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The 0-instanton solution of Painlevé I is a sequence (un,0) of complex numbers which

appears universally in many enumerative problems in algebraic geometry, graph the-

ory, matrix models, and 2-dimensional quantum gravity. The asymptotics of the

0-instanton (un,0) for large n were obtained by the third author using the Riemann–

Hilbert approach. For k= 0,1,2, . . . , the k-instanton solution of Painlevé I is a doubly

indexed sequence (un,k) of complex numbers that satisfies an explicit quadratic nonlin-

ear recursion relation. The goal of the paper is three-fold: (a) to compute the asymptotics

of the 1-instanton sequence (un,1) to all orders in 1/n by using the Riemann–Hilbert

method, (b) to present formulas for the asymptotics of (un,k) for fixed k and to all orders

in 1/n using resurgent analysis, and (c) to confirm numerically the predictions of resur-

gent analysis. We point out that the instanton solutions display a new type of Stokes

behavior, induced from the tritronquée Painlevé transcendents, and which we call the

induced Stokes phenomenon. The asymptotics of the 2-instanton and beyond exhibits

new phenomena not seen in 0 and 1-instantons, and their enumerative context is at

present unknown.
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562 S. Garoufalidis et al.

1 Introduction

1.1 The Painlevé I equation and its 0-instanton solution

The Painlevé I equation

− 1
6 u′′ + u2 = z (1.1)

is a nonlinear differential equation with strong integrability properties that appears

universally in various scaling problems; see, for example [15]. The formal power-series

solution

u0(z)= z1/2
∞∑

n=0

un,0z−5n/2 ∈ z1/2
C�z−5/2� (1.2)

and correspondingly the sequence (un,0) is the so-called 0-instanton solution of Painlevé

I. Substituting (1.2) into (1.1) collecting terms, and normalizing by setting u0,0 = 1,

implies that (un,0) satisfies the following quadratic recursion relation:

un,0 = 25(n− 1)2 − 1

48
un−1,0 − 1

2

n−1∑
�=1

u�,0un−�,0, u0,0 = 1. (1.3)

The 0-instanton solution (un,0) of Painlevé I is a sequence which plays a crucial role in

many enumerative problems in algebraic geometry, graph theory, matrix models, and

2-dimensional quantum gravity; see, for example [11, 16, 17]. The leading asymptotics

of the 0-instanton sequence (un,0) for large n was obtained by the third author using the

Riemann–Hilbert approach; see [22]. In [20] (see also [16, Appendix A]), asymptotics to

all orders in n were obtained as follows:

un,0 ∼ A−2n+1/2Γ

(
2n− 1

2

)
S1

πi

{
1 +

∞∑
l=1

ul,1 Al∏l
k=1(2n− 1/2 − k)

}
, n→ ∞. (1.4)

In this expression, ul,1 are the coefficients of the 1-instanton series (defined below), A is

the instanton action

A= 8
√

3
5 (1.5)

and

S1 = −i
31/4

2
√
π

(1.6)

is a Stokes constant.
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Asymptotics of the Instantons of Painlevé I 563

1.2 The Painlevé I equation and its k-instanton solution

In this paper, we study the asymptotics of the k-instanton solution of (un,k) the Painlevé

I equation. The doubly indexed sequence (un,k) for n,k= 0,1,2, . . . can be defined con-

cretely by the following quadratic recursion relation: for k= 1, we have

un,1 = 8

25An

{
12

n−2∑
l=0

ul,1u(n+1−l)/2,0 − 25

64
(2n− 1)2un−1,1

}
, u0,1 = 1, (1.7)

while for general k≥ 2 we have

un,k = 1

12(k2 − 1)

{
12

n−3∑
l=0

ul,ku(n−l)/2,0 + 6
k−1∑
m=1

n∑
l=0

ul,mun−l,k−m

− 25

64
(2n+ k − 4)2un−2,k − 25

16
Ak(k + 2n− 3)un−1,k

}
. (1.8)

It is understood here that un/2,0 = 0, if n is not an even integer.

The above recursion defines un,k in terms of previous un′,k′ for n′ <n or n′ = n and

k′ < k. The paper is concerned with the asymptotics of the sequence (un,k) for fixed k and

large n. As we shall see, resurgence analysis predicts that the asymptotics of (un,k) to all

orders in 1/n is given in terms of three known sequences (ul,k±1), (μl,k±1), and (φl,k−1) and

two Stokes constants S1 and S−1; see Equation (1.15). The first constant S1 is known from

the asymptotics of the 0-instanton (un,0) and the second one appears in the asymptotics

of (un,k) for k≥ 2 and its exact value is unknown at present. Two new features appear

in the asymptotics of (un,k) for k≥ 2: the constant S−1 and the presence of log n terms.

These features are absent in the asymptotics of (un,0) and (un,1).

Equation (1.8) defines but does not motivate the k-instanton solution (un,k) to

the Painlevé I equation. The motivation comes from the so-called trans-series solution

of the Painlevé I equation. Trans-series were introduced and studied by Écalle in the

1980s; [12–14]. The trans-series solution u(z,C ) of the Painlevé I equation is a formal

power series in two variables z and C that is defined as follows. Substitute the following

expression

u(z,C )=
∑
k≥0

C kuk(z) (1.9)
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564 S. Garoufalidis et al.

into (1.1) and collect the coefficients of C k. It follows that uk(z) satisfy the following

hierarchy of differential equations, which are nonlinear for k= 0, linear homogeneous

for k= 1, and linear inhomogeneous for k≥ 2:

− 1
6 u′′

0 + u2
0 = z

−1

6
u′′

k +
k∑

k′=0

uk′uk−k′ = 0, k≥ 1.
(1.10)

uk(z) is known as the k-instanton solution of (1.1), and it has the following structure:

uk(z)= z1/2e−kAz5/4
φk(z), (1.11)

where A is given in (1.5) and

φk(z)= z−5k/8
∑
n≥0

un,kz−5n/4. (1.12)

Since C is arbitrary we can normalize

u0,1 = 1. (1.13)

This motivates our definition of (un,k). The trans-series (1.9) is what is called a proper

trans-series, in the sense that all the exponentials appearing in it are small when z→ ∞
along the direction Arg(z)= 0. Therefore, the instanton solutions uk(z) give exponentially

small corrections to the asymptotic expansion (1.2) and they can be used to construct

actual solutions of the Painlevé I equation in certain sectors; see [4].

The instanton solutions of Painlevé I also have an important physical interpre-

tation in the context of two-dimensional quantum gravity and noncritical string theory.

As is well known (see, for example [11] and references therein), the Painlevé I equation

appears in the so-called double-scaling limit of random matrices with a polynomial

potential, and it is interpreted as the equation governing the specific heat of a noncriti-

cal string theory. The asymptotic expansion of the 0-instanton solution (1.2) is nothing

but the genus or perturbative expansion of this string theory, and z−5/4 is interpreted as

the string coupling constant. The instanton solutions to Painlevé I correspond to non-

perturbative corrections to this expansion. In the context of matrix models, they can be

interpreted as the double-scaling limit of matrix model instantons, which are obtained
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Asymptotics of the Instantons of Painlevé I 565

by eigenvalue tunneling [10, 23]. In the context of noncritical string theory, they are

due to a special type of D-branes called ZZ branes [1, 24]. The asymptotic behavior of

the k-instanton solution is then important in order to understand the full nonperturba-

tive structure of these theories.

1.3 The predictions of resurgence for the k-instanton asymptotics

Our paper consists of three parts.

(a) A proof of the all-orders asymptotics of the 0 and 1-instantons of Painlevé

I, using the Riemann–Hilbert approach.

(b) A resurgence analysis of the k-instantons of Painlevé I and their asymptotics

to all orders.

(c) A numerical confirmation of the predictions of the resurgence analysis.

In this section, we state the predictions of resurgence analysis for the asymptotics of

(un,k) for fixed k and large n. Recall from Equation (1.4) that the 1/nk asymptotics of (un,0)

involve the 1-instanton u�,1 for �≤ k, and a Stokes constant S1. Likewise, the asymptotics

of (un,k) for fixed k≥ 1 and large n involves two auxilliary doubly indexed sequences

(μn,k) and (νn,k) and two Stokes constants S1 and S−1. The sequence (νn,k) is proportional

to the instanton sequence

νn,k =

⎧⎪⎨
⎪⎩

16

5A
kun,k, k> 0,

0, k= 0.
(1.14)

The sequence (μn,k) is defined by

μn,1 = (−1)nun,1,

μ2n,2 = −
n−2∑
l=0

μ2l,2un−l,0 −
2n∑

l=0

(−1)lul,1u2n−l,1 + 25

192
(2n− 1)2μ2(n−1),2,

μ2n+1,2 = 0,

μn,3 = 8

25A(n+ 1)

{
−25

64
(2n+ 1)2μn−1,3 + 12

n−2∑
l=0

u(n+1−l)/2,0μl,3

+ 12
2∑

m=1

n+1∑
l=0

un+1−l,mμl,3−m + 25

16
(2n+ 1)νn,1 + 25A

8
νn+1,1

}
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566 S. Garoufalidis et al.

for k= 1,2,3, and by

μn,k = 1

12(k − 1)(k − 3)

{
12

n−3∑
l=0

μl,ku(n−l)/2,0 + 12
k−1∑
m=1

n∑
l=0

μl,mun−l,k−m − 25

64
(2n+ k− 4)2μn−2,k

− 25

16
Ak(k + 2n− 3)μn−1,k + 25

16
(k + 2n− 4)νn−1,k−2 + 25A

8
(k − 2)νn,k−2

}

for k≥ 4. We apologize for the lengthy formulas that define the doubly indexed sequences

(μn,k) and (νn,k). As in Section 1.2, there is a simple resurgence analysis explanation of

these sequences given in detail in Section 4. An analysis based on trans-series solutions

and resurgent properties suggests the following asymptotic result for the coefficients

un,k, for fixed k≥ 1, in the limit n→ ∞:

un,k ∼n A−n+1/2 S1

2πi
Γ

(
n− 1

2

)

×
{
(k + 1)u0,k+1 + (−1)nμ0,k+1 +

∞∑
l=1

((k + 1)ul,k+1 + (−1)n+lμl,k+1)Al∏l
m=1(n− 1/2 − m)

}

+ (−1)n(k − 1)A−n−2/3 S−1

2πi
Γ

(
n+ 1

2

){
u0,k−1 +

∞∑
l=1

ul,k−1(−A)l∏l
m=1(n+ 1/2 − m)

}

− (−1)nA−n−1/2 S1

2πi
Γ

(
n+ 1

2

)
(log n− log A)

{
ν0,k−1 +

∞∑
l=1

νl,k−1(−A)l∏l
m=1(n+ 1/2 − m)

}

− (−1)nA−n−1/2 S1

2πi
Γ

(
n+ 1

2

)

×
{(
ψ

(
n+ 1

2

)
− log n

)
ν0,k−1 +

∞∑
l=1

ψ(n+ 1/2 − l)− log n∏l
m=1(n+ 1/2 − m)

νl,k−1(−A)l
}
, (1.15)

where

ψ(z)= Γ ′(z)
Γ (z)

is the logarithmic derivative of the Γ function; see [25]. In the above equation, the con-

vention is that un,k = νn,k = 0 for k= 0.

