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ABSTRACT

The colored Jones function of a knot is a sequence of Laurent polynomials. It was
shown by Le and the author that such sequences are q-holonomic, that is, they satisfy
linear q-difference equations with coefficients Laurent polynomials in q and qn. We show
from first principles that q-holonomic sequences give rise to modules over a q-Weyl ring.
Frohman–Gelca–LoFaro have identified the latter ring with the ring of even functions
of the quantum torus, and with the Kauffman bracket skein module of the torus. Via
this identification, we study relations among the orthogonal, peripheral and recursion
ideal of the colored Jones function, introduced by the above mentioned authors. In the
second part of the paper, we convert the linear q-difference equations of the colored
Jones function in terms of a hierarchy of linear ordinary differential equations for its
loop expansion. This conversion is a version of the WKB method, and may shed some
information on the problem of asymptotics of the colored Jones function of a knot.

Keywords: Holonomic function; colored Jones function; recursion ideal; peripheral ideal;
orthogonal ideal; Kauffman bracket skein module; loop expansion; hierarchy of ODE;
WKB.
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1. Introduction

1.1. The colored Jones function and its loop expansion

The colored Jones function of a knot K in 3-space is a sequence

JK : Z −→ Z[q±/2]

of Laurent polynomials that encodes the Jones polynomial of a knot and its par-
allels [20, 31]. Technically, JK,n(q) is the quantum group invariant using the n-
dimensional representation of sl2 for n ≥ 0, normalized by Junknot,n(q) = [n]
(where [n] = (qn/2 − q−n/2)/(q1/2 − q−1/2)), and extended to integer indices by
JK,n = −JK,−n.
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In the spring of 2005, Le and the author proved that the colored Jones function
is q-holonomic [11]. In other words, it satisfies a linear q-difference equation with
coefficients Laurent polynomials in q and qn.

In [28], Rozansky introduced a loop expansion of the colored Jones function.
Namely, he associated to a knot K an invariant

J rat
K (q, u) =

∞∑

k=0

QK,k(u)(q − 1)k ∈ Q′(u)[[q − 1]],

where Q′(u)[[q − 1]] is the ring of power series in q − 1 with coefficients in the ring
Q′(u) of rational functions in u which do not have a pole at u = 1, and

QK,k(u) =
PK,k(u)

∆K(u)2k+1
,

where PK,k(u) ∈ Q[u±] and ∆K(t) is the Alexander polynomial normalized by
∆K(t) = ∆K(t−1), ∆K(1) = 1 and ∆unknot(t) = 1.

The relation between J rat
K and JK is the following equality, valid in the power

series ring Q[[q − 1]]

[n]J rat
K (q, qn) = JK,n(q) ∈ Q[[q − 1]], (1.1)

for all n > 0. Notice that ∆K(1) = 1, thus 1/∆K(u) ∈ Q′(u) and 1/∆K(qn) can
always be expanded in power series of q − 1. Notice moreover that J rat

K determines
JK and vice-versa, via the above equation.

In this paper, we convert linear q-difference equations for the colored Jones
function JK into a hierarchy of linear differential equations for the loop expan-
sion J rat

K .
Moreover, we study holonomicity of the colored Jones function from the point

of view of quantum field theory, and compare it with the skein theory approach of
the colored Jones function initiated by Frohman and Gelca.

The paper was written in the spring of 2003, following stimulating conversations
with A. Sikora, who kindly explained to the author the work of Gelca–Frohman–
LoFaro and others on the skein theory approach to the colored Jones function.
The author wishes to thank A. Sikora for enlightening conversations. The paper
remained as a preprint for over two years. The current version is substantially
revised to take into account the recent developments of the last two years.

1.2. Holonomic functions and the q-Weyl ring C
A holonomic function f(x) in one continuous variable x is one that satisfies a
nontrivial linear differential equation with polynomial coefficients.

In this section, we will see that the notion of holonomicity for a sequence of
Laurent polynomials naturally leads to a q-Weyl ring C defined below.

