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figure-eight knot complement is homeomorphic to the figure-eight knot complement.
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1. Introduction

Since Kac [21] formulated the question: Can you hear the shape of a drum?, there
has been a rich history in constructing isospectral but non-isometric manifolds in
various settings. We will not describe this in any detail here, but simply refer the
reader to [17] for a survey. The main purpose of this note is to prove the following
result (see also Theorem 2.5 for a more detailed statement).

Theorem 1.1. There are infinitely many pairs of finite volume orientable 1-cusped
hyperbolic 3-manifolds that are isospectral but non-isometric.

Since we are working with cusped hyperbolic 3-manifolds, the statement of
the theorem requires some clarification. Indeed, one can reasonably ask, what does
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isospectral mean for cusped hyperbolic 3-manifolds. We address this in Sec. 2, where
we indicate the differences with the closed case. Our examples appear to be the
first examples of 1-cusped hyperbolic 3-manifolds that are known to be isospectral
and non-isometric. On the other hand, there has been considerable interest in this
for surfaces (both non-compact finite area, and infinite area convex cocompact, see
[4] and the survey [16]). In fact in [16], they raise the problem (Problem 1.2 of [16])
of finding such examples in much more generality. Note that these papers use the
terms isoscattering or isopolar, but we prefer to stick with isospectral.

Theorem 1.1 is well-known for closed hyperbolic 3-manifolds, either using the
arithmetic methods of [36], or the method of Sunada ([33] and which we recall
below), as in [28, p. 225]. As in this latter setting, our construction also uses
Sunada’s method, but we need some additional control. In addition to proving the
existence of infinitely many pairs of examples of isospectral 1-cusped hyperbolic
3-manifolds, we also give more concrete examples of isospectral manifolds arising
as low degree covers of small volume 1-cusped hyperbolic 3-manifolds arising in the
census of hyperbolic manifolds of Snap and SnapPy [7, 14].

One motivation for Theorem 1.1 was to investigate the nature of the discrete
spectrum of 1-cusped hyperbolic 3-manifolds. There has been considerable interest
in this for noncompact surfaces of finite area (see [23], [20] and [32] to name a few),
but little seems known in dimension 3. We discuss this further in Sec. 8, and in
particular we prove the following.

Theorem 1.2. Let M denote the complement of the figure-eight knot in S3. Sup-
pose that N is a finite volume hyperbolic 3-manifold which is isospectral with M .
Then N is homeomorphic to M .

Indeed we also show that the first ten 1-cusped orientable finite volume hyper-
bolic 3-manifolds are determined by their spectral data (see Definition 2.1).

2. What Does Isospectral Mean for Cusped Manifolds?

As remarked upon in the Introduction, since we are in the setting of cusped ori-
entable hyperbolic 3-manifolds, some clarification about the statement of Theo-
rem 1.1 is required, and in this section we explain what we mean by isospectral
1-cusped hyperbolic 3-manifolds. Throughout this paper we will restrict ourselves
to only discussing the spectrum for 1-cusped hyperbolic 3-manifolds. This simplifies
things, but much of what is described in this section holds more generally, and sim-
ilar statements can be made in the presence of multiple cusps. We refer the reader
to Chaps. 4 and 6 of [10] or [6] for a detailed discussion of the spectral theory of
cusped hyperbolic 3-manifolds.

2.1. The spectrum of the Laplacian in the cusped setting

Let M = H3/Γ be a 1-cusped, orientable finite volume hyperbolic 3-manifold. The
spectrum of the Laplacian on the space L2(M) consists of a discrete spectrum (i.e.
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a collection of eigenvalues 0 ≤ λ1 ≤ λ2 . . . where each λj has finite multiplicity),
together with a continuous spectrum (a copy of the interval [1,∞)). Moreover,
the discrete spectrum consists of finitely many eigenvalues in [0, 1), together with
those eigenvalues embedded in the continuous spectrum. However, unlike the closed
setting, in general, it is unknown as to whether the discrete spectrum is infinite (we
address this point in Sec. 2.3).

The eigenfunctions associated to eigenvalues in the discrete spectrum form an
orthonormal system and the closed subspace of L2(M) that they generate is denoted
by L2

disc(M). The orthogonal complement of L2
disc(M) in L2(M) is denoted by

L2
cont(M) and “corresponds” (in a way that we need not make precise here) to the

continuous spectrum (see [10], Chaps. 4 and 6).
In the closed case, the Weyl law provides a way to prove that the discrete

spectrum is infinite (see [10], Chap. 5). The precise analogue of this in the cusped
setting is not available, and this necessitates understanding a contribution from an
Eisenstein series associated to the cusp of M . To describe this further, conjugate Γ
so that a maximal peripheral subgroup P < Γ fixes infinity. Fixing co-ordinates on
H3 = {w = (z, y) : z ∈ C, y ∈ R+}, we define the Eisenstein series associated to
the cusp at infinity by:

E(w, s) =
∑

γ∈P\Γ
y(γw)s,

where y(p) denotes the y co-ordinate of the point p ∈ H3. Now since E(w, s) is
P -invariant, an analysis of the Fourier expansion at ∞ reveals a constant term of
the form:

y(w)s + φ(s)y(w)2−s,

where φ(s) is the so-called scattering function. This is defined for Re(s) > 2 and
has a meromorphic extension to the complex plane. The poles of φ(s) are also the
poles of the Eisenstein series and all lie in the half-plane Re(s) < 1, except for
at most finitely many in the interval (1, 2]. Moreover, if t ∈ (1, 2) is a pole, the
residue ψ = Ress=tE(w, s) is an eigenfunction with eigenvalue t(2 − t) (see [6]).
In addition, if there is a pole at s = 2, the residue will be an eigenfunction with
eigenvalue 0 ([6]). This subset of the discrete spectrum arising from residues of
poles of the Eisenstein series is called the residual spectrum. If t is a pole of E(w, s)
(equivalently φ(s)) we define the multiplictity at t to be the order of the pole at t,
plus the dimension of the eigenspace in the case when t contributes to the residual
spectrum as described above.

The following definition is, in part, motivated by what spectral information
is required to determine the geometry in the cusped setting; e.g. the role of the
scattering function and its poles is natural in the analogue of the Weyl law for
cusped manifolds (see [10], Theorem 6.5.4).

Definition 2.1. Let M1 and M2 be 1-cusped orientable hyperbolic 3-manifolds of
finite volume with associated scattering functions φ1(s) and φ2(s). Assume that the
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discrete spectrum of M1 is infinite. Say that M1 and M2 are isospectral if:

• M1 and M2 have the same discrete spectrum, counting multiplicities;
• φ1(s) and φ2(s) have the same set of poles and multiplicities.

Remark 2.2. (1) For a 1-cusped orientable finite volume hyperbolic 3-manifold
M , its discrete spectrum, counting multiplicities, together with the set of poles
and multiplicities of the scattering function will be referred to as its spectral
data.