The above formula gives an asymptotic expansion for un,k for n large, involving

the coefficients ul,k±1, μl,k±1, and νl,k±1. Up to the overall factor A−nΓ (n+ 1/2), this expan-

sion involves terms of the form 1/nl and log n/nl . In order to get the mth first terms of
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Asymptotics of the Instantons of Painlevé I 567

this asymptotic expansion for un,k, we only need to know the coefficients ul,k±1, μl,k±1,

and νl,k±1 with l up to m. In particular, (1.15) gives an efficient method to obtain the

asymptotic behavior of the un,k for fixed k at large n.

As a concrete and important example which also clarifies the above remarks,

let us look at k= 1. In this case, only the first line of Equation (1.15) contributes and

resurgence analysis predicts that for even n, we have

u2n,1 ∼ A−2n+1/2 S1

2πi
Γ

(
2n− 1

2

){
2u0,2 + μ0,2 +

∞∑
l=1

(2ul,2 + (−1)lμl,2)Al∏l
m=1(2n− 1/2 − m)

}
, n→ ∞,

(1.16)

while for odd n we have

u2n+1,1 ∼ A−2n−1/2 S1

2πi
Γ

(
2n+ 1

2

)

×
{

2u0,2 − μ0,2 +
∞∑

l=1

(2ul,2 − (−1)lμl,2)λ
l

l∏
m=1

(2n+ 1/2 − m)

}
, n→ ∞. (1.17)

This prediction will be proved in Section 3 by using the Riemann–Hilbert approach. The

coefficients u0,2 and μ0,2 can easily be calculated from the recursion (1.8):

u0,2 = 1
6 , μ0,2 = −1. (1.18)

In fact one can obtain closed formulae for u0,k and μ0,k for all k (see (4.34) and (4.36),

respectively). The explicit result (1.18) gives the leading asymptotics,

un,1 ∼
(

1

3
− (−1)n

)
A−n+1/2 S1

2πi
Γ

(
n− 1

2

)
, n→ ∞. (1.19)

Concrete examples of the implications of (1.15) for the asymptotics of the un,k are given

in Section 5, where the formula is tested numerically.

For some partial results on the Painlevé I equation and the asymptotics of the

coefficients of the 0-instanton solution, see also [4, 5, 9]. To the best of our knowledge, a

rigorous computation of the Stokes constant S1 has only been achieved via the Riemann–

Hilbert approach [22] or its earlier version—the isomonodromy method [21, 27]. If at all

possible, a computation of the constants S1 and S−1 using resurgence analysis would be

very interesting.

D
ow

nloaded from
 https://academ

ic.oup.com
/im

rn/article-abstract/2012/3/561/807025 by M
ax-Planck-Institut fuer M

athem
atik user on 17 M

arch 2020



568 S. Garoufalidis et al.

1.4 The asymptotics of the 1-instanton solution via the Riemann–Hilbert method

Recall from Equations (1.10) and (1.11) that the generating series u1(z) of the 1-instanton

(un,1) solution to Painlevé I satisfies the differential equation

u′′
1(z)= 12u1(z)u0(z), (1.20)

where u0(z) is the generating series of the 0-instanton solution (un,0) solution to Painlevé

I. There are five explicit tritronquées meromorphic solutions of Painlevé I equation

asymptotic to u0(z) in appropriate sectors in the complex plane, discussed in Section 2.1.

To study the asymptotics of the 1-instanton (un,1), consider the linear homogenous

differential equation

v′′ = γuv, (1.21)

where γ is a constant and u is a tritronquée solution to Painlevé I. It is easy to see

that Equation (1.21) has two linearly independent formal power series solutions v±
f of

the form

v±
f (z)= z−1/8e±4(

√
γ /5)z5/4

∞∑
n=0

b±
n (γ )z

−5n/4, (1.22)

where b±
n = b±

n (γ ) is given by

b±
n = 1

2n

⎧⎨
⎩5b±

n−1

4
√
γ

(
n− 1

10

)(
n− 9

10

)
∓ 4

√
γ

5

[(n+1)/2]∑
m=1

um,0b±
n+1−2m

⎫⎬
⎭ , b±

0 = 1. (1.23)

Note that b±
n (γ ) is a polynomial in γ 1/2 and b−

n (12)= un,1. The next theorem gives the

asymptotic expansion of b−
n when γ > 3. Let

B = 4
5

√
γ . (1.24)

Theorem 1.1. For n large and γ > 3, we have

b−
n (γ )=

4 · 31/4

25π3/2

A(1 + (−1)n)− 2B(1 − (−1)n)

4B2 − A2
γ A−n−1/2Γ

(
n− 1

2

)
(1 + O(n−1)). (1.25)

�

The proof of the theorem uses explicitly the five tritronquées solutions of

Painlevé I equation and the asymptotic expansion of their difference in five sectors

of the complex plane, computed by the Riemann–Hilbert approach to Painlevé I. An

analytic novelty of Theorem 1.1 is the rigorous computation of a Stokes constant which

is independent of γ , when γ > 3.
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Asymptotics of the Instantons of Painlevé I 569

Remark 1.1. There are two special values of γ in Equation (1.21). When γ = 12 and v is

a solution of Equation (1.21), it follows that v is the 1-instanton solution of Painleve I

and Theorem 1.1 implies Equations (1.16) and (1.17). When γ = 3/4 and v is a solution of

(1.21), then ṽ= −2v′/v is a solution of the Riccati equation

2ṽ′ − ṽ2 + 3u= 0 (1.26)

studied in [17]. �

2 Asymptotics of the 0-instanton of Painlevé I

In this section, we review and extend the calculation of the asymptotics of the 0-

instanton sequence (un,0) presented in [22]:

(a) Use the five tritronquée solutions to Painlevé I and their analytic properties

obtained by the Riemann–Hilbert method, as an input.

(b) No two tritronquée solutions are equal on a sector, however their difference

is exponentially small. Using the five tritronquée solutions and their differ-

ences, define a piece-wise analytic function in the complex plane which has

(1.2) as its uniform asymptotics in the neighborhood of infinity.

(c) Apply a mock version of the Cauchy integral formula to obtain an exact

integral formula for un,0 in terms of the jumps of the piece-wise analytic

function defined above. The knowledge of the explicit value of the relevant

Stokes’ multiplier (available due to the Riemann–Hilbert analysis) yields the

large nasymptotics of un,0. In fact, we extend the result of [22] and we obtain

the asymptotics to all orders in 1/n.

Note that this method consists of working entirely in the z-plane (and not in the Borel

plane), in all sectors simultaneously, and our glued function is only piece-wise ana-

lytic. This method is different from the method of Borel transforms analyzed in detail

in [5, 9].

2.1 A review of the tritronquée solutions of Painlevé I

In this section, to simplify our notation, we will replace un,0 by an, and use the symbol un

not for the nth term in the formal trans-series expansion, but for certain exact solutions

of the first Painlevé equation specified below.
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570 S. Garoufalidis et al.

Recall that equation PI (1.1) admits a formal 0-parameter solution with the

power expansion uf (z) (cf. (1.2)),

uf (z)= z1/2
∞∑

n=0

anz−5n/2, a0 = 1, a1 = − 1

48
, an+1 = 25n2 − 1

48
an − 1

2

n∑
m=1

aman+1−m.

(2.1)

Remark 2.1. In [22], the Painlevé I was studied in the following form:

yxx = 6y2 + x. (2.2)

The change of variables u= 62/5y and z= e−iπ6−1/5x transforms (1.1) to (2.2). Compar-

ing with [22], we also find more convenient to modify the indices for the tritronquée

solutions. �

Using the Riemann–Hilbert approach (see [15, Chapter 5.2] and also [22]), it can

be shown that there exist five different genuine meromorphic solutions of (1.1) with the

asymptotic power expansion (2.1) in one of the sectors of the z-complex plane of opening

8π/5, see Figure 1:

u0(z)∼ uf (z), z−→ ∞, arg z∈
(

−6π

5
,

2π

5

)
,

uk(z)= e−i(8π/5)ku0(e
−i(4π/5)kz)∼ uf (z), z−→ ∞, arg z∈

(
−6π

5
+ 4π

5
k,

2π

5
+ 4π

5
k
)
,

(2.3)

uk+5(z)= uk(z), (2.4)

−14π/5

−6π/5

u−2

2π/5
−6π/5

u0

−2π/5

6π/5

u1

2π/5

2π

2u

−2π

−2π/5

u−1

Fig. 1. The sectors of the z-complex plane where the tritronquée solutions (2.3) u−2, u−1, u0, u1,

and u2 are represented by the formal series uf .In the dotted sectors, the asymptotics at infinity of

the tritronquée solutions is elliptic.
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Asymptotics of the Instantons of Painlevé I 571

where in uf (z) appearing in (2.3) the branches of z1/2 and z−5n/2 are defined according to

the rule,

z1/2 =
√

|z|earg z/2, arg z∈
(

−6π

5
+ 4π

5
k,

2π

5
+ 4π

5
k
)
, z−5n/2 = (z1/2)−5n. (2.5)

The asymptotic formula (2.3) is understood in the usual sense. That is, for every ε > 0

and natural number N there exist positive constants C N,ε and RN,ε (depending on N and

ε only) such that,

∣∣∣∣∣uk(z)− z1/2
N∑

n=0

anz−5n/2

∣∣∣∣∣< C N,ε |z|−(5N+4)/2,

∀z : |z| ≥ RN,ε, arg z∈
[
−6π

5
+ 4π

5
k + ε,

2π

5
+ 4π

5
k − ε

]
.

(2.6)

Here, the branches of z1/2 and z−5n/2 are again defined according to (2.5). Estimate (2.6)

is proved in [22].

Remark 2.2. We note that estimate (2.6) implies, in particular, that each tritronquée

solution uk(z) might have in the sector [− 6π
5 + 4π

5 k + ε, 2π
5 + 4π

5 k − ε] only finitely many

poles which lie inside the circle of radius R0,ε . We also note that the number RN,ε in

estimate (2.6) can be replaced by R0,ε for every N. �

Furthermore, in [22] it is shown that the exponential small difference between

the tritronquée solutions uk(z) and uk+1(z), within the common sector where they have

the identical asymptotics uf (z) in all orders, admits the following explicit asymptotic

description:

z−→ ∞, arg z∈
(

−2π

5
,

2π

5

)
: u1(z)− u0(z)= i

31/4

2
√
π

z−1/8e−(8√
3/5)z5/4

(1 + O(z−5/4)),

z−→ ∞, arg z∈
(

−2π

5
+ 4π

5
k,

2π

5
+ 4π

5
k
)

: uk+1(z)− uk(z)

= ei(π/2)(k+1) 31/4

2
√
π

z−1/8e(−1)k+1(8
√

3/5)z5/4
(1 + O(z−5/4)).