Holonomicity was introduced by Bernstein [1, 2] in relation to algebraic geom-
etry, D-modules and differential Galois theory. In a stroke of brilliance, Zeil-
berger noticed that holonomicity can be applied to verify, in a systematic way,
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combinatorial identities among special functions [34]. This was later implemented
on a computer [27, 33].

A key idea is to study the recursion relations that a function satisfies, rather than
the function itself. This idea leads in a natural way to noncommutative algebras of
operators that act on a function, together with left ideals of annihilating operators.

To explain this idea concretely, consider the operators x and ∂ which act on a
smooth function f defined on R (or a distribution, or whatever else can be differ-
entiated) by

(xf)(x) = xf(x), (∂f)(x) =
∂

∂x
f(x).

Leibnitz’s rule ∂(xf) = x∂(f)+f written in operator form states that ∂x = x∂ +1.
The operators x and ∂ generate the Weyl algebra which is a free noncommutative
algebra on x and ∂ modulo the two sided ideal ∂x− x∂ − 1:

A =
C〈x, ∂〉

(∂x− x∂ − 1)
.

The Weyl algebra is nothing but the algebra of differential operators in one variable
with polynomial coefficients. Given a function f of one variable, let us define the
recursion ideal If by

If = {P ∈ A|Pf = 0}.
It is easy to see that If is a left ideal of A. Following Zeilberger and Bernstein, we
say that f is holonomic if and only if If 6= 0. In other words, a holonomic function
is one that satisfy a linear differential equation with polynomial coefficients.

A key property of the Weyl algebra A (shared by its cousins, B and C defined
below) is that it is Noetherian, which implies that every left ideal is finitely gener-
ated. In particular, a holonomic function is uniquely determined by a finitely list,
namely the generators of its recursion ideal and a finite set of initial conditions.

The set of holonomic functions is closed under summation and product. More-
over, holonomicity can be extended to functions of several variables. For an excellent
exposition of these results, see [3].

Zeilberger expanded the definition of holonomic functions of a continuous vari-
able to discrete functions f (that is, functions with domain Z; otherwise known as
bi-infinite sequences) by replacing differential operators by shift operators. More
precisely, consider the operators N and E which act on a discrete function (fn) by

(Nf)n = nfn, (Ef)n = fn+1.

It is easy to see that EN = NE + E. The discrete Weyl algebra B is a noncommu-
tative algebra with presentation

B =
Q〈N±, E±〉

(EN −NE − E)
.

The field coefficients Q are not so important, and neither is the fact that we allow
positive as well as negative powers of N and E. Given a discrete function f , one
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can define the recursion ideal If in B as before. We will call a discrete function f

holonomic if and only if the ideal If 6= 0.
In our paper, we will consider a q-variant of the Weyl algebra. Let

R = Z[q±/2]. (1.2)

Consider the operators E and Q which act on a discrete function f : Z −→ R by:

(Qf)n(q) = qnfn(q), (Ef)n(q) = fn+1(q). (1.3)

It is easy to see that EQ = qQE. We define the q-Weyl ring C to be a noncommu-
tative ring with presentation

C =
R〈Q,E〉

(EQ− qQE)
. (1.4)

Given a discrete function f : Z −→ R, one can define the left ideal If in C as
before, and call a discrete function f q-holonomic if and only if the ideal If 6= 0.
Concretely, a discrete function f : Z −→ R is q-holonomic if and only if there exists
a nonzero element

∑
a,b ca,bE

aQb ∈ C such that
∑

a,b

ca,bq
(n+a)bfn+a(q) = 0. (1.5)

The sequence J : Z −→ R of Laurent polynomials that we have in mind is the
celebrated colored Jones function.

Theorem 1.1 [11]. The colored Jones function of every knot in S3 is q-holonomic.

1.3. The q-torus and the Kauffman bracket skein

module of the torus

In the above section, we introduced the q-Weyl ring C to define the notion of
holonomicity of a sequence of Laurent polynomials.

The q-Weyl ring is not new to quantum topology. It has already appeared in the
theory of quantum groups, (see [22, Chap. IV], [24]), under the name: the algebra
of functions of the quantum torus.