(2) For a multi-cusped orientable finite volume hyperbolic 3-manifold M , the scat-
tering function is a matrix (the scattering matrix), and in this case one takes
the determinant of the scattering matrix to obtain a function τM (s) that plays
the role of φ(s) above.

(3) Continuing with the discussion of the role of the scattering function in deter-
mining the geometry from spectral data, it is shown in [23] that an analogue of
Huber and McKean’s results for compact surface holds. Namely, the spectral
data in Definition 2.1 (in the context of a non-compact hyperbolic surface of
finite area), determines the length spectrum of the surface and vice versa (see
Sec. 8 for a discussion of this for 1-cusped hyperbolic 3-manifolds). Moreover,
there are only finitely many hyperbolic surfaces with the given spectral data.

(4) In general the scattering determinant is hard to compute explicitly. However,
for arithmetic manifolds (and orbifolds) the scattering determinant is related to
Dedekind zeta functions of number fields. For example, for PSL(2,Z) the poles
of the scattering function are related to the zeroes of ζ(s) (see [20]), whilst
for the Bianchi orbifolds with one cusp, the scattering function is expressed in
terms of the zeta function ζK(s) attached to the quadratic imaginary number
field K (see [9] or [10, Sec. 8.3]).

2.2. Manifolds with the same Eisenstein series

The following lemma will be useful in our construction. We fix some notation. Let
M = H3/Γ be a 1-cusped orientable finite volume hyperbolic 3-manifold with finite
covers Mi = H3/Γi (i = 1, 2) both with one cusp and of same covering degree, n
say. Conjugate Γ so that a maximal peripheral subgroup P < Γ fixes ∞, and let
Pi = Γi ∩P . Denote the Eisenstein series associated to M , M1 and M2 constructed
in Sec. 2.1 by E(w, s), E1(w, s) and E2(w, s) respectively.

Lemma 2.3. Let M, M1 and M2 be as above. Then E1(w, s) = E2(w, s). In
particular, M1 and M2 have the same scattering function.

Proof. We begin the proof with a preliminary remark. Suppose that N = H3/G

is 1-cusped and is a finite covering of M . We claim that a set of distinct coset
representatives for G in Γ can be chosen from elements of P . Briefly, since the
preimage of the cusp of M is connected (i.e. is the single cusp of N), we must have
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equality of indices [Γ : G] = [P : P ∩G]. Thus a collection of coset representatives
for P ∩G in P also works as coset representatives G in Γ.

Given this, let S = {δ1, . . . , δn} ⊂ P be a set of distinct (left) coset representa-
tives for Γ1 in Γ and S′ = {δ′1, . . . , δ′n} ⊂ P be a set of distinct coset representatives
for Γ2 in Γ.

Now any term in E(w, s) has the form y(γw)s for γ ∈ Γ not fixing ∞. Using
the above decomposition of Γ as a union of cosets of both Γ1 and Γ2, there exists
γ1 ∈ Γ1, γ2 ∈ Γ2 and δj ∈ S, δ′k ∈ S′ so that:

δjγ1 = γ = δ′kγ2.

Since δj , δ′k ∈ P and γ /∈ P , it follows that γ1 /∈ P1 and γ2 /∈ P2 (otherwise γ ∈ P ,
contrary to the definition of the Eisenstein series). Using the coset decomposition
of Γ, it follows that E(w, s) can be decomposed as a sum of terms of the form:

∑
g∈P1\Γ1

y(δjgw)s and
∑

h∈P2\Γ2

y(δ′khw)s. (∗)

Since δj, δ
′
k ∈ P , they act by translation on H3, and in particular the y-

coordinate is unchanged by this; i.e. y(δjgw) = y(gw) and y(δ′khw) = y(hw). Hence
the terms in (∗) above reduce to

∑
g∈P1\Γ1

y(gw)s and
∑

h∈P2\Γ2

y(hw)s.

So, putting all of this together, we have the following:

nE1(w, s) = E(w, s) = nE2(w, s),

which proves the lemma.

2.3. Ensuring the discrete spectrum is infinite

In this section we address the issue of ensuring that the discrete spectrum is infinite.
In particular we state a result that can be proved using the methods of [34] (see
also the comments in [10] at the end of Sec. 6.5). To state the result we need to
recall the following.

A fundamental dichotomy of Margulis for a finite volume hyperbolic manifold
M = H3/Γ, is whether M is arithmetic or not. In the commensurability class of a
non-arithmetic manifold, there is a unique minimal element in the commensurability
class. This minimal element arises as H3/Comm(Γ), where

Comm(Γ) = {g ∈ Isom(H3) : gΓg−1 is commensurable with Γ}

is the commensurator of Γ.
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The following can be proved following the methods in [34]. Note that in the
statement of [34] Theorem 2, a certain matrix determinant is assumed to be non-
vanishing. In our setting, since the manifold has one cusp, this matrix coincides
with a function and can be shown to not be identically zero.

Theorem 2.4. Let M = H3/Γ be an orientable finite volume 1-cusped non-
arithmetic hyperbolic 3-manifold that is not the minimal element in its commensu-
rability class (i.e. Γ �= Comm(Γ)). Then the discrete spectrum of M is infinite.

We will make some further comments on the nature of the discrete spectrum
(when it is known to be infinite) in Sec. 8.

2.4. The complex length spectrum

Let M = H3/Γ be an orientable finite volume hyperbolic 3-manifold. Given a
loxodromic element γ ∈ Γ, the complex translation length of γ is the complex
number Lγ = �γ + iθγ , where �γ is the translation length of γ and θγ ∈ [0, π) is the
angle incurred in translating along the axis of γ by distance �γ . The complex length
spectrum of M is defined to be the collection of all complex translation lengths
counted with multiplicities.

Given the discussion of the previous subsections, we now give a more detailed
statement of Theorem 1.1.

Theorem 2.5. There are infinitely many pairs of finite volume orientable 1-cusped
hyperbolic 3-manifolds that are isospectral but non-isometric. In addition, our pairs
have the following properties:

• cover a 1-cusped hyperbolic 3-manifold of the same degree,
• have infinite discrete spectrum,
• have the same Eisenstein series,
• have the same complex length spectra.

3. The Sunada Construction in the 1-Cusped Setting

Let G be a finite group and H1 and H2 subgroups of G. We say that H1 and H2

are almost conjugate if they are not conjugate in G but for every conjugacy class
C ⊂ G we have:

|C ∩H1| = |C ∩H2|.
If the above condition is satisfied, we call (G,H1, H2) a Sunada triple, and

(H1, H2) an almost conjugate pair in G. We prove the following using Sunada’s
method [33] (cf. [1–3, 27]).

Theorem 3.1. Let M = H3/Γ be a 1-cusped finite volume orientable hyperbolic
3-manifold that is non-arithmetic and the minimal element in its commensurability
class. Let G be a finite group, (H1, H2) an almost conjugate pair in G, and assume
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that Γ admits a homomorphism onto G. Assume that the finite covers M1 and M2

associated to the pullback subgroups of H1 and H2 have 1 cusp. Then M1 and M2

are isospectral, have the same complex length spectra and are non-isometric.