(2.7)

Here again the asymptotic relations mean that the differences uk+1(z)− uk(z) admit the

representation,

uk+1(z)− uk(z)= ei(π/2)(k+1) 31/4

2
√
π

z−1/8e(−1)k+1(8
√

3/5)z5/4
(1 + r(z)), (2.8)
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with the error term r(z) satisfying the estimate (cf. (2.6)),

|r(z)|< Cε |z|−5/4,

∀z : |z| ≥ Rε, arg z∈
[
−2π

5
+ 4π

5
k + ε,

2π

5
+ 4π

5
k − ε

]
,

(2.9)

with the positive constants Cε and Rε depending on ε only. In fact, we can take Rε = R0,ε .

When dealing with the tritronquée solutions uk(x), it is convenient to assume

that k can take any integer value, simultaneously remembering that uk+5(x)= uk(x), see

(2.3). In other words, in the notation uk(x), we shall assume that

k∈ Z,mod 5, (2.10)

unless k is particularly specified, as in (2.16).

Remark 2.3. The existence of the tritronquée solutions uk(x) can be proved without use

of the Riemann–Hilbert method (see, e.g. [20] and references therein). Indeed, these solu-

tions had already been known to Boutroux. The Riemann–Hilbert method is needed for

the exact evaluation of the pre-exponent numerical coefficient in the jump-relations (2.7),

that is, for an explicit description of the quasi-linear Stokes’ phenomenon exhibited by

the first Painlevé equation. �

2.2 Gluing the five tritronquée solutions together

The main technical part of the approach of [22] to the 0-instanton asymptotics is a piece-

wise meromorphic function with uniform asymptotics (2.1) at infinity. This function

is constructed from the collection of the tritronqueée solutions uk(z), k= 0,±1,±2, as

follows.

First, observe that the change of independent variable z= t2 turns (2.1) into the

nonbranching series,

ûf (t) := uf (t
2)=

∞∑
n=0

ant−5n+1. (2.11)

Multiplying (2.11) by t5N−2, we obtain the formal series

û(N)f (t)≡ ûf (t)t
5N−2 = P5N−1(t)+ aNt−1 +

∞∑
n=N+1

ant−5(n−N)−1, P5N−1(t)=
N∑

n=1

aN−nt5n−1.

(2.12)
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Asymptotics of the Instantons of Painlevé I 573

Let us perform the similar operation with the solutions uk(z)

ûk(t)= uk(t
2), (2.13)

û(N)k (t)= ûk(t)t
5N−2 − P5N−1(t). (2.14)

Observe that,

û(N)k (t)= aNt−1 + ON(t
−6), t −→ ∞, arg t ∈

(
−3π

5
+ 2π

5
k,
π

5
+ 2π

5
k
)
.

The symbol ON indicates that the relevant positive constants in the estimate depend on

N. More precisely, estimate (2.6) implies that

|û(N)k (t)− aNt−1|< C N,ε |t|−6,

∀t : |t| ≥ R1/2
0,ε , arg t ∈

[
−3π

5
+ 2π

5
k + ε,

π

5
+ 2π

5
k − ε

]
.

(2.15)

Moreover, in view of Remark 2.2, we conclude that each function û(N)k (t) might have in

the sector [− 3π
5 + 2π

5 k + ε, π5 + 2π
5 k − ε] only finitely many poles whose number does not

depend on N, and they all lie inside the circle of radius R1/2
0,ε . Indeed, by (2.14), the pos-

sible poles must coincide, for every N, with the possible poles of the corresponding

function ûk(t).

Put

û(N)(t)= û(N)k (t), arg t ∈
(

−2π

5
+ 2π

5
k,

2π

5
k
)
, k= 0,±1,±2. (2.16)

These equations determine û(N)(t) as a sectorially meromorphic function û(N)(t) discon-

tinuous across the rays arg t = 2π
5 k, k= 0,±1,±2, (see Figure 2).

Let us choose and then fix the parameter ε ≡ ε0 in such a way that the closure of

each sector (− 2π
5 + 2π

5 k, 2π
5 k) is included in the corresponding sector [− 3π

5 + 2π
5 k + ε, π5 +

2π
5 k − ε]. Then, the function û(N)(t) would have no more than finitely many poles in the

whole complex plane, the number of poles would be the same for all N, and they all lie

inside the circle of radius

R0 = R1/2
0,ε0
. (2.17)
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Fig. 2. The sectorially meromorphic function û(N)(t) (2.16).

In addition, the following uniform asymptotics at infinity takes place:

û(N)(t)= aNt−1 + ON(t
−6), t −→ ∞. (2.18)

The exact meaning of this estimate is the existence of the positive constant C N(≡ C N,ε0)

such that,

|û(N)(t)− aNt−1|< C N |t|−6,

∀t : |t|> R0.

(2.19)

Here, R0 is defined in (2.17), and it does not depend on N. We also remind the reader that

the circle of radius R0 contains all the possible poles of û(N)(t).

The jumps of the function û(N)(t) across the rays arg t = 2π
5 k, k= 0,±1,±2, ori-

ented towards infinity, are described by the equations,

û(N)+ (t)− û(N)− (t)= Û (N)(t), arg t = 2π

5
k, k= 0,±1,±2, (2.20)

where û(N)+ (t) and û(N)− (t) are the limits of û(N)(t) as we approach the rays from the left

and from the right, respectively. (We note that û(N)6 (t)= û(N)1 (t), as it follows from (2.3)).

By virtue of (2.7), the jump functions Û (N)(t) satisfy the estimate,

Û (N)(t)|arg t=(2π/5)k = ei(π/2)(k+1) 31/4

2
√
π

t5N−9/4e(−1)k+1(8
√

3/5)t5/2
(1 + O(t−5/2)), (2.21)
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Asymptotics of the Instantons of Painlevé I 575

which, again, means (cf. (2.8) and (2.9)) that

Û (N)(t)|arg t=(2π/5)k = ei(π/2)(k+1) 31/4

2
√
π

t5N−9/4e(−1)k+1(8
√

3/5)t5/2
(1 + r(t)), (2.22)

with

|r(t)|< C |t|−5/2, ∀t : |t|> R0, arg t = 2π

5
k,

where the constant C (≡ Cε0), similar to R0, is a numerical constant not depending on N.

2.3 An integral formula for the 0-instanton coefficients and their asymptotic expansion

Consider the integral,
1

2πi

∮
|t|=R

û(N)(t)dt,

of the function û(N) along the circle of radius R centered at the origin and counter-

clockwise oriented. For sufficiently large R, we can apply the integrand estimate (2.19).

Noting that the constant C N is the same along the whole circle, we conclude that

1

2πi

∮
|t|=R

û(N)(t)dt = aN + ON(R
−5), (2.23)

that is, ∣∣∣∣ 1

2πi

∮
|t|=R

û(N)(t)dt − aN

∣∣∣∣< C N R−5, ∀R> R0. (2.24)

On the other hand, since û(N)(t) can have only a finite number of poles lying inside the

circle with the radius R0, the circular contour of integration can be deformed to the sum

of the circle of smaller radius |t| = ρ ≥ R0, still containing inside all the possible poles of

û(N)(t), and positive and negative sides of segments of the rays arg t = 2π
5 k (see Figure 3).

In other words, taking into account (2.20), we have that

aN = 1

2πi

∮
|t|=R�1

û(N)(t)dt + ON(R
−5)

= − 1

2πi

2∑
k=−2

∫ Rei(2π/5)k

ρei(2π/5)k
Û (N)(t)dt + 1

2πi

∮
|t|=ρ

û(N)(t)dt + ON(R
−5)

= − 1

2πi

2∑
k=−2

∫ Rei(2π/5)k

ρei(2π/5)k
Û (N)(t)dt + 1

2πi

∮
|t|=ρ

(û(N)(t)+ P5N−1(t))dt + ON(R
−5), (2.25)
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576 S. Garoufalidis et al.

Fig. 3. Deformation of the contour of integration for computation of the 0-instanton N-large

asymptotics.

where we note that the integral of the polynomial P5N−1(t) can be indeed added to the

right-hand side since it is zero. Let us now note that from definition (2.16) of the function

û(N)(t) it follows that

û(N)(t)+ P5N−1(t)= û(t)t5N−1, (2.26)

where û(t) is defined by the equations (cf. (2.16)),

û(t)= ûk(t), arg t ∈
(

−2π

5
+ 2π

5
k,

2π

5
k
)
, k= 0,±1,±2. (2.27)

By exactly the same reasons as in the case of estimate (2.19), we conclude from (2.6) that

|û(t)|< C (1)|t|, ∀t : |t|> R0, (2.28)

with a numerical constant C (1) this time independent of N. (The constant C (1) can be

taken equal to C (1) = 1 + C0,ε0

R5
0
.) Estimate (2.28), together with (2.26) implies the inequality,

|û(N)(t)+ P5N−1(t)||t|=ρ < C (1)ρ5N−1,

where ρ is assumed to be a fixed positive number satisfying

R0 ≤ ρ < R.

Therefore, formula (2.25) can be transformed into the formula,

aN = − 5

2πi

∫ R

ρ

Û (N)(t)dt + r(1)N (ρ)+ r(2)N (R), (2.29)
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Asymptotics of the Instantons of Painlevé I 577

where the error terms r(1)N (ρ) and r(2)N (R) satisfy the estimates,

|r(1)N (ρ)|< C (1)ρ5N, ∀N ≥ 1 (2.30)

and

|r(2)N (R)|< C N R−5, ∀R> R0, (2.31)

respectively. We remind the reader that the constants C N depends on N only while the

constant C (1) is a numerical constant independent of N. In derivation of (2.29), we also

took into account symmetries (2.3) which allowed us to replace the sum of integrals from

(2.25) by a single integral.

From (2.22) it follows that the integrand in (2.29) satisfies the asymptotic

equation,

Û (N)(t)|arg t=0 = ei(π/2)(k+1) 31/4

2
√
π

t5N−9/4e−(8√
3/5)t5/2

(1 + r(t)), (2.32)

with

|r(t)|< C t−5/2, ∀t : t> R0.

In particular, this means that the integral of Û (N)(t) along the half line [ρ,∞) converges.

