difference equation PK J K = 0 
where the coefficients a3 ( u, v) of PK are rational functions of u and v with rational 
coefficients. 

In [Gal], the operator PK was called the non-commutative A-polynomial of K. 
In [Gal], it was conjectured that: 

CoNJECTURE 1. (AJ Conjecture) Up to a multiplication by a polynomial in v, 
we have 

chPK(.A, v) = AK(L, M)i(L,M2)=(A,v) 

where AK is the A-polynomial of K, defined by [CCGL8]. 

The A-polynomial of K parametrizes the moduli space of characters of SL2(C) 
representations of 1r1 (83 - K), restricted to the boundary torus oM. The A-
polynomial of a knot is an important ingredient to the Geometrization of the knot 
complement and its Dehn fillings. 

The A-polynomial AK of a knot K in 8 3 satisfies symmetries, which we will 
list here, and refer to [CCGL8] and [CL] for proofs. 

(81) It has integer coefficients and even powers of M, that is 
AK(L,M) E Z[L,M2]. 

(82) It is reciprocal, that is, AK(L-1 ,M-1 ) = ±LkM1A(L,M). 
(83) It is tempered, that is the edge polynomials of its Newton polygon are 

cyclotomic. 
(84) It specializes to 

AK(L, 1) = ±(L -1t+(£ + 1)n-

for some integers n±. 
{85) L- 1 is always a factor of AK, that corresponds to U(1) representations. 
If the colored Jones function of a knot was an 8-regular solution to a regular 

q-difference equation, and if the AJ Conjecture were true, then it follows that for 
every a E [0, 1] we have: 

(46) 1. log IJK(n)(e¥)1 J ( ) A ( ) 
1m =asK a =asK a 

n~oo n , ' 
where a: K is the A-entropy of a knot, defined as follows. 

' 
DEFINITION 7.1. For a knot Kin 8 3 , let L3(t) for j = 1, ... ,d denote the roots 

of the equation 
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for t E [0, 21r], where d is the £-degree of AK. Fix a partition UpE'Plp of [0, 21r] 
by closed intervals with nonoverlapping interiors and a permutation ap of the set 
{1, ... , d} such that 

\Lav(1)(t)\ ~ \Lav(2)(t)\ ~ · · · ~ \Lav(d)(t)\ for all t E Ip. 

For every collection S = { Sp I p E P} of subsets of { 1, ... , d}, we can define the 
S-entropy 

by 
1 {2-rr 

a:,K(a) = 21!" Jo logxs(at)dt, 

where xs : [0, 1] --+IRis defined by 

xs(t) = n~ !Lav(j)(t)! if 

It is natural to ask how the A-entropy of a hyperbolic knot (evaluated at a= 1) 
compares to the Hyperbolic Volume. The answer to this question is essentially 
contained in work of D. Boyd, [Bo], which we quote without proof here. We urge 
the reader to look in [Bo] for beautiful and suggestive calculations. 

Boyd introduced and studied another invariant of a knot, the Mahler measure 

mK = r log IAK(x, y)!dxdy 
Js1xs1 

Using Jensen's formula, and the symmetry (83), it follows that 

d {21r 

21l"mK = L Jo log+ !Lj(t)!dt 
j=O 0 

where log+(a) = logmax{1, a}. 
Using (82), it follows that 1/Lj(t) is an eigenvalue for every eigenvalue Lj(t). 
More generally, among the roots Lj(t) there is a distinguished one, Lt, corre-

sponding to the discrete faithful representation when t = 21r. Let Ld(t) = 1 denote 
the eigenvalue corresponding to the U(1) representations. Boyd informs us that for 
2-bridge knots K (in particular, for the 31 and 41 knots), it is true that 

af1,d},K(1) = volK. 

It follows by (84) that the eigenvalues collide at t = 0. Moreover, Boyd informs 
us that for 2-bridge knots there exists a to E (0, 1r) such that \Lj(t)! = 1 for all j 
and all t : t0 < t < 1r. 