Proof. First, note that the manifolds M1 and M2 cannot be isometric, since if
there exists g ∈ Isom(H3) with gΓ1g

−1 = Γ2, then this implies that g ∈ Comm(Γ).
However, by assumption, Comm(Γ) = Γ, and so projecting to the finite group G,
we effect a conjugacy of the almost conjugate pair (H1, H2), a contradiction.

To prove isospectrality, there are two things that need to be established; that
both M1 and M2 have the same infinite discrete spectrum with multiplicities, and
that their scattering functions have the same poles with multiplicities. Since M1

and M2 are 1-cusped, and [Γ : Γ1] = [Γ : Γ2], the latter follows immediately from
the fact that their Eisenstein series are the same by Lemma 2.3.

Regarding the former statement, Theorem 2.4 shows that the discrete spectrum
is infinite for both M1 and M2, and we deal with remaining statement about the
discrete spectra in a standard way following [33]. For completeness we sketch a
proof of this.

Now it can be shown that to prove that M1 and M2 have the same discrete
spectra with multiplicities, it suffices to show that L2

disc(M1) ∼= L2
disc(M2). To see

this we find it convenient to follow [27] and we refer the reader to that paper for
details. We need a lemma from [27] and this requires some notation. Let G be a
finite group, and V is a G-module. Denote by V G the submodule of V invariant
under the G-action. The following is Lemma 1 of [27].

Lemma 3.2. Suppose G is a finite group, (H1, H2) an almost conjugate pair in G

and suppose that G acts on the complex vector space V . Then there is an isomor-
phism ι :V H1 → V H2 , commuting with the action of any endomorphism ∆ of V for
which the following diagram commutes.

V H1 ι−→ V H2

∆
� �∆

V H1 ι−→ V H2 .

Now let M0 be the cover of M corresponding to the kernel of the homomorphism
to G. Taking V to be L2

disc(M0) in Lemma 3.2, ∆ to be the Laplacian, and noting
that for i = 1, 2, L2

disc(Mi) = L2
disc(M0)Hi , it follows that L2

disc(M1) ∼= L2
disc(M2).

The proof that the manifolds have the same complex length spectra follows that
given in [33].

Remark 3.3. As noted above, the method of Sunada [33] also produces pairs of
finite volume hyperbolic 3-manifolds with the same complex length spectrum. More
generally, in the case of closed hyperbolic 3-manifolds, the complex length spectrum
is known to determine the spectrum of the Laplacian, see [31, Thm. 1.1]. This also
holds for cusped hyperbolic manifolds, as can be seen from [22, Thm. 2] for example.
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Example 3.4. For p a prime, we denote by Fp the finite field of p elements, and
denote by PSL(2, p) the finite group PSL(2,Fp) (which of course are simple for
p > 3). It is known that (see [19] for example) for p = 7, 11 the groups PSL(2, p)
contain almost conjugate pairs of subgroups of index 7 and 11 respectively.

Remark 3.5. In [19], it is shown that there are no examples of almost conjugate
(but not conjugate) subgroups of a finite group of index less than 7. Hence, 7-fold
covers are the smallest index covers for which the Sunada construction can be
performed.

Given the previous setup, we can now prove the following straightforward
proposition that is the key element in our construction. We require a prelimi-
nary definition. Following Riley [30] if M = H3/Γ is an orientable finite volume
1-cusped hyperbolic 3-manifold, P < Γ a fixed maximal peripheral subgroup and
ρ : π1(M) → PSL(2, p) a representation, then ρ is called a p-rep if ρ(P ) is nontrivial
and all nontrivial elements in ρ(P ) are parabolic elements of PSL(2, p). In which
case, ρ(P ) is easily seen to have order p. More generally if M has more than 1-cusp
we call ρ a p-rep of π1(M) if the image of all maximal peripheral subgroups satisfies
the same condition as above.

Proposition 3.6. Let M = H3/Γ be an orientable non-arithmetic finite volume
1-cusped hyperbolic 3-manifold that is the minimal element in its commensurability
class. Suppose that ρ is a p-rep of Γ onto G = PSL(2, 7) or PSL(2, 11). Then M has
a pair of 1-cusped isospectral but non-isometric covers of degree 7 or 11 respectively.
In addition this pair of manifolds have the same complex length spectra.

Proof. Let Mi = H3/Γi (i = 1, 2), be the covers of M corresponding to the almost
conjugate pair in Example 3.4 above in either of the cases p = 7, 11.

Once we establish that M1 and M2 both have 1 cusp, that M1 and M2 are
isospectral and non-isometric follows from Theorem 3.1. This also shows that they
have the same complex length spectra. We deal with the case of p = 7, the case of
p = 11 is exactly the same.

Let P denote a fixed maximal peripheral subgroup of Γ. For i = 1, 2, let Pi =
Γi ∩ P . We claim that for i = 1, 2, [P : Pi] = 7. This implies that the covers M1

and M2 have one cusp, for then the degree of the cover on a cusp torus of Mi to
the cusp of M is 7 to 1, i.e. Mi can have only one cusp.

To prove the claim, since the epimorphism ρ is a p-rep, the image of P consists
of parabolic elements of PSL(2, p), and as remarked upon above, such subgroups
have order 7. On the other hand, H1 and H2 have index 7 in PSL(2, 7), and since
PSL(2, 7) has order 168, the subgroups H1 and H2 both have order 24, which is
co-prime to 7. It follows from this that ρ(Pi) = 1, so that [P : Pi] = 7, and this
completes the proof.

We close this section by making the following observation. This will be helpful
in computational aspects carried out in Sec. 7.
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Suppose that M is a 1-cusped hyperbolic 3-manifold and ρ :π1(M) → PSL(2, p)
a representation. We will say that ρ is a p-good-rep if ρ is an epimorphism and there
exists a pair of non-conjugate p-index subgroups Hi of PSL(2, p) with the following
property: if Mi is the cover of M obtained from Hi, then Mi is 1-cusped for i = 1, 2
and M1 is not isometric to M2. We are interested in p = 7, 11.

Lemma 3.7. Fix p = 7, 11. If H1 and H2 are non-conjugate index p subgroups of
PSL(2, p), then (H1, H2) is a Sunada pair in PSL(2, p).

Proof. This can be done efficiently in magma, since a computation reveals that for
p = 7, 11, the group PSL(2, p) has only two subgroups of index p, up to conjugation.
Since PSL(2, p) has a Sunada pair, if follows that the above pair of subgroups is
the unique Sunada pair, up to conjugation. Moreover, H1 and H2 are interchanged
by the outer automorphism group Out(PSL(2, p)) = Z/2Z.

Corollary 3.8. Every p-good rep for p = 7, 11 is a p-rep.

4. An Example: Covers of a Knot Complement in S3

In the next section we will prove Theorem 1.1. It is instructive in this section to
present an example of Proposition 3.6, as some of the methods used in this example
will be employed below. We discuss the method in a more general framework in
Sec. 6.