The coefficient aN and the term r(1)(ρ) in (2.29) do not depend . Indeed, we have that

r(1)(ρ)= 1

2πi

∮
|t|=ρ

(û(N)(t)+ P5N−1(t))dt

on R while the term r(2), in view of (2.31), vanishes as R→ ∞. Therefore, sending R→ ∞
in (2.29) (and keeping N fixed) we arrive at the equation

aN = − 5

2πi

∫∞

ρ

Û (N)(t)dt + r(1)N (ρ), (2.33)

which in turn can be transformed as follows:

aN = − 5

2πi

∫∞

ρ

Û (N)(t)dt + r(1)N (ρ)− 5

2πi

∫∞

ρ

eiπ/2 31/4

2
√
π

t5N−9/4e−(8√
3/5)t5/2

dt

− 5

2πi

∫∞

ρ

(
Û (N)(t)− eiπ/2 31/4

2
√
π

t5N−9/4e−(8√
3/5)t5/2

)
dt + r(1)N (ρ)
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= −5 · 31/4

4π3/2

∫∞

0
t5N−9/4e−(8√

3/5)t5/2
dt + 5 · 31/4

4π3/2

∫ρ
0

t5N−9/4e−(8√
3/5)t5/2

dt

− 5

2πi

∫∞

ρ

(
Û (N)(t)− eiπ/2 31/4

2
√
π

t5N−9/4e−(8√
3/5)t5/2

)
dt

+ r(1)N (ρ)≡ I1 + I2 + I3 + +r(1)N (ρ). (2.34)

The first integral, I1, in the last equation reduces to the Gamma-function

integral,

I1 = −5 · 31/4

4π3/2

∫∞

0
t5N−9/4e−(8√

3/5)t5/2
dt = − 31/4

2π3/2

(
8
√

3

5

)−2N+1/2 ∫∞

0
s2N−3/2e−s ds

= − 31/4

2π3/2

(
8
√

3

5

)−2N+1/2

Γ

(
2N − 1

2

)
. (2.35)

For the second integral, I2, we have

|I2| = 5 · 31/4

4π3/2

∣∣∣∣
∫ρ

0
t5N−9/4e−(8√

3/5)t5/2
dt

∣∣∣∣≤ 5 · 31/4

4π3/2

∫ρ
0

t5N−9/4 dt

= 5 · 31/4

4π3/2

∫ρ
0

t5N−9/4 dt = 31/4

4π3/2(N − 1/4)
ρ5N−5/4 < C (2) ρ

5N

N
. (2.36)

For the third integral, I3, we use the asymptotics (2.32),

|I3|< C
5 · 31/4

4π
√
π

∫∞

ρ

t5N−19/4e−(8√
3/5)t5/2

dt< C (3)Γ

(
2N − 3

2

)
+ C (4) ρ

5N

N
, (2.37)

where the constants C ( j), j = 2,3,4 are positive constants which do not depend on N.

Equation (2.35) and estimates (2.36), (2.37), and (2.30) mean that

aN = − 31/4

2π3/2

(
8
√

3

5

)−2N+1/2

Γ

(
2N − 1

2

)
(1 + O(N−1))+ O(ρ5N), (2.38)
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Asymptotics of the Instantons of Painlevé I 579

as N → ∞. This, in turn, implies the following expression for the leading term of the

large N asymptotics of the coefficient aN .

aN == − 31/4

2π3/2

(
8
√

3

5

)−2N+1/2

Γ

(
2N − 1

2

)
(1 + O(N−1)), N −→ ∞. (2.39)

Equation (2.39) provides us with the leading term of the large n asymptotics of

an ≡ un,0. In order to reproduce the whole series (1.4) we note that the Riemann–Hilbert

analysis of the tritronquée solutions yields in fact the full asymptotic series expansion

for the differences between the tritronquée solutions. This means the following exten-

sion of the estimates (2.7):

uk+1(z)− uk(z)∼ ei(π/2)(k+1) 31/4

2
√
π

z−1/8e(−1)k+1(8
√

3/5)z5/4

(
1 +

∞∑
n=1

cnz−5n/4

)
,

z−→ ∞, arg z∈
(

−2π

5
+ 4π

5
k,

2π

5
+ 4π

5
k
)
,

(2.40)

with some coefficients cn. In its turn, asymptotics (2.40) implies that

Û (N)(t)|arg t=(2π/5)k = ei(π/2)(k+1) 31/4

2
√
π

t5N−9/4e(−1)k+1(8
√

3/5)t5/2

(
1 +

m∑
n=1

cnt−5n/2 + O(t−5(m+1)/2)

)
.

(2.41)

Therefore, the integral of Û (N)(t) along the half-line (ρ,∞) can be estimated (We omit

the routine technical details which are similar to the ones carefully presented in the

derivation of (2.39)) as follows:

∫∞

ρ

Û (N)(t)dt

= −S1

(
m∑

n=0

cn

∫∞

ρ

e−At5/2
t5N−5n/2−9/4 dt+O

(∫∞

ρ

e−At5/2
t5N−5(m+1)/2−9/4 dt

))

= −2

5
S1

(
m∑

n=0

cnA−2N+n+1/2
∫∞

Aρ5/2
e−tt2N−n−3/2 dt + O

(
A−2N+m+3/2

∫∞

Aρ5/2
e−tt2N−m−1−3/2 dt

))

= −2

5
S1

(
m∑

n=0

cnA−2N+n+1/2Γ

(
2N − n− 1

2

)
+ O

(
A−2N+m+3/2Γ

(
2N − m − 3

2

)))

+ O(ρ5N−5/4)
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= −2

5
A−2N+1/2Γ

(
2N − 1

2

)
S1

(
1 +

m∑
n=1

cnAn∏n
k=1(2N − 1/2 − k)

+O
(

Am+1∏m+1
k=1 (2N − 1/2 − k)

))

+ O(ρ5N−5/4)

= −2

5
A−2N+1/2Γ

(
2N − 1

2

)
S1

{
1 +

m∑
n=1

cnAn∏n
k=1(2N − 1/2 − k)

+ O(N−m−1)

}
. (2.42)

Here, m is arbitrary but fixed and all the constants in the error terms depend on m and

ρ (which is also fixed) only. We have also used our standard notations

A= 8
√

3

5
, S1 = −i

31/4

2
√
π
, c0 = 1.

Substituting (2.42) into (2.33), we arrive at the final estimate for aN ,

aN = A−2N+1/2Γ

(
2N − 1

2

)
S1

πi

{
1 +

m∑
n=1

cnAn∏n
k=1(2N − 1/2 − k)

+ O(N−m−1)

}
. (2.43)

To complete the proof of the 0-instanton asymptotics (1.4), we need to identify the coef-

ficients cn as the 1-instanton coefficients un,1. To this end, it is enough to note that the

difference, v(z)≡ uk+1(z)− uk(z), of the tritronquée solutions satisfies the linear differ-

ential equation,
v′′ = 6v(uk+1 + uk). (2.44)

Since both uk and uk+1 have the same power-series expansion in the relevant sectors,

we conclude that the formal power-series solution of Equation (2.44) must coincide with

the formal power-series solution of the 1-instanton equation (1.20). Hence the desired

equation,

cn = un,1, ∀n, (2.45)

which completes the proof of (1.4).

3 Asymptotics of the 1-instanton of Painlevé I

3.1 A 5-tuple of differential equations

Let us consider the first instanton term C u1 in the formal series (1.9). This term satisfies

the linear homogeneous second-order ODE

u′′
1 = 12u0u1, (3.1)
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Asymptotics of the Instantons of Painlevé I 581

where u0 is the 0-instanton term in the trans-series expansion (1.9). This suggests the

problem of studying the linear equation

v′′ = γuv, (3.2)

where u is one of the tritronquée solutions of the first Painlevé equation (1.1) and γ

is an arbitrary positive constant. Indeed, we have five different Schrödinger equations

with meromorphic potentials γuj having the same formal power expansion (2.1) in the

relevant sectors, see (2.3):

v′′
j = γujv j, γuj ∼ γuf (z)= γ z1/2

∞∑
n=0

anz−5n/2. (3.3)

Equation (3.2) has two linearly independent formal solutions,

v±
f = eθ

±
Σ±, θ± = B±z5/4 − 1

8
ln z, Σ± =

∞∑
n=0

b±
n z−5n/4,

B± = ±B = ±4

5
√
γ , b±

0 = 1,

b±
n = 1

2n

⎧⎨
⎩b±

n−1

B±

(
n− 1

10

)(
n− 9

10

)
− B±

[(n+1/2)]∑
m=1

amb±
n+1−2m

⎫⎬
⎭ , n= 1,2, . . . .

(3.4)

To simplify our notation, in this section, we use the symbol b−
n instead of un,1.

Since we have five equations with meromorphic potentials, we have five pairs of

solutions with the asymptotic expansions (3.4) as z−→ ∞. Each pair has this asymptotic

expansion in the sector where the corresponding potential has the power-like asymp-

totics (2.1). The sectors are depicted in Figure 1. Denote the solutions corresponding to

the potential uj(z) by the symbol v±
j (z). We have,

v±
j (z)∼ v±

f (z), z−→ ∞, arg z∈
(

−6π

5
+ 4π

5
j,

2π

5
+ 4π

5
j
)
. (3.5)

We also observe that

v±
j (z)= e−iπ/10 jv

σ j(±)
0 (e−i(4π/5) jz), σ j(±)=

⎧⎨
⎩±, j is even,

∓, j is odd,
(3.6)
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582 S. Garoufalidis et al.

and

v±
j+20(z)= v±

j (z). (3.7)

Similar to convention (2.10) concerning the subscript k in uk(x), we shall assume

that

j ∈ Z, mod 20, (3.8)

in the notation v±
j (z), unless j is particularly specified, as in (3.19).

3.2 Gluing the solutions together

We observe that within the common sectors of the same asymptotic behavior, the solu-

tions v±
j (z) and v±

j−1(z) have identical asymptotics v±
f (z) in all orders. Thus, it is natural

to ask: what is the difference between these two solutions of different equations? Let us

introduce the differences

w±
j (z)= v±

j+1(z)− v±
j (z). (3.9)

Because of (3.6), these differences are related to each other by the following rotational

symmetry:

w±
j (z)= e−i(π/10) jw

σ j(±)
0 (e−i(4π/5) jz). (3.10)

In addition, using (3.3), w±
j (z) satisfies the nonhomogeneous linear ODE,

(w±
j−1)zz = γujw

±
j−1 + γ (uj − uj−1)v

±
j−1. (3.11)

The homogeneous part of this equation is the same as in (3.3) In the relevant sector, the

nonhomogeneity contains an exponentially small factor given in (2.7):

z−→ ∞, arg z∈
(

−6π

5
+ 4π

5
j,−2π

5
+ 4π

5
j
)

:

uj(z)− uj−1(z)= ei(π/2) j 31/4

2
√
π

eθ j (1 + O(z−5/4)),

θ j = α jz
5/4 − 1

8
ln z, α j = (−1) j A, A= 8

√
3

5
.