It has also appeared in the skein theory approach of the colored Jones polyno-
mial, via the Kauffman bracket. Let us review this important discovery of Frohman,
Gelca and Lofaro [7]. As a side bonus, we can associate two further natural knot
invariants: the quantum peripheral and orthogonal ideals.

1.4. The quantum peripheral and orthogonal ideals of a knot

The recursion relations (1.5) for the colored Jones function are motivated by the
work of Frohman, Gelca, Przytycki, Sikora and others on the Kauffman bracket
skein module, and its relation to the colored Jones function. Let us recall in brief
these beautiful ideas.
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Fig. 1. The relations of the Kauffman bracket skein module.

For a manifold N , of any dimension, possibly with nonempty boundary, let
Sq(N) denote the Kauffman bracket skein module, which is an R-module (where R
is defined in (1.2)) generated by the isotopy classes of framed unoriented links in N

(including the empty one), modulo the relations of Fig. 1.

Remark 1.2. Our notation differs slightly from Gelca’s et al. [7, 16, 17]. Gelca’s
t2 equals to q and further, Gelca’s (−1)nJn is our Jn+1 used below.

Let us recall some elementary facts of skein theory, reminiscent of TQFT:

Fact 1. If N = N ′ × I, where N ′ is a closed manifold, then Sq(N) is an algebra.
Fact 2. If N is a manifold with boundary ∂N , then Sq(N) is a module over the

algebra Sq(∂N × I).
Fact 3. If N = N1∪Y N2 is the union of N1 and N2 along their common boundary

Y , then there is a map:

〈 , 〉 : Sq(N1)⊗Sq(∂Y×I) Sq(N1) −→ Sq(N)

We will apply the previous discussion in the following situation. Let K denote
a knot in a homology sphere N , and let M denote the complement of a thickening
of K. Then, using the abbreviation Sq(T) := Sq(T2 × I), Gelca and Frohman
introduced in [6, 7] the quantum peripheral and orthogonal ideals of K (the latter
was called formal in [7, Sec. 5]):

Definition 1.3. (a) We define the quantum peripheral ideal P(K) of K to be the
annihilator of the action of Sq(T) on Sq(M). In other words,

P(K) = {P ∈ Sq(T)|P.∅ = 0}.
(b) We define the quantum orthogonal ideal of a knot K to be

O(K) = {v ∈ Sq(T)| 〈Sq(S1 ×D2)v, ∅〉 = 0}.

Note that O(K) and P(K) are left ideals in Sq(T) and that P(K) ⊂ O(K).
Unfortunately, the quantum peripheral and orthogonal ideals of a knot do not seem
to be algorithmically computable objects.

To understand the quantum peripheral and orthogonal ideals requires a better
description of the ring Sq(T), and its module Sq(S1 ×D2).

The skein module Sq(F × I) is well-studied for a closed surface F . It is a free
R-module on the set of free homotopy classes of finite (possibly empty) collections of
disjoint unoriented curves in F without contractible components. In particular, for
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a 2-torus T, Sq(T) is the quotient of the free R-module on the set {(a, b) |a, b ∈ Z}
modulo the relations (a, b) = (−a,−b). The multiplicative structure of Sq(T) is well-
known, and related to the even trigonometric polynomials of the quantum torus
[6]. Let us recall this description due to Gelca and Frohman. Consider the ring
involution given by

τ : C −→ C EaQb −→ E−aQ−b (1.6)

and let CZ2 denote the invariant subring of C. Frohman–Gelca [6] prove that

Fact 4. The map

Φ : Sq(T) −→ CZ2 (1.7)

given by

(a, b) −→ (−1)a+bq−ab/2(EaQb + E−aQ−b),

when (a, b) 6= (0, 0) and Φ(0, 0) = 1, is an isomorphism of rings.

Thus, to a knot one can associate three ideals: the recursion ideal in C and the
quantum peripheral and the orthogonal ideal in Sq(T). The next theorem explains
the relation between the recursion and quantum orthogonal ideals.

Theorem 1.4. (a) We have:

Φ(O) = CZ2 ∩ I.

In particular, the colored Jones function of a knot determines its quantum
orthogonal ideal.