Let K be the knot K11n116 of the Hoste–Thistlethwaite table shown in Fig. 1.
K is known as 11n114 in the Snap census [14], 11298 in the LinkExteriors table,
t12748 in the OrientableCuspedCensus and K8297 in the CensusKnots.

Using Snap, the manifold M = S3\K = H3/Γ has a decomposition into 8 ideal
tetrahedra, has volume 7.754453760202655 . . . and invariant trace field k = Q(t)
where t = 0.0010656− 0.9101192i is a root of the irreducible polynomial

p(x) = x8 − 3x7 + 5x6 − 3x5 + 2x4 + 2x3 + 2x+ 1.

Note that the discriminant of this polynomial is 156166337, a prime, and so this is
the discriminant of k. Hence the ring of integers of k (denoted Rk) coincides with
Z[t].

Fig. 1. The knot K11n116.
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Snap shows that the geometric representation of Γ has traces, lying in Rk (see
below). In [15] it is shown that Γ = Comm(Γ), and so we are in a position to apply
Proposition 3.6.

7-fold covers. From the above 7 is unramified in k/Q (since 7 does not divide the
discriminant of k), and using Pari [25] for example, it can be shown that the ideal
(7) = 7Rk factors as a product P1P2P3 of prime ideals Pi for i = 1, 2, 3 of norm 7,
72 and 75 respectively. k has class number 1, so all ideals are principal, and in the
above notation, the prime ideal P1 coincides with (t− 1).

We will use the prime ideal P1 (henceforth denoted simply by P) to construct a
p-rep as in Proposition 3.6. To that end, we need to identify a particular conjugate
of Γ with matrix entries in Rk. Snap yields the following presentation of Γ:

Γ = 〈a, b, c | aaCbAccBB, aacbCbAAB〉
with peripheral structure

µ = CbAcb, λ = AAbCCbacb,

where, as usual A = a−1, B = b−1 and C = c−1. Using Snap it can be shown that
Γ can be taken to be a subgroup of PSL(2, Rk) represented by matrices as follows
(note that from the irreducible polynomial of t we see that t is a unit):

a =

 
−t2 + t − 1 t7 − 3t6 + 4t5 − t4 + t2 − t

−t2 + t − 1 0

!
,

b =

 
−t7 + 2t6 − 2t5 − 3t3 + 2t2 − 3t − 1 t6 − 2t5 + t4 + 3t3 − 2t2 + 3t + 2

−t7 + 3t6 − 5t5 + 4t4 − 4t3 + 2t2 − 2t − 1 t7 − 3t6 + 5t5 − 4t4 + 4t3 − t2 + t + 2

!
,

c =

 
−t6 + 4t5 − 8t4 + 7t3 − 5t2 − t −2t7 + 7t6 − 14t5 + 15t4 − 12t3 + t2 + 3t − 1

t5 − 3t4 + 4t3 − 3t2 + t −t7 + 4t6 − 9t5 + 11t4 − 9t3 + 3t2 + t − 2

!
.

The meridian and longitude are given by

µ =

 
t7 − 4t6 + 8t5 − 8t4 + 5t3 − 2t −t7 + 2t6 − 3t5 + t4 − 2t3 − 4t2 − 2t − 1

t7 − 4t6 + 9t5 − 11t4 + 10t3 − 3t2 + 3 −t7 + 4t6 − 8t5 + 8t4 − 5t3 + 2t − 2

!
,

λ =

 
−2t7 + 6t6 − 10t5 + 7t4 − 7t3 + 3t2 − 8t − 1 2t7 − 9t6 + 18t5 − 19t4 + 15t3 − 11t2 + 3t + 6

6t7 − 20t6 + 38t5 − 35t4 + 31t3 − t2 − t + 18 2t7 − 6t6 + 10t5 − 7t4 + 7t3 − 3t2 + 8t − 1

!
.

Now let ρ7 : Γ → PSL(2, 7) denote the p-rep obtained by reducing entries of
these matrices modulo P . A computation gives:

ρ7(a) =

(
6 1

6 0

)
, ρ7(b) =

(
1 6

3 5

)
, ρ7(c) =

(
3 4

0 5

)

and

ρ7(µ) =

(
0 4

5 5

)
, ρ7(λ) =

(
2 5

1 3

)
.
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We now check that ρ7 is onto. To see this, note that T = ρ7(aB) =
(−1 0

2 −1

)
and performing the conjugation ρ7(a)Tρ7(A) gives the matrix

(−1 2

0 −1

)
.

Finally, after taking powers of these elements we see that ρ7(Γ) contains the

elements
(

1 0

1 1

)
and

(
1 1

0 1

)
. These clearly generate PSL(2, 7), and we are now in a

position to apply Proposition 3.6 to complete the construction of examples.

11-fold covers. 11 is also unramified in k/Q and (11) = Q1Q2Q3 where Qi for
i = 1, 2, 3 are prime ideals of norm 11, 11 and 116. Moreover, we can takeQ1 = (t+1)
and Q2 = (t2 − t− 1).

Let ρ′11, ρ
′′
11 : Γ −→ PSL(2, 11) denote the p-reps obtained by reducing entries

of these matrices modulo Q1 and Q2 respectively. A computation gives:

ρ′11(a) =

(
8 4

8 0

)
, ρ′11(b) =

(
1 9

9 5

)
, ρ′11(c) =

(
9 3

10 1

)
,

ρ′11(µ) =

(
9 6

9 0

)
, ρ′11(λ) =

(
9 6

9 0

)

and

ρ′′11(a) =

(
9 6

9 0

)
, ρ′′11(b) =

(
4 36

12 12

)
, ρ′′11(c) =

(
32 12

28 4

)
,

ρ′′11(µ) =

(
32 0

32 32

)
, ρ′′11(λ) =

(
32 0

28 32

)
.

Note that ρ′11 and ρ′′11 are not intertwined by an automorphism of PSL(2, 11)
since ρ′11(µ) = ρ′′11(λ) but ρ′11(µ) �= ρ′′11(λ).

Remark 4.1. The construction of closed examples in [28] arise from Dehn surgery
on the knot 932 (a construction that we extend below). Proposition 3.6 can be
applied to show that examples of isospectral 1-cusped manifolds arise as 11-fold
covers of S3\932. The examples constructed above have much smaller volume and
so are perhaps more interesting.

5. Proof of Theorem 1.1: Infinitely Many Examples

In this section we complete the proof of Theorem 1.1 by exhibiting infinitely many
examples. This builds on the ideas of [28, Sec. 3] and Sec. 4.
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5.1. A lemma

Using ideas from [28] together with Proposition 3.6, we will prove the following.
This will complete the proof of Theorem 1.1, given the existence of a 2-cusped
manifold as in Lemma 5.1 (which we exhibit in Sec. 5.2).