(3.12)
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Asymptotics of the Instantons of Painlevé I 583

The general solution to (3.11) is given by the integral formula,

w±
j−1(z)= c+v+

j (z)+ c−v−
j − 1

2
√
γ

∫ z

z0

(v+
j (x)v

−
j (z)− v+

j (z)v
−
j (x))γ (uj(x)− uj−1(x))v

±
j−1(x)dx,

(3.13)

where c+, c−, and z0 are arbitrary constants. However, our solution (3.9) is not general as

being a difference between two functions with the same asymptotic expansion in certain

sector. Furthermore, in the sector arg z∈ (− 6π
5 + 4π

5 j,− 2π
5 + 4π

5 j), see (3.12), for j odd, the

solution v+
j (z) is dominant and v−

j (z) is recessive, while for j even, v+
j (z) is recessive and

v−
j (z) is dominant.Thus, w±

j−1(z) admits the following representations:

j odd : v+
j (z) dominant, v−

j (z) recessive as arg z∈
(

−6π

5
+ 4π

5
j,−2π

5
+ 4π

5
j
)

:

w+
j−1(z)= c0v

−
j (z)− 1

2
√
γ v−

j (z)
∫ z

ei(4π/5)( j−1)z0

(uj(x)− uj−1(x))v
+
j (x)v

+
j−1(x)dx

+ 1

2
√
γ v+

j (z)
∫ z

ei(4π/5)( j−1)∞
(uj(x)− uj−1(x))v

−
j (x)v

+
j−1(x)dx,

w−
j−1(z)= −1

2
√
γ

∫ z

ei(4π/5)( j−1)∞
(v+

j (x)v
−
j (z)− v+

j (z)v
−
j (x))(uj(x)− uj−1(x))v

−
j−1(x)dx, (3.14a)

j even : v+
j (z) recessive, v−

j (z) dominant as arg z∈
(

−6π

5
+ 4π

5
j,−2π

5
+ 4π

5
j
)

:

w+
j−1(z)= −1

2
√
γ

∫ z

ei(4π/5)( j−1)∞
(v+

j (x)v
−
j (z)− v+

j (z)v
−
j (x))(uj(x)− uj−1(x))v

+
j−1(x)dx,

w−
j−1(z)= c0v

+
j (z)− 1

2
√
γ v−

j (z)
∫ z

ei(4π/5)( j−1)∞
(uj(x)− uj−1(x))v

+
j (x)v

−
j−1(x)dx

+ 1

2
√
γ v+

j (z)
∫ z

ei(4π/5)( j−1)z0

(uj(x)− uj−1(x))v
−
j (x)v

−
j−1(x)dx, (3.14b)

where ei(4π/5)( j−1)z0 is a finite point within the indicated sector and c0 is a Stokes constant

which both can not be determined immediately.

When z−→ ∞ as arg z∈ (− 6π
5 + 4π

5 j,− 2π
5 + 4π

5 j), the leading contribution to the

asymptotic behavior of w±
j−1(z) is given by z-end point of the integral term and possibly

by the nonintegral term. By standard arguments,

j odd : v+
j (z) dominant, v−

j (z) recessive as arg z∈
(

−6π

5
+ 4π

5
j,−2π

5
+ 4π

5
j
)

:
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584 S. Garoufalidis et al.

w+
j−1(z)=

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

−ei(π/2) j 31/4

5
√
π

2B
√
γ

A(−A+ 2B)
e(−A+B)z5/4

z−3/4(1 + O(z−5/4)), B > A/2,

−ei(π/2) j 2 · 31/4

5
√
π

√
γ e−Bz5/4

z1/2(1 + O(z−5/8)), B = A/2,

c1e−Bz5/4
z−1/8(1 + O(z−5/4)), 0< B < A/2,

w−
j−1(z)= ei(π/2) j 31/4

5
√
π

2B
√
γ

A(A+ 2B)
e−(A+B)z5/4

z−3/4(1 + O(z−5/4)), (3.15a)

j even : v+
j (z) recessive, v−

j (z) dominant as arg z∈
(

−6π

5
+ 4π

5
j,−2π

5
+ 4π

5
j
)

:

w+
j−1(z)= ei(π/2) j 31/4

5
√
π

2B
√
γ

A(A+ 2B)
e(A+B)z5/4

z−3/4(1 + O(z−5/4))

w−
j−1(z)=

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

ei(π/2) j 31/4

5
√
π

2B
√
γ

A(A− 2B)
e(A−B)z5/4

z−3/4(1 + O(z−5/4)), B > A/2,

ei(π/2) j 2 · 31/4

5
√
π

√
γ eBz5/4

z1/2(1 + O(z−5/8)), B = A/2,

c1eBz5/4
z−1/8(1 + O(z−5/4)), 0< B < A/2,

(3.15b)

where c1 is an unknown Stokes constant.

Taking into account the presence of the factor z−8 in the asymptotics of the func-

tions v±
j (ξ), we define auxiliary functions v̂±

j (ξ) by the relations (cf. (2.13)),

z= ξ8, v̂±
j (ξ)= v±

j (z)e
−θ±(z), (3.16)

so that (see (3.5))

v̂±
j (ξ)∼Σ±(ξ8)=

∞∑
n=0

b±
n ξ

−10n, ξ −→ ∞, arg ξ ∈
(

−3π

20
+ π

10
j,
π

20
+ π

10
j
)
. (3.17)

Using (3.6), we observe that

v̂±
j (ξ)= e−i(π/10) j v̂

σ j(±)
0 (e−i(π/10) jξ), v̂±

j+20(ξ)= v̂±
j (ξ). (3.18)

Let us introduce the sectorially meromorphic function V̂ (N)(ξ) discontinuous across the

rays arg ξ = π
10 j, j = −9,−8, . . . ,9,10:

V̂ (N)(ξ)= v̂−
j (ξ)ξ

10N−1 − P −
10N−1(ξ), arg ξ ∈

(
− π

10
+ π

10
j,
π

10
j
)
, j = −9,−8, . . . ,9,10,

(3.19)
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Asymptotics of the Instantons of Painlevé I 585

where polynomial P −
10N−1(ξ) of degree 10N − 1 is defined by

P −
10N−1(ξ) :=

N−1∑
n=0

b−
n ξ

10(N−n)−1. (3.20)

According to (3.17), this function has the uniform asymptotics at infinity,

V (N)(ξ)= b−
n ξ

−1 + ON(ξ
−11), ξ −→ ∞, (3.21)

and, due to (3.9) and (3.16), it has the following jumps across the rays arg ξ = π
10 ( j − 1),

j = −9,−8, . . . ,9,10, oriented towards infinity:

arg ξ = π

10
( j − 1) : V̂ (N)

+ (ξ)− V̂ (N)
− (ξ)= (v̂−

j (ξ)− v̂−
j−1(ξ))ξ

10N−1

= (v−
j (z)− v−

j−1(z))e
−θ−(z)ξ10N−1 =w−

j−1(z)e
−θ−(z)ξ10N−1, j = −8,−7, . . . ,11. (3.22)

(We note that v−
11(z)= v−

−9(z), in virtue of (3.7)). The jumps for even and odd j-s are differ-

ent. Namely, as ξ → ∞, using (3.15), we find

ξ −→ ∞, arg ξ = π

10
( j − 1), j odd:

V̂ (N)
+ (ξ)− V̂ (N)

− (ξ)= ei(π/2) j 31/4

5
√
π

2B
√
γ

A(A+ 2B)
e−Aξ10

ξ10N−6(1 + O(ξ−10)), (3.23a)

ξ −→ ∞, arg ξ = π

10
( j − 1), j even:

V̂ (N)
+ (ξ)− V̂ (N)

− (ξ)=

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

ei(π/2) j 31/4

5
√
π

2B
√
γ

A(A− 2B)
eAξ10

ξ10N−6(1 + O(ξ−10)), B > A/2,

ei(π/2) j 2 · 31/4

5
√
π

√
γ eAξ10

ξ10N+4(1 + O(ξ−5)), B = A/2,

c1e2Bξ10
ξ10N−1(1 + O(ξ−10)), 0< B < A/2.

(3.23b)

Remark 3.1. In this section, as well as in the rest of the paper, we skip the explana-

tion of the standard meaning of the symbols O(. . .) and ON(. . .). This meaning has been

explained in Section 2 (see, e.g. (2.9), (2.15), (2.22), and (2.24)). We also omit, when per-

forming asymptotic calculations, the routine technical details. They are similar to those

which were carefully presented in Section 2. �
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586 S. Garoufalidis et al.

3.3 An integral formula for the 1-instanton coefficients and their asymptotic expansion

Due to (3.21), the 1-instanton coefficient b−
N , whose N-large asymptotics we are looking

for, is the coefficient at the term 1/ξ of the asymptotic expansion of V (N)(ξ) at ξ = ∞.

Therefore,
1

2πi

∮
|ξ |=R�1

V (N)(ξ)dξ = b−
n + ON(R

−10). (3.24)

Similarly to the 0-instanton case, collapsing this circular path of integration to a circle

of a smaller radius |ξ | = r containing all the singularities or branch points of V̂ (N)(ξ) (the

latter can appear at the poles of uj(ξ
8) only), we find

b−
N = 1

2πi

∮
|ξ |=R�1

V (N)(ξ)dξ + ON(R
−10)

= − 1

2πi

10∑
j=−9

∫ Rei(π/10)( j−1)

rei(π/10)( j−1)
w−

j−1(z)e
−θ−(z)ξ10N−1 dξ + 1

2πi

∮
|ξ |=r

V (N)(ξ)dξ + ON(R
−10)

= − 1

2πi

10∑
j=−9

∫ Rei(π/10)( j−1)

rei(π/10)( j−1)
w−

j−1(z)e
−θ−(z)ξ10N−1 dξ

+ 1

2πi

∮
|ξ |=r

(V (N)(ξ)+ P −
10N−1(ξ))dξ + ON(R

−10)

= − 1

2πi

10∑
j=−9

∫ Rei(π/10)( j−1)

rei(π/10)( j−1)
e−i(π/10)( j−1)w

σ j−1(−)
0 (e−i(4π/5)( j−1)z)e−θ−(z)ξ10N−1 dξ

+ O(r10N)+ ON(R
−10)

= − 1

2πi

4∑
k=−5

∫ Rei(π/5)k

rei(π/5)k
e−i(π/5)kw−

0 ((e
−i(π/5)kξ)8)eBξ10

ξ10N dξ

− 1

2πi

4∑
k=−5

∫ Rei(π/10)(2k+1)

rei(π/10)(2k+1)
e−(i/π10)(2k+1)w+

0 ((e
−i(π/10)(2k+1)ξ )8)eBξ10

ξ10N dξ

+ O(r10N)+ ON(R
−10)

= − 5

πi

∫ R

r
w−

0 (ξ
8)eBξ10

ξ10N dξ − 5

πi
(−1)N

∫ R

r
w+

0 (ξ
8)e−Bξ10

ξ10N dξ + O(r10N)+ ON(R
−10).

(3.25)

Here, we used that

|V (N)(ξ)+ P −
10N−1(ξ)||ξ |=r < Cr10N−1,
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Asymptotics of the Instantons of Painlevé I 587

where the constant C does not depend on N. It is not difficult to find N-large asymptotics

of the coefficients b−
N . Similar to the 0-instanton case considered in Section 2, we first

send R→ ∞ in the last equation of (3.25) and then, using (3.15a), analyze the large N

behavior of the resulting integrals:

b−
N =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

4 · 31/4

25π3/2

A(1 + (−1)N)− 2B(1 − (−1)N)

4B2 − A2
γ A−N−1/2Γ

(
N − 1

2

)
(1 + O(N−1)), γ > 3,

(−1)N 31/4

5π3/2

√
γ (2B)−N−1/2Γ

(
N + 1

2

)
(1 + O(N−1/2)), γ = 3,

i(−1)Nc1
1

2π
(2B)−NΓ (N)(1 + O(N−1)), 0< γ < 3.