(b) I is invariant under the ring involution τ .

The proof of the above theorem proves the following corollary which compares
the orthogonality relations of Gelca [16, Sec. 3] with the recursion relations given
here:

Corollary 1.5. Fix an element x of the quantum orthogonal ideal of a knot. The
orthogonality relation for the colored Jones function is (E − E−1)xJ = 0. On the
other hand, Theorem 1.4 implies that xJ = 0. It follows that a (d + 2)-term recur-
sion relation for the colored Jones function given by Gelca is implied by a d-term
recursion relation.

Remark 1.6. Frohman and Gelca claimed that the quantum peripheral ideal is
nonzero [7, Proposition 8] and [16, Proof of Corollary 1], by specializing at q = 1
and using the fact that the classical peripheral ideal is nonzero. At the time of [7],
the nontriviality of the classical peripheral ideal was known for hyperbolic knots.
Later on, the nontriviality was shown by Dunfield and the author for all knots
in S3 [5].

Combined with our Theorem 1.4, the surjection of the specialization map (that
sets q = 1) would prove Theorem 1.1. Unfortunately, there is an error in the
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argument of Frohman and Gelca. Instead, the surjection of the specialization map
became known as the AJ Conjecture, formulated by the author in [13]. For a state-
of-the art knowledge on the AJ Conjecture, see [18] and especially [23]. The latter
gives a friendly discussion of the classical and quantum peripheral and orthogonal
ideals of a knot.

1.5. Converting difference into differential equations

We now have all the ingredients to translate difference equations for {JK,n} to
differential equations for {QK,k}.
Theorem 1.7. (a) Theorem 1.1 implies a hierarchy of ODEs for {QK,k}. More

precisely, for every knot there exist a lower diagonal matrix of infinite size

D =




D0 0 0 . . .

D1 D0 0
. . .

D2 D1 D0
. . .

. . . . . . . . .




(1.8)

such that Di ∈ A1, 0 6= D0 and DQK = 0 where QK = (QK,1, QK,2, . . .)T .
(b) The above hierarchy uniquely determines the sequence {QK,k} up to a finite

number of initial conditions { dj

duj |u=jQK,k(u)} for 0 ≤ j ≤ deg(D0).

Notice that the hierarchy (1.8) depends on a linear q-difference equation for
{JK,n}. The degree of D0 can be computed from a linear q-difference equation for
{JK,n}, see (3.8) below.

1.6. Regular knots

In this section, we introduce the notion of a regular knot, and explain the impor-
tance of this class of knots. The smallest degree of a nontrivial differential operator
is 1.

Definition 1.8. A knot K is regular if JK satisfies a q-difference equation so that
deg(D0) = 1.

The explicit formulas of [11] imply that the knots 31 and 41 are regular. In a
forthcoming paper [15], we will prove that many twist knots are regular.

Among other reasons, regularity is important because of the following.

Corollary 1.9. If a knot K is regular, then J rat
K (q, u) (and thus, also JK) is

uniquely determined by the hierarchy (1.8) and the initial condition

J rat
K (q, 1) =

∞∑

k=0

QK,k(1)(q − 1)k ∈ Q[[q − 1]] (1.9)
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The power series invariant J rat
K (q, 1) is a disguized form of the Kashaev invariant

of a knot, which plays a prominent role in the Volume Conjecture, due to Kashaev,
and H. and J. Murakami; see [21, 25]. Recall that the Volume Conjecture states
that for a hyperbolic knot K, we have

lim
n→∞

1
n

log |JK,n(e2πi/n)| = 1
2π

vol(K),

where vol(K) is the volume of K [30]. In [19], Le and Vu reformulated the sequence
(JK,n(e2πi/n)) in terms of the evaluation of a single function

κK(q) ∈ Λ̂ := invlimjZ[q±]/((1− q)(1− q2) · · · (1− qj)).

More precisely, Le constructed an element κK(q) in the above ring so that for all
n ≥ 1 we have:

κK(e2πi/n) = JK,n(e2πi/n).

There is a Taylor series map:

Taylor : Λ̂ −→ Z[[q − 1]].