Lemma 5.1. Let M = H3/Γ be an orientable non-arithmetic finite volume
2-cusped hyperbolic 3-manifold that is the minimal element in its commensurability
class. Suppose that ρ is a p-rep of Γ onto G = PSL(2, 7) or PSL(2, 11). Then there
are infinitely many Dehn surgeries r = p/q on one cusp of M so that the resultant
manifolds M(r) are hyperbolic and have 1-cusped covers that are isospectral but
non-isometric.

Proof. We will deal with the case of G = PSL(2, 7), the other case is similar.
Associated to the two cusps of M we fix two peripheral subgroups P1 and P2, and
we will perform Dehn surgery on the cusp associated to P2, thereby preserving
parabolicity of the nontrivial elements of P1 after Dehn surgery.

Fix a pair of generators µ and λ for P2. By p/q-Dehn surgery on the cusp
associated to P2 we mean that the element µpλq is trivialized. We denote the
result of p/q-Dehn surgery by M(p/q). Note that for sufficiently large |p|+ |q|, the
resultant surgered manifolds will be 1-cusped hyperbolic manifolds and will still be
the minimal elements in their commensurability class (see Theorem 3.2 of [28]).

Since ρ is a p-rep, ρ(P2) is nontrivial. Performing p/q-Dehn surgery on the cusp
associated to P2, if we can arrange that ρ(µpλq) = 1, then the p-rep ρ will factor
through π1(M(p/q)), thereby inducing a p-rep of π1(M(p/q)).

Now ρ(P2) is a cyclic subgroup C = 〈x〉 of order 7. Hence there are integers
s, t ∈ {0,±1,±2,±3} (not both zero) so that ρ(µ) = xs and ρ(λ) = xt. Hence we
need to find infinitely many co-prime pairs (p, q) which satisfy ps+qt = 7d with s, t
as above and for integers d. This is easily arranged by elementary number theory.
For example, if exactly one of ρ(µ) or ρ(λ) is trivial (say ρ(λ)), then we can choose
integers p = 7n and q coprime to 7n will suffice to prove the lemma in this case. If
both s, t �= 0, a similar argument holds. For example suppose that s = t = 2. Then
choosing q = 1 and p an integer of the form 7a− 1 will work.

Thus we have constructed infinitely many 1-cusped hyperbolic 3-manifolds with
a p-rep onto PSL(2, 7) and so the proof is complete by an application of Proposi-
tion 3.6.

5.2. A 2-component link–92
34

From [15] the 2-component link L = 92
34 of Rolfsen’s table (which is the link 9a62

in the Snap census and L9a21 in the Hoste–Thistlethwaite table) shown in Fig. 2
has the property that M = S3\L is the minimal element in its commensurability
class.
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Fig. 2. The link 92
34.

The link complement has volume approximately 11.942872449472 . . . and invari-
ant trace-field k generated by a root t of:

p(x) = x10 − x9 − x8 − x7 + 6x6 + x5 − 3x4 − 4x3 + 2x2 + 2x− 1.

As can be checked using Pari, (7) = P1P2P3P4P5 where Pi for i = 1, . . . , 5 are
prime ideals of norm 7, 7, 72, 73 and 73. Moreover, we can take P1 = (t + 1). The
fundamental group has presentation

Γ = 〈a, b, c | aBACbccabCCBcabAcb, abAcbaCCBccABC〉
with peripheral structure

(µ1, λ1) = (b, BBAcbaCC), (µ2, λ2) = (BC, aBACbccaCCbccBACb).

Following the ideas above it can be shown that the faithful discrete representation
of π1(M) can be conjugated to lie in PSL(2, Rk) and that reducing modulo P1

provides a p-rep onto PSL(2, 7) given by

ρ(a) =

(
3 5

0 5

)
, ρ(b) =

(
3 1

5 2

)
, ρ(c) =

(
3 6

6 3

)
,

ρ(µ1) =

(
3 1

5 2

)
, ρ(λ1) =

(
4 6

2 5

)
, ρ(µ2) =

(
5 6

2 4

)
, ρ(λ2) =

(
3 6

2 2

)
.

Moreover, fixing a cusp, ρ can be conjugated to a representation such that the
meridian and longitude pair of both map to

(
1 −1

0 1

)
. Choosing p = −(7n+ 1) (suf-

ficiently large) and q = 1 provides explicit Dehn surgeries as given by Lemma 5.1.

6. Two Methods to Construct Sunada Pairs

We now discuss two methods for implementing Proposition 3.6. In Sec. 4, an exam-
ple of a minimal knot complement was used to build examples (we will refer to
this example as Example 1). The framework for this was to reduce the geometric
representation, defined over a localization of the ring of integers of a number field,
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modulo a prime of norm 7 or 11. We shall call this Method G. A second method
(which we refer to Method R), mentioned at the end of Sec. 3, is to compute all
p-good reps for p = 7, 11. Each method has its own merits. Method R can be imple-
mented efficiently by magma and SnapPy to search over lists of manifolds. Method
G (which involves exact arithmetic computations) requires a combination of Snap,
SnaPy, pari and sage and a lot of cutting and pasting, but produces infinitely
many 1-cusped examples.

Let us describe Method G in more detail. We start with a cusped orientable
hyperbolic 3-manifold M . Its geometric representation

π1(M) −→ PSL(2, R)

can be defined over a subring R of an extension of the invariant trace-field. In
many cases, this is actually contained in the invariant trace-field k (e.g. for knots
in integral homology 3-spheres). If we can find a prime ideal P in R of norm 7 or 11
which is not inverted in R, then we can reduce the geometric representation of M
to get a representation ρ : π1(M) −→ PSL(2, p) for p = 7 or p = 11. We can further
check that ρ is a p-rep. If we can also compute the commensurator of π1(M), then
we can apply Proposition 3.6.

Before we get into the details, let us recall that (Hoste–Thistlethwaite and Rolf-
sen) tables of hyperbolic knots are available from SnapPy [7] and from Snap [14]. A
consistent conversion between these tables is provided by SnapPy [7].

7. More Examples

7.1. Example 1 via method R

Consider the knot K = K11n116 from Fig. 1.
Setting M =S3\K, magma computes that π1(M) has 4 epimorphisms in

PSL(2, 7) and two of them are 7-good reps. (corresponding to those we found in
Sec. 4). The corresponding pair M1 and M2 of index 7 covers are isospectral and
non-isometric. We can also confirm that M1 and M2 are not isometric using the
isometry signature (a complete invariant) of [11]. As shown by magma both have
common homology Z/2 + Z/110 + Z.

SnapPy computes that M has 42 11-fold covers. Of those, 8 have a total space
with one cusp, and among those, we find 11-good covers: there is one pair of covers
with homology Z/2 + Z/210+ Z and another pair with homology Z/2 + Z/406+ Z

and non-isometric total spaces for either pair. These pairs (M ′
1,M

′
2) and (M ′′

1 ,M
′′
2 )

are built from the epimorphisms ρ′11 and ρ′′11. (M ′
1,M

′
2) and also (M ′′

1 ,M
′′
2 ) are

isospectral.