(3.26)

We recall that B = 4
5
√
γ and A= 8

5

√
3.

Equation (3.26), in the case γ = 12, produces the leading term of the asymptotics

of the 1-instanton sequence un,1. The proof of the whole series (1.16)–(1.17) is similar to

the proof of the 0-instanton asymptotic series (1.4) performed at the end of Section 2.

Remark 3.2. Note, that for γ > 3, the unknown Stokes constant c1 does not contribute to

the leading term of the large N asymptotics of b−
N ; indeed, it appears in the exponentially

small terms only. For γ = 3, this contribution appears in the subleading term of order

N−1/2. However, for 0< γ < 3, the asymptotics of b−
N is simply proportional to c1. This is

also confirmed by numerical computations. �

3.4 Tritronquée solutions and the induced Stokes’ phenomenon

The analysis performed in the previous subsections gives rise to the following observa-

tions concerning the Schrödinger equation:

v′′ = γuv. (3.27)

Let us take two different tritronquée Painlevé I functions, say the functions u0(z)

and u1(z), as the potentials u(z) in Equation (3.27). The corresponding solutions, v+
0 (z)

and v+
1 (z), though solutions to different equations, would have the same asymptotics

in all orders in the common sector, −2π/5< arg z< 2π/5. The same is true for the pair

v−
0 (z) and v−

1 (z). Hence, the possibility arises of evaluating the exponentially small dif-

ferences, v+
1 (z)− v+

1 (z) and v−
1 (z)− v−

1 (z). In other words, the existence of the tritronquée

Painlevé transcendents allows us to introduce the notion of the Stokes’ phenomenon

for the collection of the solutions to the family of linear equations (3.27) consisting
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588 S. Garoufalidis et al.

of five equations generated by five tritronquée functions as potentials u(z). We shall

call this phenomenon the induced Stokes’ phenomenon or, more lengthy, the induced

Stokes’ phenomenon generated by the first Painlevé quasi-linear Stokes’ phenomenon.

It is worth noting that no single equation (3.27) with u(z)= uk(z) generates a meaning-

ful Stokes phenomenon in the set of its solutions. Indeed, the structure of the solutions

to Equation (3.27) in the complementary sector, where the potential has infinitely many

poles (see Figure 1), is extremely difficult to describe. We need five different potentials

in (3.27) to cover the neighborhood of infinity by the sectors with the regular behavior of

both potentials and the solutions.

There is a threshold value of the parameter γ in (3.27), namely, γ = 3. When

γ > 3, the induced Stokes’ phenomenon generated by the first Painlevé quasi-linear

Stokes phenomenon is completely described by the latter. Indeed, the origin of the coef-

ficient 31/4/2
√
π in formulae (3.15a) and (3.15b) is the Stokes’ constant

S1 = −i
31/4

2
√
π
,

which is featuring in the quasi-linear Stokes’ relations (2.7) for the tritronquée solutions

uk(z). When γ < 3, the quasi-linear Stokes’ phenomenon for potentials of equation (3.27)

does not control the induced Stokes’ phenomenon for its solutions. The intrinsic Stokes’

constant—the constant c1, begins to play a dominant role.

There are at least two values of the parameter γ which are less than 3 but for

which we believe an explicit description of the induced Stokes’ phenomenon is possible.

These values are (Painlevé I equation (1.1) provides the linear equation (3.2) with the

potential u(z). We note that the value of the parameter γ in Equation (3.2) cannot be

changed via the scaling of the variables in the Painlevé equation without violation of

the chosen form of the latter. The values (3.28) correspond to form (1.1) of the equation

PI chosen in this paper.)

γ = 2 and γ = 3
4 . (3.28)

In the case of γ = 2, the two linear independent solutions of equation (3.27) admit the

following representation,

v+(z)=Ψ21(0,−z61/5), v−(z)=Ψ22(0,−z61/5), (3.29)

where Ψ (λ, x) is the 2 × 2 matrix solution of the Riemann–Hilbert problem associ-

ated with the first Painlevé equation. This Riemann–Hilbert problem is used in [22]
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Asymptotics of the Instantons of Painlevé I 589

for evaluation of the Stokes constant S1. Equation (3.29) allow us to use the same

Riemann–Hilbert problem to evaluate the Stokes parameter associated with the func-

tions v±(z).

The Stokes constant corresponding to the case γ = 3
4 was conjectured in [17] on

the basis of the relation of equation (3.27) with γ = 3
4 to the symmetric quartic matrix

model studied by Brézin–Neuberger [2] and Harris–Martinec [19]. This relation suggests

the existence of an alternative Riemann–Hilbert representation of the first Painlevé tran-

scendent which, through the formulae similar to (3.29) would generate solutions of

equation (3.27) with γ = 3/4. We expect this alternative Riemann–Hilbert problem can

be deduced with the help of the relevant double scaling limit of the Lax pair for the

skew-orthogonal polynomials associated with the symmetric quartic matrix model [2].

4 Trans-series

4.1 Alien derivatives and resurgence equations

An alternative method to obtain the asymptotic behavior of the instanton solutions to

the Painlevé I equation is based on the ideas of resurgence introduced by Écalle. In this

approach, one first constructs the trans-series solution to the differential equation and

computes its alien derivatives. Using these, one can easily deduce the asymptotics by

using contour deformation arguments. This approach has been used in [7–9], see also

[17, Section 4], for an application to a first-order differential equation of the Riccati

type. In the case of Painlevé I we deal with a resonant equation, that is, there is an

integer linear combination of its eigenvalues which is null. In this case, the method

of resurgence is slightly more subtle. In particular, the relevant trans-series solution

involves logarithms, as we will see.

As we mentioned in Section 1, the instanton solutions to Painlevé I appear as

trans-series solutions, see (1.9). In order to understand their asymptotics we need, how-

ever, a more general trans-series solution, which is a formal, two-parameter series of

the form

u(z,C1,C2)=
∑

n,m≥0

C n
1C m

2 un|m(z). (4.1)

The un|m(z) have the structure

un|m(z)= z1/2e−(n−m)Az5/4
φn|m(z), (4.2)
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590 S. Garoufalidis et al.

where φn|m(z) do not contain exponentials e±Az5/4
. When C2 = 0 and C1 = C we recover the

trans-series solution (1.9), therefore

un|0(z)= un(z). (4.3)

Note that the more general trans-series (4.1) is not proper (in the sense explained in

Section 1), since for any given direction in the complex plane, there is an infinite number

of terms in (4.1) involving exponentials which grow big as z→ ∞ along that direction.

Therefore, the trans-series (4.1) is more general than those considered in for example [4].

If we substitute (4.1) into (1.1) and collect the coefficients of C n
1C m

2 , we find that

the un|m(z) obey a set of coupled, inhomogeneous linear ODEs

u′′
n|m − 6

∑
k,l≥0

uk|lun−k|m−l = 0 (4.4)

generalizing (1.10). In the following, it will be convenient to introduce the variable

x = z5/4. (4.5)

We now compute the alien derivatives of these solutions. The alien derivative

Δω of a formal power series φ(x) was introduced by Écalle [12–14]. To obtain Δωφ, one

essentially computes the discontinuity of the Borel transform of φ(x) and φ̂(ζ ), at the cut

in the Borel plane starting at ζ =ωA. This leads under suitable assumptions to a series

in C{ζ }, whose inverse Borel transform is the alien derivative Δωφ, see also [3, 26] for

more precise definitions. A crucial property is that the pointed alien derivative

Δ̇ω = eωAxΔω (4.6)

commutes with the standard derivative. This makes possible to relate alien derivatives

to trans-series solutions. In our case, if we apply the pointed alien derivative to the

Painlevé I equation we obtain the linear, second-order ODE

− 1

6

d2

dz2
(Δ̇ωu(z,C1,C2))+ 2u(z,C1,C2)Δ̇ωu(z,C1,C2)= 0. (4.7)

This equation has two linearly independent solutions:

∂u(z,C1,C2)

∂C1
,

∂u(z,C1,C2)

∂C2
, (4.8)
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Asymptotics of the Instantons of Painlevé I 591

and we conclude that

Δ̇ωu(z,C1,C2)= aω(C1,C2)
∂u(z,C1,C2)

∂C1
+ bω(C1,C2)

∂u(z,C1,C2)

∂C2
, (4.9)

where aω(C1,C2) and bω(C1,C2) are in principle formal power series in C1 and C2 but

they are independent of z. This type of equation, relating the pointed alien derivative

to trans-series solutions, is called in Écalle’s theory the bridge equation; see [3, 26]

and particularly [18] for an example of a second-order difference equation. In order to

understand the asymptotics, we are particularly interested in the cases ω= ±1. Let us

first analyze the case ω= 1. We find

∑
n,m≥0

e−(n+1−m)AxC n
1C m

2 Δ1φn|m = a1(C1,C2)
∑

n≥1,m≥0

nC n−1
1 C m

2 e−(n−m)Axφn|m

+ b1(C1,C2)
∑

m≥1,n≥0

mC n
1C m−1

2 e−(n−m)Axφn|m. (4.10)

Let us first look at the term multiplying e−Ax on both sides. On the left-hand side

this corresponds to n= m, and we obtain

∑
n≥0

(C1C2)
nΔ1φn|n = a1(C1,C2)

∑
n≥0

(n+ 1)(C1C2)
nφn+1|m

+ b1(C1,C2)
∑
m≥1

mC m+1
1 C m−1

2 φm+1|m. (4.11)

Since the left-hand side is only a function of C1C2, we conclude that

a1(C1,C2)=
∑
k≥0

a1,k(C1C2)
k, b1(C1,C2)= C 2

2

∑
k≥0

b1,k(C1C2)
k. (4.12)

If we now equate the different powers of enAx and C1 and C2, we find the equation

Δ1φn|m =
min(n,m)∑

k=0

a1,k(n+ 1 − k)φn+1−k|m−k +
min(n,m−1)∑

k=0

b1,k(m − 1 − k)φn−k|m−1−k. (4.13)

The case ω= −1 is very similar. We now have that

a−1(C1,C2)= C 2
1

∑
k≥0

a−1,k(C1C2)
k, b−1(C1,C2)=

∑
k≥0

b1,k(C1C2)
k (4.14)
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592 S. Garoufalidis et al.

and

Δ−1φn|m =
min(n−1,m)∑

k=0

a−1,k(n− 1 − k)φn−1−k|m−k +
min(n,m+1)∑

k=0

b−1,k(m + 1 − k)φn−k|m+1−k.