Then, we have:

J rat
K (q, 1) = Taylor(κK(q)). (1.10)

The reader may deduce a proof of the above equation from [11, Sec. 3]. Thus,
for regular knots, the Kashaev invariant together with the ODE hierarchy (1.8)
uniquely determines the colored Jones function {JK}, and its growth-rate in the
Generalized Volume Conjecture.

1.7. Questions

The above hierarchy is reminiscent of matrix models discussed in physics. See, for
example [4] and Question 1.10 below.

Let us mention that the conversion of difference into differential equations
can actually be interpreted as an application of the WKB method for the linear
q-difference equation. This remark, and its implications to asymptotics of the col-
ored Jones function is explained in a later publication [14].

Let us end with some questions.

Question 1.10. Is there a physical meaning to the recursion relations of the colored
Jones function, and in particular of the hierarchy of ODE which is satisfied by its
loop expansion? Differential equations often hint at a hidden matrix model, or an
M-theory explanation.

Question 1.11. The hierarchy of ODEs that appear in Theorem 1.7 also appears,
under the name of semi-pfaffian chain, in complexity questions of real algebraic
geometry. We thank Basu for pointing this out to us. For a reference, see [8]. Is this
a coincidence?
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Question 1.12. In [9], Kricker and the author constructed a rational form Zrat

of the Kontsevich integral of a knot. As was explained in [10], this rational form
becomes the loop expansion of the colored Jones function, on the level of Lie alge-
bras. In [11] it is shown that the g-colored Jones function for any simple Lie algebra
g is q-holonomic. Holonomicity gives rise to a ring Cq,g with an action of the Weyl
group W of g. The ring Cq,g specializes to the coordinate ring of the g-character
variety of the torus, introduced by Przytycki–Sikora, at least in case g = sln; see,
for example [26, 29].

Is there a Kauffman bracket skein theory Sq,g that depends on g, in such a way
that we have a ring isomorphism:

Φg : Sq,g(T) −→ CW
g ?

If so, one could define the g-quantum peripheral and orthogonal ideals of a knot,
and ask whether the analogue of Theorem 1.4 holds:

Φg(Og) = CW
g ∩ Ig?

In addition, one may ask for an analogue of Theorem 1.7 for simple Lie algebras g.
Notice, however, that this analogue is going to be a hierarchy of PDEs for functions
of as many variables as the rank of the Lie algebra.

Question 1.13. Theorem 1.4 proves that I is an ideal in CZ2 invariant under the
ring involution τ . Is it true that I is generated by its Z2-invariant part? In other
words, is it true that I = C(CZ2 ∩ I)?

2. Proof of Theorem 1.4

Let us begin by discussing the recursion relation for the colored Jones function
which is obtained by a nonzero element of the quantum orthogonal ideal of a knot.
This uses work of Gelca, which we will quote here. For proofs, we refer the reader
to [16].

The problem is to understand the right action of the ring Sq(T) on the skein
module Sq(S1 ×D2).

To begin with, the skein module Sq(S1×D2) can be identified with the polyno-
mial ringR[α], where α is a longitudonal curve in the solid torus, andR = Z[q±1/2].
Rather than using the R-basis for Sq(S1×D2) given by {αn}n, Gelca uses the basis
given by {Tn(α)}n, where {Tn} is a sequence of Chebytchev-like polynomials defined
by T0(x) = 2, T1(x) = x and Tn+1(x) = xTn(x)− Tn−1(x).

Recall that the ring Sq(T) is generated by symbols (a, b) for integers a and b

and relations (a, b) = (−a,−b). Gelca [16, Lemma 1] describes the right action of
Sq(T) on Sq(S1 ×D2) as follows:

Tn(α) · (a, b) = qab/2(−1)b(qnb[qbSn+a(α)− q−bSn+a−2(α)]

+ q−nb[−qbSn−a−2(α) + q−bSn−a(α)]), (2.1)
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where {Sn} is a sequence of Chebytchev polynomials defined by S0(x) = 1, S1(x) =
x and Sn+1(x) = xSn(x)− Sn−1(x).