7.2. Example 2: Covers of the manifold v2986 via method G

Let M = H3/Γ denote the manifold from the Snap census v2986. SnapPy confirms
that M is not a knot complement in S3 (since it can be triangulated using 7 ideal
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tetrahedra and is not isometric to a manifold in CensusKnots, the complete list
of hyperbolic knots with at most 8 tetrahedra) but it does have H1(M ; Z) = Z.
The volume of M is approximately 6.165768948 . . . (which is less than the previous
example). Again from [15], we have that Γ = Comm(Γ). Snap gives the following
presentation of the fundamental group Γ

Γ = 〈a, b, c | acbCBaBAc, abcbbAAC〉
with peripheral structure

µ = C, λ = BCabAA.

From Snap we see that Γ has integral traces and has invariant trace-field generated
by a root of the polynomial

p(x) = x8 − 2x7 − x6 + 4x5 − 3x3 + x+ 1.

Using Pari, we get a decomposition (7) = P1P2P3 into prime ideals P1, P2 and
P3 of norm 7, 73 and 74. Moreover, we can take P1 = (t3 − t− 1). The geometric
representation is still defined overRk, and its reduction ρ7 : Γ −→ PSL(2, 7) modulo
P1 is given by:

ρ7(a) =

(
10 4

4 8

)
, ρ7(b) =

(
0 8

6 12

)
, ρ7(c) =

(
4 2

6 12

)

and

ρ7(µ) =

(
12 12

8 4

)
, ρ7(λ) =

(
8 6

4 4

)
.

As before, one can check that ρ7 is onto, and thereby construct isospectral covers
with one cusp using Proposition 3.6.

7.3. Example 3: Covers of knot complements with at most

8 tetrahedra via method R

Of the 502 hyperbolic knots in CensusKnotswith at most 8 ideal tetrahedra, SnapPy
computes that the following 11 have trivial isometry group:

K8226,K8252,K8270,K8277,K8287,K8290,K8292,K8293,K8296,K8297,K8301.

Note that K8297 is the knot of Example 1. Snap confirms that all of these knots
have no hidden symmetries. Of the above 11 knots, magma finds that the following
8 have at least one 7-good-rep:

K8252,K8270,K8277,K8290,K8292,K8293,K8297,K8301

and all 11 have at least one 11-good-rep.
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7.4. Example 4: The list of 1-cusped manifolds of [15]
via method R

[15] gave a list of 13486 hyperbolic manifolds with at least one cusp, along with
their hidden symmetries. Of those with no hidden symmetries, 1252 have one cusp,
1544 have two cusps and 106 have four cusps.

There are 6 manifolds with one cusp and no hidden symmetries and with at
most 7 ideal tetrahedra in the above list:

v2986, v3205, v3238, v3372, v3398, v3522

magma computes that all 7 of those manifolds have 7-good reps, and that the fol-
lowing 3

v3205, v3238, v3522

have 11-good reps.
Let M denote the list of 1252 one cusped manifolds with no hidden symmetries,

and Mp the sublist of those with p-good reps for p = 7, 11. If |X | denotes the number
of elements of a set X , a computation shows that

|M7 ∩M11| = 809, |M7\M11| = 165,

|M11\M7| = 220, |M\(M7 ∪M11)| = 58.
(1)

The manifolds in M7 ∩M11 with at most 10 ideal tetrahedra are

v3205, v3238, v3522,K10n10,K11n27,K11n116,K12n318,K12n644.

The complete data (in SnapPy readable format) is available from [13].

8. Final Comments

In this final section we discuss further the nature of the discrete spectrum for
1-cusped hyperbolic 3-manifolds. As described in Sec. 2, one issue in the cusped
setting is whether there is any interesting discrete spectrum. Theorem 2.4 gives
conditions when the discrete spectrum is infinite, and we will take this up here for
1-cusped hyperbolic 3-manifolds. In what follows M = H3/Γ will denote a 1-cusped
orientable finite volume hyperbolic 3-manifold with discrete spectrum λ1 ≤ λ2 . . . .

8.1. Essentially cuspidal manifolds

As was mentioned previously, there is no direct analogue of the Weyl law for cusped
hyperbolic 3-manifolds, however the following asymptotic that takes account of a
contribution from the continuous spectrum can be established using the Selberg
trace formula (see [10] Chap. 6.5 and [32]). To state this, we introduce the following
notation.

For T > 0 let A(Γ, T ) = |{j :λj ≤ T 2}| and M(Γ, T ) = − 1
2π

∫ T

−T
φ′

φ (1 + it)dt,
then

A(Γ, T ) +M(Γ, T ) ≈ 1
6π2

vol(M)T 3 as T → ∞.
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Therefore, getting good control on the growth of M(Γ, T ) implies a Weyl law

A(Γ, T ) ≈ 1
6π2

vol(M)T 3, as T → ∞. (†)
In [32], Sarnak defines Γ or M to be essentially cuspidal if the Weyl law (†)

holds. Thus the issue as to whether M is essentially cuspidal is, which of the terms
A(Γ, T ) or M(Γ, T ) dominates in the expression (†) above. It is known that con-
gruence subgroups of Bianchi groups are essentially cuspidal (see [29]); in this case
M(Γ, T ) = O(T logT ). An example of a non-congruence subgroup of a Bianchi
group that is also essentially cuspidal is given in [8].

In this regard, Sarnak [32] has conjectured, in a much broader context than
discussed here, that if M is essentially cuspidal then M is arithmetic. In fact,
in the case of surfaces, it is conjectured (see [20]) that the generic Γ in a given
Teichmüller space is not essentially cuspidal, and indeed (apart from the case of
the 1-punctured torus) the generic case should have only finitely many discrete
eigenvalues. This is based on work of Philips and Sarnak [26] on how eigenvalues
dissolve under deformation.

8.2. Knot complements

Even though Theorem 2.4 produces non-arithmetic 1-cusped hyperbolic 3-manifolds
for which A(Γ, T ) is unbounded, the contribution from M(Γ, T ) is conjecturally
enough to violate the Weyl law. Now there is no analogue of the Philips and Sarnak
result in dimension 3, but it seems interesting to understand how the discrete
spectrum behaves, for example for knot complements in S3.

To that end, the generic knot complement will be the minimal element in its
commensurability class, and so will likely have only finitely many discrete eigen-
values. In particular, we cannot apply Theorem 2.4 to deduce an infinite discrete
spectrum.

The figure-eight knot complement is the only arithmetic knot complement, and
it is also known to be a congruence manifold. Hence, the complement of the figure-
eight knot is essentially cuspidal. Thus, given Sarnak’s conjecture, the figure-eight
knot should be the only knot complement that is essentially cuspidal. We cannot
prove this at present, but we can prove Theorem 1.2 which we restate below for
convenience.

Theorem 8.1. Let M denote the complement of the figure-eight knot in S3. Sup-
pose that N is a finite volume hyperbolic 3-manifold which is isospectral with M .
Then N is homeomorphic to M .