Thus, if we want to apply Theorem 1 to the GHVC, we need to deal with 
irregular q-difference equations. We will discuss this topic in detail in a later pub-
lication. 

Meanwhile, let us discuss some examples, taken from [Gal]. 

7.2. Examples: The 31 and 41 knots. In this section we discuss in detail 
q-difference equation of the the colored Jones function of the two simplest knots, 
namely the trefoil 31 and the figure eight 41. The former is not hyperbolic, and the 
latter is. 
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In [Gal], the first author computed that the colored Jones function J31 (resp. 
J4J satisfies the second (resp. third) order q-difference equation 

resp. 

where the noncommutative A-polynomials P31 and P41 are given by: 

q3Q2(q2 - q2Q) 

q3- q4Q2 

(q- q2Q)(q + q2Q)(q4- q5Q + q6Q2- q7 Q2- q7 Q3 + q8Q4) 
+ q2Q(q _ q4Q2)(q3 _ q4Q2) E 

-1 +q2Q 2 
+ Q(q _ q4Q2) E 

q5Q(-q3 + q3Q) 

(q2 + q3Q)(-q5 + q6Q2) 

-(q2- q3Q) 

(qB _ 2q9Q + qlOQ _ q9Q2 + q10Q2 _ q11Q2 + q10Q3 _ 2q11Q3 + q12Q4) 

. q5Q(q + q3Q)(q5 _ q6Q2) E 

+(-q + q3Q) 

. (q4 + q5Q _ 2q6Q _ q7 Q2 + qBQ2 _ q9Q2 _ 2qlOQ3 + q11Q3 + q12Q4) E 2 
q4Q(q2 + q3Q)(-q + q6Q2) 

+ q4Q(-1 + q3Q) E3 
(q + q3Q)(q- q6Q2) 

If we wish, we may clear denominators in P31 and P41 • It follows that the charac-
teristic polynomials are given by: 

(L- l)(L + M3 ) 

M(l+M) 
(L -l)(L- LM- M 2 - 2LM2 - £ 2 M 2 - LM3 + LM4 ) 

M(l +M)2 

Inspection shows that P31 and P41 are not regular. Nevertheless, let us try to 
compute the S-entropy. 

For the case of 31, we have ILi(t)l = 1 for j = 1, 2, 3 and in this case 

a~ 31 (1) = voh1 = 0 

for all S. 
For 41 knot, we have 3 eigenvalues L1(t), L2(t) = l/L1(t) and £3(t) = 1. As-

suming appropriate choices for the branches of the eigenvalues, the plot of log l£1 (t) I 
and logiL2(t)l = -logiL1(t)l fortE [0,27r] is given by: 

3 4 

-0.5 

-1 
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and 

1 

0.5 

3 4 

It follows that 

0"?1,3},41 (1) = vol(41) = 2.029883 0"6,2,3},41 (1) = 2vol41 = 4.05977. 

Since the HVC is true for the 41 knot, it suggests that the colored Jones function 
lies in a strictly smaller subspace of the vector space of solutions to the q-difference 
equation PKJK = 0. Using work of Murakami [Mu], one can figure out exactly the 
selection principle; that is which locally fundamental solutions contribute to the 
colored Jones function. 

Note that the associated q-difference equation of the 41 knot has the following 
features: of collision, resonance and vanishing: 

• The eigenvalues collide at t = 0 (since £ 1(0) = £ 1(0) = -1), at t = 7f/3 
(since L1(7r/3) = L1(7r/3) = -1) and by symmetry at t = 27f/3 and 
t = 27f. 

• There is resonance on the interval [1r /3, 27f /3] where all three eigenvalues 
have equal magnitude. 

• There is vanishing of the coefficients at t = 1r /2 (since the denominator 
M + 1 of the coefficients is singular at t = 7f/2). 

Moreover, there is an additional difficult problem of selection principle. 
We plan to study these problems in later publications. 
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