(4.15)

We are particularly interested in the solutions with m = 0, corresponding to the

instanton solutions of Painlevé I. In this case, the equations for the alien derivatives

read (we denote φk|0 = φk)

Δ1φk = S1(k + 1)φk+1, k≥ 0, (4.16)

where S±1 = a±1,0, and

Δ−1φk = S−1(k − 1)φk−1 + S̃−1φk|1, k≥ 0, (4.17)

where S̃−1 = b−1,0 and we understand that φ−1 = 0 in the case k= 0. The three unknown

constants S±1, S̃−1 are the Stokes constants for the Painlevé I equation.

As we will see, a consequence of these equations is that the asymptotics of the

instanton solution uk to Painlevé I is determined by the solution u′
k, with k′ = k ± 1, and

by the trans-series solutions uk|1, which do not belong to the instanton sequence.

4.2 A study of the un|1 trans-series

We will now study the trans-series solutions un|1. It turns out that there are three differ-

ent cases: n= 0, n= 1 and n≥ 2. We will now study them in detail.

For n= 0, u0|1 satisfies the same linear ODE than u1,

− 1
6 u′′

0|1 + 2u0u0|1 = 0, (4.18)

which indeed has two linearly independent solutions: one of them, corresponding to u1,

is exponentially decreasing along the direction arg z= 0, |z| → ∞. The solution corre-

sponding to u0|1 is exponentially increasing along this direction, and it is given by

u0|1(z)= z−1/8e+(8√
3/5)z5/4

μ1(z), (4.19)
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Asymptotics of the Instantons of Painlevé I 593

where μ1(z) is a formal power series in z−5/4:

μ1(z)=
∑
n≥0

μn,1z−5n/4 (4.20)

and we normalize again

μ0,1 = 1. (4.21)

The coefficients μn,1 satisfy the same recursion than un,1, (1.7), with the only difference

that we have a minus sign on the right-hand side. One immediately finds that

μn,1 = (−1)nun,1. (4.22)

Let us now consider u1|1, which satisfies the linear inhomogeneous ODE

− 1
6 u′′

1|1 + 2u0u1|1 + 2u1u0|1 = 0. (4.23)

It is easy to see that u1|1(z) has the following structure:

u1|1(z)= z−3/4
∑
n≥0

μn,2z−5n/4, (4.24)

and in addition μ2n+1,2 = 0. The even coefficients satisfy the recursion

μ2n,2 = −
n−2∑
l=0

μ2l,2un−l,0 −
2n∑

l=0

(−1)lul,1u2n−l,1 + 25

192
(2n− 1)2μ2(n−1),2 (4.25)

and we find, for the very first terms,

u1|1(z)= −z−3/4

(
1 + 75

512
z−5/2 + 300713

1572864
z−5 + · · ·

)
. (4.26)

For k≥ 2, the formal solutions uk|1 develop a new feature: they contain loga-

rithms. This is due to the resonant character of the Painlevé I equation. These solutions

have the following form:

uk|1(z)= 5
4 log zgk−1(z)+ fk+1(z), k≥ 2, (4.27)
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594 S. Garoufalidis et al.

where

fk(z)= z1/2−5k/8e(2−k)Az5/4
μk(z), μk(z)=

∑
n≥0

μn,kz−5n/4,

gk(z)= z1/2−5k/8e−kAz5/4
νk(z), νk(z)=

∑
n≥0

νn,kz−5n/4.

(4.28)

The factor 5
4 in (4.27) is introduced for convenience, since in the resurgent analysis it

will be convenient to use the variable x in (4.5). The functions fk and gk appearing in

(4.28) satisfy the coupled system of equations

− 1

6
g′′

k + 2u0gk + 2
k−1∑
i=1

uigk−i = 0, k≥ 1.

− 1

6
f ′′
k + 2u0 fk + 2

k−1∑
i=1

ui fk−i + 5

24z2
gk−2 − 5

12z
g′

k−2 = 0, k≥ 3.

(4.29)

In the second equation, we set f1(z)= u0|1(z) and f2(z)= u1|1(z). It is easy to see, from the

recursion relation obeyed by the coefficients νn,k, that

νk(z)= C kuk(z), k≥ 1, (4.30)

where C is a constant given by

C = 16

5A
. (4.31)

The value of this constant can be fixed by looking at the equation for u2|1(z).

Finally, one can easily find recursion relations for the coefficients μn,k appearing

in fk(z). The cases k= 3 and k≥ 4 are slightly different. For k= 3, one finds

μn,3 = 8

25A(n+ 1)

{
−25

64
(2n+ 1)2μn−1,3 + 12

n−2∑
l=0

u(n+1−l)/2,0μl,3

+ 12
2∑

m=1

n+1∑
l=0

un+1−l,mμl,3−m + 25

16
(2n+ 1)νn,1 + 25A

8
νn+1,1

}
, (4.32)
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Asymptotics of the Instantons of Painlevé I 595

while for k≥ 4 we have

μn,k = 1

12(k − 1)(k − 3)

{
12

n−3∑
l=0

μl,ku(n−l)/2,0 + 12
k−1∑
m=1

n∑
l=0

μl,mun−l,k−m − 25

64
(2n+ k− 4)2μn−2,k

− 25

16
Ak(k + 2n− 3)μn−1,k + 25

16
(k + 2n− 4)νn−1,k−2 + 25A

8
(k − 2)νn,k−2

}
. (4.33)

One interesting aspect of the doubly indexed sequences (un,k), (μn,k) is that we

can also consider their dependence on k for fixed n, and it turns out that one can find

closed formulae for these coefficients from the recursion. For example, (u0,k) is given by

u0,k = (12)1−kk, k≥ 1, (4.34)

while (u1,k) is given by

u1,k = − 12−k

16
√

3
(109k2 − 120k + 24), k≥ 2. (4.35)

These formulae can also be obtained from the results in [5, Section 5.2]. Using their

results one can see that, as a function of k, 12kun,k is a polynomial in k of degree n.

Finally, we give a general formula for μ0,k when k≥ 4:

μ0,k = 12−k+1(k − 2)(141k − 402), k≥ 4. (4.36)

Let us close this section with a problem dealing with the physical interpretation of the

full trans-series (4.1).

Problem 4.1. As we mentioned in Section 1, the series un|0(z) can be interpreted in

terms of the double-scaling limit of instantons in the matrix model, and as an amplitude

associated to a ZZ brane in Liouville gravity. What is the interpretation of the more

general trans-series un|m(z), with m> 0, in the context of matrix models and in the

context of noncritical strings? Do they correspond to new nonperturbative sectors of

these theories? �
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5 Asymptotics

5.1 Asymptotics of the multi-instanton solutions

The asymptotics of the coefficients un,k can be obtained from a well-known application of

Cauchy’s theorem in the Borel plane (see [7, 9, 17] for examples). To do this, we consider

the formal power series φk appearing in the k- instanton solution, which we write in

terms of the variable x = z5/4 as

φk(x)= x−βk
∑
n≥0

un,kx−n. (5.1)

Here, β = 1
2 . The Borel transform of φk(x) is

φ̂k(p)=
∞∑

n=0

un,k

Γ (βk + n)
pn+βk−1. (5.2)

Therefore,
un,k

Γ (βk + n)
=

∮
0

dp

2πi

φ̂k(p)

pβk+n
. (5.3)

We now apply the standard deformation contour argument. The Borel transform φ̂k has

branch cuts at p= ±A, and we can deform the contour to encircle these (we also pick a

vanishing contribution from a circle at infinity). But the contribution to the integral is

given precisely by the discontinuity across the cut, that is, by the alien derivatives that

we calculated in (4.16) and (4.17). We then obtain the asymptotic formula

un,k

Γ (βk + n)
∼n

S1

2πi
(k + 1)

∫∞

A
dp
φ̂k+1(p)

pβk+n
− S−1

2πi
(k − 1)

∫−A

−∞
dp
φ̂k−1(p)

pβk+n
− S̃−1

2πi

∫−A

−∞
dp
φ̂k|1(p)
pβk+n

.

(5.4)
For k≥ 2 this formula involves the Borel transform of φk|1(x). To compute this, we have

to use

B(log x x−ν)= − pν−1

Γ (ν)
log p+ ψ(ν)

Γ (ν)
pν−1. (5.5)

The calculation of the integrals appearing in (5.4) is very similar to the calculation in

[17]. The only new ingredient is the logarithm appearing in the Borel transform (5.5),

which leads to an integral of the form

∫∞

0
dζ log ζ

ζ r+β(k−1)−1

(1 + ζ )kβ+n
= Γ (r + β(k − 1))Γ (n− r + β)

Γ (n+ βk)
(ψ(n− r + β)− ψ(r + (k − 1)β)).

(5.6)
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Asymptotics of the Instantons of Painlevé I 597

Note that the term involving ψ(r + (k − 1)β) will cancel against the contribution coming

from the second term in (5.5). For n large we can use the asymptotic behavior

ψ(n− r + β)= log n+ β − r − 1/2

n
+ O(1/n2). (5.7)

Before presenting the general result for the asymptotics derived from (5.4), let

us analyze in some detail the case k= 0, since this will fix one of the Stokes constants.

For k= 0 the only contributions to the asymptotics come from u1 and u0|1, and we obtain

un/2,0 ∼ A−n+1/2 S1

2πi
Γ

(
n− 1

2

){
u0,1 +

∞∑
l=1

ul,1 Al∏l
m=1(n− 1/2 − m)

}

+ (−A)−n+1/2 S̃−1

2πi
Γ

(
n− 1

2

){
μ0,1 +

∞∑
l=1

μl,1(−A)l∏l
m=1(n− 1/2 − m)

}
. (5.8)

Since un/2,0 = 0 if n is not even, the right-hand side of this relation must vanish if n is

odd. Using (4.22) we find that this is the case provided that

(−1)1/2 S̃−1 = S1. (5.9)

This is exactly as in the ODE studied in [6]. We then find the result [20] (see also [16])

un,0 ∼ A−2n+1/2 S1

πi
Γ

(
2n− 1

2

){
1 +

∞∑
l=1

ul,1 Al∏l
m=1(2n− 1/2 − m)

}
, n→ ∞. (5.10)

Note that S1 has already been evaluated in (2.39) and it has the value

S1 = −i
31/4

2π1/2
. (5.11)

Let us now analyze k= 2. The asympotics of un,1 involves u0 and u1|1. Using (5.9)

we can write it as

un,1 ∼ A−n+1/2 S1

2πi
Γ

(
n− 1

2

){
2u0,2 + (−1)nμ0,2 +

∞∑
l=1

(2ul,2 + (−1)n+lμl,2)Al∏l
m=1(n− 1/2 − m)

}
, (5.12)

and it depends on the parity of n. Using the explicit results (1.18), it is easy to check that

the leading asymptotic behavior is as stated by Joshi and Kitaev in [20, Proposition 16].
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The formula (5.12) gives in addition all-orders expansion of un,1 as an asymptotic series

in 1/n.