Proof. Since N is isospectral with M , N cannot be closed since the poles of the
scattering function are part of the spectral data. The result will follow once the
following two claims are established.

Claims: (1) Vol(N) = Vol(M).
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(2) N and M have the same set of lengths of closed geodesics (without counting
multiplicities).

Deferring discussion of these for now, we complete the proof. From Claim (1) and
[5] the only possibility for N is the so-called sister of the figure-eight knot. However,
as can be checked by Snap for example the shortest length of a closed geodesic in
the sister is approximately 0.86255 . . . and for the figure-eight knot complement
it is 1.08707 . . . . In Sec. 8.3 we include a theoretical proof of the fact that the
shortest geodesic in the sister has length 0.86255 . . . and that the figure-eight knot
complement contains no closed geodesic of that length.

Note that both (1) and (2) are standard applications of the Weyl law and
trace formula in the setting of closed hyperbolic 3-manifolds (see for example [10]
Sec. 5.3). This is the approach taken here, however, as we have already remarked
upon, the cusped setting provides additional challenges. The proof of Claim (2) is
given in Sec. 8.4 and was kindly provided by Dubi Kelmer.

For Claim (1), the Weyl law in the cusped setting takes the form (see [6] Chap. 7)

A(Γ, T ) +M(Γ, T ) =
1

6π2
vol(M)T 3 +O(T 2) +O(T log T ).

In the case at hand, for both M and N the left-hand side is the same, and so it
follow that we can read off the volume (on letting T → ∞). A different proof of
equality of volume is given in Sec. 8.4.

Using Snap and [12] we can prove the following by a similar method. We begin
by recalling Theorem 7.4 of [12].

Theorem 8.2. There are only ten finite volume orientable 1-cusped hyperbolic
3-manifolds with volume ≤ 2.848. These are (in the notation of the original SnapPea
census).

m003,m004,m006,m007,m009,m010,m011,m015,m016,m017.
Note that m003 and m004 are the sister of the figure-eight knot and the figure-

eight knot respectively, m006 and m007 have the same volume (approximately
2.56897 . . .), m009 and m010 have the same volume (approximately 2.66674 . . .)
and m015, m016, and m017 have the same volume (approximately 2.82812 . . .).

Theorem 8.3. Let M be any the ten manifolds stated in Theorem 8.2. Then if N
is an orientable finite volume hyperbolic 3-manifold isospectral with M than N is
homeomorphic to M .

Proof. As in the proof of Theorem 8.1, the manifold N must have cusps, and
by [22, Thm. 2] N must have 1 cusp. As before N also has the same volume
as M . Note that all 10 manifolds in the above list have fundamental group that
is 2-generator, and so the manifolds admit an orientation-preserving involution.
Hence Theorem 2.4 applies to show that the discrete spectrum in all these cases is
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infinite. If N is isospectral to any of the manifolds in the list then N has the same
volume. Theorem 8.1 deals with m004, and also m003. Since m011 is the unique
manifold of that volume, then this one is also accounted for. The only possibilities
that remain to be distinguished are the pairs (m006,m007), (m009,m010) and the
triple (m015,m016,m017). This can be done using snap to compute the start of
the length spectrum. To deal with m006 and m007, and m009 and m010 one can
use the second shortest geodesic. To distinguish m015 from m016 and m017 one
can use the second shortest geodesics, and m016 and m017 are distinguished by the
shortest geodesic.

Note that m015 is the knot 52 in the standard tables and m016 is the (−2, 3, 7)-
pretzel knot, and so these knots, like the figure-eight knot, have complements that
are determined by their spectral data.

8.3. Shortest length geodesics in the sister of the figure-eight knot

Here we give a theoretical proof of the distinction in the lengths of the shortest
closed geodesic in M (as above) and its sister manifold N . In what follows we let
M = H3/Γ1 and N = H3/Γ2 As is well known Γ1,Γ2 < PSL(2,Z[ω]) of index 12,
and where ω2 + ω + 1 = 0.

As can be easily shown (see for example [24, Thm. 4.6]), the shortest translation
length of a loxodromic element in PSL(2,Z[ω]) occurs for an element of trace ω or
its complex conjugate ω (up to sign) and is approximately 0.8625546276620610 . . .;
i.e. the length of the shortest closed geodesic in N .

Fix the following elements of trace ω and ω (up to sign):

γ0 =

(
0 1

−1 ω

)
, γ′0 =

(
0 −1

1 ω

)

and

γ1 =

(
0 1

−1 ω

)
, γ′1 =

(
0 −1

1 ω

)
.

As can be checked for i = 0, 1, γi and γ′i are not conjugate in PSL(2,Z[ω]) (e.g.
using reduction modulo the Z[ω]-ideal 〈√−3〉).
Lemma 8.4. For i = 0, 1, γi and γ′i are representatives of all the PSL(2,Z[ω])-
conjugacy classes of elements of trace ω or ω (up to sign).

Proof. Suppose that t+ t−1 = ω with t = (ω + θ)/2 where θ =
√

−9−√−3
2 and let

k = Q(θ). It can be checked that k has discriminant 189 and has class number one.
Using this and the formulas in Chap. III.5 of [35] one deduces that the number of
conjugacy classes of elements of PSL(2, O3) of trace ω is 2.
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Since an element of trace ω simply gives a conjugate of k given by Q(t), the
same argument applies to also give two conjugacy classes in this case.

The claim about the lengths will follow once we establish that none of the
PSL(2,Z[ω])-conjugacy classes of γi and γ′i for i = 0, 1, meet Γ1 and at least one
meets Γ2. This can be done efficiently using magma as we now describe. We begin
with a preliminary observation.

Suppose that M = H3/Γ → Q = H3/Γ0 is a finite sheeted covering of finite-
volume orientable hyperbolic 3-orbifolds. Denoting the covering degree by d, the
action on cosets of Γ in Γ0 determines a permutation representation ρ : Γ0 → Sd

with kernelK. Suppose that [g1], . . . , [gr] denote the conjugacy classes of loxodromic
elements in Γ0 of minimal translation length �. Then M contains an element of
length � if and only if Γ ∩ [gi] �= ∅ for some i ∈ {1, . . . , r}, and this happens if and
only ρ(Γ) ∩ [ρ(gi)] �= ∅ for some i ∈ {1, . . . , r}.

We apply this in the case that N is the Bianchi orbifold Q = H3/PSL(2,Z[ω])
and M is either the figure-eight knot complement or its sister. In the former
case, the permutation representation has kernel the congruence subgroup Γ(4) <
PSL(2,Z[ω]) (of index 1920) and in the latter case the permutation representation
has kernel the congruence subgroup Γ(2) (of index 60). To implement the magma
routines we use the presentation of PSL(2,Z[ω]) from [18], and express the sub-
groups Γ1 and Γ2 in terms of these generators. Setting

a =

(
1 1

0 1

)
, b =

(
0 −1

1 0

)
and c =

(
1 ω

0 1

)
,

we have

PSL(2,Z[ω]) = 〈a, b, c | b2 = (ab)3 = (acbC2b)2 = (acbCb)3

= A2CbcbCbCbcb = [a, c] = 1〉,
Γ1 = 〈a, bcb〉,
Γ2 = 〈a2, bcabaCbCb〉.