Consider an element x =
∑

a,b ca,b(a, b) of the quantum orthogonal ideal of a
knot and recall the pairing 〈 , 〉 from Fact 3. Since the (shifted) nth colored Jones
polynomial of a knot is given by Jn = (−1)n−1〈Sn−1(α), ∅〉, Eq. (2.1) implies the
recursion relation

0 =
∑

a,b

ca,bq
ab/2(−1)a+b(qnb[qbJn+a+1(K)− q−bJn+a−1(K)]

+ q−nb[−qbJn−a−1(K) + q−bJn−a+1(K)]) (2.2)

for the colored Jones function corresponding to an element
∑

a,b ca,b(a, b) in the
quantum orthogonal ideal.

Let us write the above recursion relation in operator form. Recall that the
operators E and Q act on the discrete function J by (EJ)(n) = J(n + 1) and
QJ(n) = qnJ(n), and satisfy the commutation relation EQ = qQE. Then, Eq. (2.2)
becomes:

0 =
∑

a,b

ca,bq
ab/2(−1)a+b(qbQbEa+1 − q−bQbEa−1 − qbQ−bE−a−1

+ q−bQ−bE−a+1)J.

Using the commutation relation EkQl = qklQlEk for integers k, l and moving the
E’s on the left and the Q’s on the right, we obtain that

0 = (E − E−1)
∑

a,b

ca,bq
−ab/2(EaQb + E−aQ−b)J.

Recall the isomorphism Φ of Eq. (1.7). Using this isomorphism, our discussion so
far implies that x ∈ CZ2 is an element of the quantum orthogonal ideal of a knot if
and only if (E−E−1)x lies in the recursion ideal. It remains to show that for every
x ∈ CZ2 , (E − E−1)x ∈ I if and only if x ∈ I. One direction is obvious since I is
a left ideal. For the opposite direction, consider x ∈ CZ2 , and let y = (E − E−1)x
and f = xJ . Assume that y ∈ I. We need to show that x ∈ I; in other words that
f = 0.

We have (E2 − I)f = E(E − E−1)f = 0, which implies that

f(n + 2) = f(n) (2.3)

for all n ∈ Z.
Recall the symmetry relation Jn + J−n = 0 for the colored Jones function. In

order to write it in operator form, consider the operator S that acts on a discrete
function f by (Sf)(n) = f(−n). Then, (S + I)J = 0.

It is easy to see that

SE = E−1S SQ = Q−1S. (2.4)
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Since CZ2 is generated by EaQb + E−aQ−b, it follows that S commutes with every
element of CZ2 ; in particular Sx = xS, and thus (S+I)f = (S+I)xJ = x(S+I)J =
0. In other words,

f(n) + f(−n) = 0 (2.5)

for all n. Equations (2.3) and (2.5) imply that f(2n) = f(0), f(2n + 1) = f(1),
f(0) = f(1) = 0. Thus, f = 0. This completes part (a) of Theorem 1.4.

For part (b), consider x ∈ I and recall the involution τ of (1.6). Then, we
have x = x+ + x− where x± = 1/2(x ± τ(x)) ∈ C±, where C± is generated by
EaQb ± E−aQ−b. (2.4) implies that Sx+ = x+S and Sx− = x−S. Now, we have

0 = xJ = x(−J) = xSJ = (x+ + x−)SJ = S(x+ − x−)J.

Since S2 = I, it follows that (x+ − x−)J = 0. This, together with 0 = (x+ + x−)J ,
implies that x±J = 0. In other words, x± ∈ I. Since τ(x) = x+ − x−, it follows
that I is invariant under τ .

The proof of Theorem 1.4 also proves Corollary 1.5.

Example 2.1. In [17], Gelca computes that the following element

(1,−2k − 3)− q−4(1,−2k + 1) + q(2k−5)/2(0, 2k + 3)− q(2k−1)/2(0, 2k − 1)

lies in the quantum peripheral (and thus quantum orthogonal) ideal of the left
handed (2, 2k + 1) torus knot. Using the isomorphism Φ and Theorem 1.4 and a
simple calculation, it follows that the following element

−q2(EQ−2k−3 + E−1Q2k+3) + q−4(EQ−2k+1 + E−1Q2k−1)

+ q−2(Q2k+3 + Q−2k−3)− (Q2k−1 + Q−2k+1)

lies in the recursion ideal of the left handed (2, 2k + 1) torus knot. This element
gives rise to a 3-term recursion relation for the colored Jones function.