We can now write a general formula for the asymptotics of un,k when k≥ 2. Using

again (5.9), and absorbing a factor (−1)−1/2 in S−1, we find

un,k ∼ A−n+β S1

2πi
Γ (n−β)

{
(k+ 1)u0,k+1 + (−1)nμ0,k+1 +

∞∑
l=1

((k+ 1)ul,k+1 + (−1)n+lμl,k+1)Al∏l
m=1(n− β − m)

}

+ (−1)n(k − 1)A−n−β S−1

2πi
Γ (n+ β)

{
u0,k−1 +

∞∑
l=1

ul,k−1(−A)l∏l
m=1(n+ β − m)

}

− (−1)nA−n−β S1

2πi
Γ (n+ β) (log n− log A)

{
ν0,k−1 +

∞∑
l=1

νl,k−1(−A)l∏l
m=1(n+ β − m)

}

− (−1)nA−n−β S1

2πi
Γ (n+ β)

×
{
(ψ(n+ β)− log n)ν0,k−1 +

∞∑
l=1

ψ(n+ β − l)− log n∏l
m=1(n+ β − m)

νl,k−1(−A)l
}

(5.13)

for k≥ 2, and we recall that β = 1
2 . As compared with the asymptotics for k= 0,1, the

asymptotics for k≥ 2 involves logarithmic terms. In fact, the dominant term in the

asymptotics is precisely the log n term. In the last line, we use the asymptotics (5.7)

for the ψ function. Finally, note from (4.30) that one has the relation (1.14) for the coeffi-

cients νn,k.

5.2 Asymptotics of the multi-instanton solutions: numerical evidence

We will now perform numerical tests of the predicted asymptotic behavior (5.13) for the

instanton series un,k. The standard technique to do that is the method of Richardson

extrapolation. This method goes as follows. Let us assume that a sequence sn has the

asymptotics

sn ∼n

∞∑
k=0

ak

nk
(5.14)

for n large. Its Nth Richardson transformation s(N)n can be defined recursively by

s(0)n = sn,

s(N)n = s(N−1)
n+1 + n

N

(
s(N−1)

n+1 − s(N−1)
n

)
, N ≥ 1.

(5.15)
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Asymptotics of the Instantons of Painlevé I 599

The effect of this transformation is to remove subleading tails in (5.14), and

s(N)n ∼ a0 + O
(

1

nN+1

)
. (5.16)

The values s(N)n give numerical approximations to a0, and these approximations become

better as N and n increase. Once a numerical approximation to a0 has been obtained, the

value of a1 can be estimated by considering the sequence n(sn − a0), and so on.

The method of Richardson extrapolation can be applied verbatim to verify

the asymptotics of un,1 written down in (5.12). Let us illustrate this with a nontrivial

example. According to (5.12), the sequence

sn =
(

2n− 5

2

){(
2n− 3

2

)(
u2n,1 A2n−1/2

S1/(2πi)Γ (2n− 1/2)
+ 2

3

)
− 2u1,2

}
(5.17)

is of the form (5.14) and asymptotes, as n→ ∞, the value

(2u2,2 + μ2,2)A
2 = −55

96
≈ −0.5729166666666666 . . . . (5.18)

In Figure 4, we show a plot of the sequence (5.17) and its first two Richardson

transformations for n up to 200, which converges to the expected value (5.18). Taking

20 40 60 80 100 120 140

0.59

0.58

0.57

0.56

Fig. 4. A plot of the sequence (5.17) and its Richardson transformations. In this and subsequent

plots, the horizontal axis represents the integer n, and the vertical axis represents the values of

the sequence.
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n= 250 and 10 Richardson transformations gives the numerical approximation

s(5)200 = −0.572916666666666667 . . . . (5.19)

Note that this test already verifies that the general trans-series solutions un|m appearing

in (4.1) are the relevant objects to understand the asymptotics, since k= 1 involves the

trans-series u1|1.

Let us now study the asymptotic behavior of the instanton sequences un,k with

k≥ 2. The main novelty here is the presence of logarithms in the asymptotics, and this

does not fit a priori into the standard framework of Richardson transformations. How-

ever, one can transform the sequence and put it in a form which is amenable to an anal-

ysis with standard Richardson transformations, as pointed out in [28]. Let us assume

that we have a sequence �m with the asymptotics

�m ∼ log msm + tm, sm =
∑
k≥0

ak

mk
, tm =

∑
k≥0

bk

mk
. (5.20)

This type of asymptotc behavior appears in instanton corrections in Quantum Mechan-

ics. The leading behavior of this sequence is determined by the coefficient a0, and

we would like to find a method to extract it numerically. To do this, we consider the

sequence

�̃m = m(�m+1 − �m), (5.21)

which has the asymptotics

�̃m ∼ log ms̃m + t̃m, s̃m =
∑
k≥1

ãk

mk
, t̃m = a0 +

∑
k≥1

b̃k

mk
. (5.22)

It is now easy to see that, if we apply the Richardson transformation (5.15) twice to this

sequence, we remove both the tails in 1/np and the tails in log n/np. This then allows

a precise determination of the leading term a0. Once this has been determined, we can

extract the other coefficients in (5.20) by subtracting from the original sequence the

parts of the asymptotics which are under control.

Let us now apply this idea to the sequence of instantons of Painlevé I. The first

step is to consider the auxiliary sequence

an,k = An+βun,k

Γ (n+ β)
(5.23)
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Asymptotics of the Instantons of Painlevé I 601

whose leading asymptotics is

(−1)nan,k ∼ − S1

2πi

{
ν0,k−1 − Aν1,k−1

n
+ O(1/n2)

}
log n+ S1

2πi
log Aν0,k−1 + S−1

2πi
(k − 1)u0,k−1

+ A
{

S1

2πi
((k + 1)(−1)nu0,k+1 + μ0,k+1)− log Aν1,k−1)− S−1

2πi
(k − 1)u1,k−1

}
1

n

+ O(1/n2). (5.24)

Again, it depends on the parity of n, that is, wether n= 2m or n= 2m + 1. Let us

denote

a(e)m,k = a2m,k, a(o)m,k = a2m+1,k. (5.25)

In both cases their asymptotics is of the form (5.20) and we can use the method of [28]

to analyze the sequence numerically.

For simplicity, we will illustrate the asymptotics by focusing on the sequence

with n= 2m even, and we will test the four leading terms displayed in (5.24), that is,

the (leading) term in log n, and the terms in log n/n, constant, and 1/n. In terms of the

general structure written down in (5.20), we will test the values of a0,a1 and b0,b1. These

coefficients involve all the trans-series solutions appearing in the resurgent analysis.

We will first test the leading term of order log n. Following [28], we first construct

the sequence

ã(e)m,k = s(a2m+2,k − a2m,k)∼ − S1

πi
√

3
(k − 1)2(12)2−k + O

(
1

m
, log

m

m

)
, (5.26)

where we have used the explicit value for ν0,k−1 derived from (1.14) and (4.34). To

remove tails, we perform Richardson transformations in the sequence (each transform

is performed twice to remove both types of tails, as explained above). In Figure 5, we

plot it for k= 2,5, together with the second and the fourth Richardson transformations,

and for m = 200. The convergence towards

− S1

πi
√

3
≈ 0.068228352037086 . . . (5.27)

for k= 2, and towards

− S1

108πi
√

3
≈ 0.00063174400034 . . . (5.28)
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Fig. 5. A plot of the sequence (5.26) and its Richardson transformations, for k= 2 (left) and k= 5

(right).

for k= 5, is manifest in the figures. More precisely, for m = 250 and with N = 10

Richardson transformations, we obtain the numerical approximations

ã(e),(10)
250,2 = 0.068228352037087 . . . ,

ã(e),(10)
250,5 = 0.00063174400031 . . . .

(5.29)

We next test numerically the coefficient of log s/s. We consider the sequence

bm,k = m
(
ã(e)m,k + S1πi

√
3(k − 1)2(12)2−k

)
(5.30)

whose leading asymptotics is of the form

− 4S1

5πi
(k − 1)u1,k−1 log m + · · · (5.31)

so we can apply the above procedure. The sequence b̃m,k for k= 2,5, and up to

m = 200, together with its second and fourth Richardson transformations, is displayed

in Figure 6. In both cases we have convergence to the predicted values

k= 2 : −0.00426427200231 . . . , k= 5 : −0.000847589867 . . . . (5.32)

For m = 250 and with N = 10 Richardson transformations, we obtain the numerical

approximations

b̃(10)
250,2 = −0.00426427200235 . . . ,

b̃(10)
250,5 = −0.000847589866 . . . .

(5.33)
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Fig. 6. A plot of the sequence b̃m,k, obtained from (5.30), together with its Richardson transfor-

mations, for k= 2 (left) and k= 5 (right).

We can now study the constant term of the asymptotics, which also makes

possible to obtain a numerical determination of the additional Stokes parameter S−1.

We consider the sequence

cm,k = a2m,k + S1

2πi

{
2√
3
(k − 1)2(12)2−k − Aν1,k−1

2m

}
log(2m), (5.34)

where we have subtracted the leading logs. According to the predictions of resurgence,

as m → ∞ this sequence asymptotes to

S′
−1

2πi
(k − 1)2(12)2−k, (5.35)

where

S′
−1 = S−1 + 2 log A√

3
S1. (5.36)

The numerical analysis in the case of k= 2 gives a numerical determination of the

unknown Stokes constant S′
−1 (hence, of S−1), and we find, numerically,

S′
−1

2πi
≈ 0.31873285573864121 . . . (5.37)

and consequently
S−1

2πi
≈ 0.3882786818052856841 . . . . (5.38)

Using this value, we can verify the asymptotic behavior (5.35) for the sequence (5.34) for

higher values of k.
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Fig. 7. A plot of the sequence (5.39) and its Richardson transformations, for k= 2 (left) and k= 5

(right).

Finally, we consider the coefficient of 1/m. To do this, we construct the sequence

dm,k = m2(bm+1,k − bm,k), (5.39)

which is asymptotic to

− A

2

{
S1

2πi
((k + 1)u0,k+1 + μ0,k+1)− S′

−1

2πi
(k − 1)u1,k−1

}
. (5.40)

This involves the tran-series coefficients μ0,k+1, and we use the numerical determination

of S′
−1 obtained above. In Figure 7, we show the sequence (5.39) for k= 2 and 5, up to

m = 200, together with its second and fourth Richardson transformations. They clearly

match the predictions of resurgence,

k= 2 : −0.002295145874084 . . . , k= 5 : −0.0033633587118 . . . . (5.41)

For m = 250 and with N = 10 Richardson transformations, we obtain the numerical

approximations

d(10)
250,2 = −0.002295145874083 . . . ,

d(10)
250,5 = −0.0033633587119 . . . .

(5.42)

We believe that these numerical tests confirm in a very clear way the predictions

from the resurgent analysis for k≥ 2.
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[13] Écalle, J. Les fonctions résurgentes. Tome II, Publications Mathématiques d’Orsay 81
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