The elements γi and γ′i for i = 0, 1 are described in terms of these generators as:

γ0 = bC, γ′0 = bc, γ1 = bac, γ′1 = bAC.

Below we include the magma routine that executes the above computation show-
ing no conjugates lie in Γ1 but at least one does in Γ2.

g<a,b,c>:=Group<a,b,c| b^2, (a*b)^3, (a*c*b*c^-2*b)^2,

(a*c*b*c^-1*b)^3, a^-2*c^-1*b*c*b*c^-1*b*c^-1*b*c*b, (a,c)>;

h1:= sub<g|a,b*c*b>;

h2:= sub<g|a^2, b*c*a*b*a*c^-1*b*c^-1*b>;
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print AbelianQuotientInvariants(h1);

\\[0]

print AbelianQuotientInvariants(h2);

\\[ 5, 0 ]

x0:=g!b*c^-1;

x1:=g!b*c;

y0:=g!b*a*c;

y1:=g!b*a^-1*c^-1; f1,i1,k1:=CosetAction(g,h1);

print Order(i1);

\\1920

f2,i2,k2:=CosetAction(g,h2);

print Order(i2);

\\60

l:=Class(i1,f1(x0)) meet Set(f1(h1));
print #l;

\\0

l:=Class(i1,f1(x1)) meet Set(f1(h1));

print #l;

\\0

l:=Class(i1,f1(y0)) meet Set(f1(h1));

print #l;

\\0

l:=Class(i1,f1(y1)) meet Set(f1(h1));

print #l;

\\0

k:=Class(i2,f2(x0)) meet Set(f2(h2));

print #k;

\\2

8.4. Determining the length set

Proposition 8.5. Let M1 and M2 be finite volume orientable 1-cusped hyperbolic
3-manifolds that are isospectral. Then they have the same set of lengths of closed
geodesics (without counting multiplicities).

Before commencing with the proof we recall the version of the trace formula
given in [10] Chap. 6, Theorem 5.1. This needs some notation. Let M = H3/Γ be
1-cusped finite volume orientable hyperbolic 3-manifold. Given a loxdromic element
γ ∈ Γ of complex length �γ + iθγ , we denote by γ0 the unique primitive element
such that γ = γj

0 . For convenience, we denote the discrete spectrum by λk = 1+ r2k,
and by φ(s) is (as before) the scattering function. The trace formula in this case
then states ([10], Chap. 6, Theorem 5.1).
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Theorem 8.6. For any even compactly supported test function g ∈ C∞
c (R) let h(r)

denote its Fourier transform. Then∑
k

h(rk) − 1
4π

∫
R

h(r)
φ′

φ
(ir)dr =

vol(M)
4π2

∫
R

h(t)r2dr

+ 4π
∑

γ∈Γlox

�γ0g(�γ)√
2 sinh( �γ+iθγ

2 )
+ aΓg(0) + bΓh(0)

− 1
2π

∫
R

h(r)
Γ′

Γ
(1 + ir)dr,

where the constants aΓ and bΓ are explicit constants depending only on Γ and the
summation on the right-hand side is over Γlox which represents conjugacy classes
of loxodromic elements in Γ.

Remark 8.7. Our notation is slightly different from [10] and there are less terms
due to our assumptions of only one cusp and no torsion. Also, the Γ(s) in the last
integral denotes the Γ-function and is not related to the Kleinian group Γ.

We now prove Proposition 8.5.

Proof. For our purposes it will be helpful to rewrite the sum over the loxodromic
classes and collect all the classes with the same �γ together. That is,

∑
γ∈Γlox

�γ0g(�γ)√
2 sinh( �γ+iθγ

2 )
=
∑

�


 ∑

γ∈Γlox

�γ=�

�γ0√
2 sinh( �γ+iθγ

2 )


 g(�)

=
∑

�

mΓ(�)g(�),

where we defined the twisted multiplicities mΓ(�) by

mΓ(�) =
∑

γ∈Γlox

�γ=�

�γ0√
2 sinh( �γ+iθγ

2 )
,

and the sum on the right is over the set of lengths of closed geodesics in M (in fact
we can take the sum over all � > 0 since mΓ(�) = 0 if � is not a length of a closed
geodesic).

We can thus rewrite the trace formula as∑
k

h(rk) − 1
4π

∫
R

h(r)
φ′

φ
(ir)dr =

vol(M)
4π2

∫
R

h(t)r2dr + 4π
∑

�

mΓ(�)g(�)

+ aΓg(0) + bΓh(0) − 1
2π

∫
R

h(r)
Γ′

Γ
(1 + ir)dr.
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Noting that mΓ(�) �= 0 if and only if � is a length of a closed geodesic in M , the
result will follow from the next proposition.

Proposition 8.8. With M1 and M2 as in Proposition 8.4, then Vol(M1) =
Vol(M2), aΓ1 = aΓ2 , bΓ1 = bΓ2 and mΓ1(�) = mΓ2(�) for any � > 0.

Proof. Let ∆V = Vol(M1) − Vol(M2), ∆a = aΓ1 − aΓ2 , ∆b = bΓ1 − bΓ2 , and
∆m(�) = mΓ1(�) −mΓ2(�). Taking the difference between the two trace formulas,
the left-hand side cancels and we get that for any even test function g ∈ C∞

c (R)

∆V
4π2

∫
R

h(t)r2dr + 4π
∑

�

∆m(�)g(�) + ∆ag(0) + ∆bh(0) = 0.

We can first take a test function g to be supported away from all the lengths in
the length spectrum of both manifolds and from 0 (e.g. make it supported in the
interval between zero and the shortest length), and satisfy that h(0) =

∫
g(x)dx = 0

but
∫

R
h(t)r2dr �= 0. Using such a test function we can deduce that ∆V = 0 (which

was already deduced from Weyl’s law). The difference of the trace formula hence
simplifies to

4π
∑

�

∆m(�)g(�) + ∆ag(0) + ∆bh(0) = 0.

Next, taking g supported away from all lengths and 0 but this time with h(0) = 1
we conclude that ∆b = 0, and then taking g supported on a small neighborhood
of 0 (smaller than the length of the shortest geodesic) we conclude that ∆a = 0 as
well. From this we get that for any test function∑

�

∆m(�)g(�) = 0.

Finally, for each � > 0 we can take g to be supported in a small enough neighborhood
of �, such that no other length in the length spectrum are in the support (except
� itself if it happens to be in the length spectrum of one of the manifolds). This
implies that ∆m(�) = 0 as well for any � > 0, thus concluding the proof.

The proof of Proposition 8.5 is now complete.
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