3. Proof of Theorem 1.7

3.1. Three q-difference rings

In this section, we consider some auxiliary rings and their associated C-module
structure.

The colored Jones function is a sequence of Laurent polynomials, in other words
an element of the ring Z[q±/2]Z. The ring Z[q±/2]Z is a C-module via the action (1.3).
In other words, for f ∈ Z[q±/2]Z, we define:

(Qf)n(q) = qnfn(q), (Ef)n(q) = fn+1(q).

Consider the ring Q′(u)[[q − 1]] from Sec. 1.1. It is also a C-module, where for
f(q, u) ∈ Q′(u)[[q − 1]], we define:

(Qf)(q, u) = uf(q, u), (Ef)(q, u) = f(q, qu).
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Consider in addition the ring Q[[q − 1]]Z. It is a C-module, where for (fn(q)) ∈
Q[[q − 1]], we define:

(Qf)n(q) = qnfn(q), (Ef)n(q) = fn+1(q).

In the language of differential Galois theory, Z[q±/2]Z, Q′(u)[[q−1]] and Q[[q−1]]Z

are q-difference rings, see, for example [32]. There is a ring homomorphism:

Ev : Q′(u)[[q − 1]] −→ Q[[q − 1]]Z

given by

f(q, u) 7→ (f(q, qn)).

which respects the C-module structure. In other words, for f(q, u) ∈ Q′(u)[[q − 1]],
we have:

Ev(Qf) = QEv(f), Ev(Ef) = EEv(f).

It is not hard to see that Ev map is injective. Equation (1.1) then states that for
every knot K we have:

Ev(J rat
K ) = JK/Junknot.

Notice further that since JK is holonomic and Junknot,n(q) = [n] is closed-form (that
is, [n+1] ∈ Q(qn/2, q1/2)), it follows that JK/Junknot is holonomic, too. In the proof
of Theorem 1.7 below, J and J rat will stand for JK/Junknot and J rat

K respectively.

3.2. Proof of Theorem 1.7

Consider a function

J rat(q, u) =
∞∑

k=0

Qk(u)(q − 1)k ∈ Q′(u)[[q − 1]] (3.1)

such that J := Ev(J rat) ∈ Q[[q − 1]]Z is holonomic. Thus, XJ = 0 where X =∑
a,b ca,b(q)EaQb ∈ C, and the sum is finite. In other words, we have:

0 =
∑

a,b

ca,b(q)q(n+a)bJn+a(q).

Since Ψ is a map of C-modules, it follows that

0 = Ev


∑

a,b

c̃a,b(q)QbEaJ rat


 ,

where

c̃a,b(q) = ca,b(q)qab.

Since Ψ is an injection, it follows that

0 =
∑

a,b

c̃a,b(q)QbEaJ rat(q, u).
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Using Eq. (3.1) and interchanging the order of summation, we obtain that

0 =
∑

a,b

c̃a,b(q)ubJ rat(q, qau)

=
∞∑

k=0

(q − 1)kXQk, (3.2)

where

X : Q′(u) −→ Q′(u)[[q − 1]]

is the operator defined by

f 7→ X f =
∑

a,b

ca,b(q)ubqabf(uqa)

=
∑

a,b

c̃a,b(q)sbf(uqa)

Let us define

P (λ, u, q) =
∑

a,b

c̃a,b(q)ubλa ∈ Z[λ±, u±, q±].

In the language of q-difference equations, P (λ, u, q) is often called the characteristic
polynomial of X. Let us denote by 〈f〉m the coefficient of (q−1)m in a power series
f . Applying 〈·〉m to (3.2), it follows that for all m ≥ 0 we have

0 = 〈XQ0〉m + 〈XQ1〉m−1 + · · ·+ 〈XQm〉0 (3.3)

The chain rule implies that

〈Xf〉m = Dmf (3.4)

for some differential operator Dm with polynomial coefficients of degree at most m.
For example, we have:

(D0f)(u) = P (1, u, 1)f(u),

(D1f)(u) = Pq(1, u, 1)f(u) + Pλ(1, u, 1)uf ′(u),

(D2f)(u) = Pqq(1, u, 1)f(u) + Pλq(1, u, 1)uf ′(u) + Pλλ(1, u, 1)u2f ′′(u)

+ (Pλλ(1, u, 1)− Pλ(1, u, 1))uf ′(u),

where the subscripts .q and .λ denote ∂/∂q and λ∂/∂λ respectively, and the super-
script denotes derivative with respect to u.

Thus, we obtain that for all m ≥ 0

0 = DmQ0 +Dm−1Q1 + · · ·+D0Qm. (3.5)

J.
 K

no
t T

he
or

y 
R

am
if

ic
at

io
ns

 2
00

8.
17

:4
95

-5
10

. D
ow

nl
oa

de
d 

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 M
A

X
-P

L
A

N
C

K
-I

N
ST

IT
U

T
E

 F
O

R
 M

A
T

H
E

M
A

T
IC

S 
L

IB
R

A
R

Y
 o

n 
03

/1
7/

20
. R

e-
us

e 
an

d 
di

st
ri

bu
tio

n 
is

 s
tr

ic
tly

 n
ot

 p
er

m
itt

ed
, e

xc
ep

t f
or

 O
pe

n 
A

cc
es

s 
ar

tic
le

s.



April 18, 2008 19:45 WSPC/134-JKTR 00624

508 S. Garoufalidis

We will show shortly that Dm 6= 0 for some m. Assuming this, let l = min{m|Dm 6=
0} and define Dm = Dl+m. Equation (3.5) for l + m implies that

0 = Dm+lQ0 + Dm+l−1Q1 + · · ·+ D0Qm+l.

In other words,



D0 0 0 . . .

D1 D0 0
. . .

D2 D1 D0
. . .

. . . . . . . . .
. . .







Q0

Q1

Q2

Q3

...




=




0
0
0
0
...




as needed.
It remains to prove that Dm 6= 0 for some m. The definition of Dm implies

easily that Dk = 0 for k ≤ m if and only if for all multiindices I = (i1, . . . , ik) with
ij ∈ {q, λ} and k ≤ m, we have:

PI(1, u, 1) = 0. (3.6)

Since P (λ, u, q) is a Laurent polynomial, if Dm = 0 for all m, then P (λ, u, q) = 0.
Additively, there is a Z-linear isomorphism C ↔ Z[λ±, u±1, q±1], given by

QbEa 7→ ubva, and sends X ↔ P (λ, u, q). Thus, X = 0, a contradiction to
our hypothesis. This concludes part (a) of Theorem 1.7. Part (b) follows from
Lemma 3.1 below.

Let us finally compute l and the degree d of D0Dl from X. Notice that d equals
to the number of initial conditions needed to determine the sequence {Qk} from
the ODE hierarchy (1.8).

For natural numbers n,m with n ≥ m, let us denote by I(n,m) =
(λ, . . . , λ, q, . . . , q) the multiindex of length |I(n,m)| = n where λ appears m times
and q appears n−m times.

Equation (3.6) implies that

l = min{n |PI(n,m)(1, u, 1) 6= 0 for some m} (3.7)

and

d = min{m |PI(l,m)(1, u, 1) 6= 0}. (3.8)

Lemma 3.1. If ai, c ∈ C[u±1], an 6= 0, the ODE

anf (n) + an−1f
(n−1) + · · ·+ a0f = c

has at most one solution which is a rational function with fixed initial condition for
f (k)(x0) for k = 0, . . . , n− 1, where an(x0) 6= 0.

Proof. Consider the set of real numbers u such that a0(u) 6= 0. It is a finite set of
open intervals. Uniqueness of the solution (modulo initial conditions) is well-known.
Since f is a rational function, it is uniquely determined by its restriction on an open
interval. The result follows.
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