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INCOMPRESSIBILITY CRITERIA

FOR SPUN-NORMAL SURFACES

NATHAN M. DUNFIELD AND STAVROS GAROUFALIDIS

Abstract. We give a simple sufficient condition for a spun-normal surface in
an ideal triangulation to be incompressible, namely that it is a vertex surface
with nonempty boundary which has a quadrilateral in each tetrahedron. While
this condition is far from being necessary, it is powerful enough to give two new
results: the existence of alternating knots with noninteger boundary slopes,
and a proof of the Slope Conjecture for a large class of 2-fusion knots.

While the condition and conclusion are purely topological, the proof uses
the Culler-Shalen theory of essential surfaces arising from ideal points of the

character variety, as reinterpreted by Thurston and Yoshida. The criterion
itself comes from the work of Kabaya, which we place into the language of
normal surface theory. This allows the criterion to be easily applied, and gives
the framework for proving that the surface is incompressible.

We also explore which spun-normal surfaces arise from ideal points of the
deformation variety. In particular, we give an example where no vertex or
fundamental surface arises in this way.
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1. Introduction

Let M be a compact oriented 3-manifold whose boundary is a torus. A prop-
erly embedded surface S in M is called essential if it is incompressible, boundary
incompressible, and not boundary-parallel. If S has boundary, this consists of
pairwise-isotopic essential simple closed curves on the torus ∂M ; the unoriented
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isotopy class of these curves is the boundary slope of S. Such slopes can be param-
eterized by the corresponding primitive homology class in H1(∂M ;Z)/(±1). If a
basis of H1(∂M ;Z) is fixed, slopes can also be recorded as elements of Q ∪ {∞}.

Our focus here is on the set bs(M) of all boundary slopes of essential surfaces in
M , which is finite by a fundamental result of Hatcher [Hat1]. This is an important
invariant of M , for instance, playing a key role in the study of exceptional Dehn
filling. Building on Haken’s fundamental contributions [Hak], Jaco and Sedgwick
[JS] used normal surface theory to give a general algorithm for computing bs(M).
As with most normal surface algorithms, this method seems impractical even for
modest-sized examples (however, some important progress has been made on this
by [BRT]). For certain special cases, such as exteriors of Montesinos knots, fast
algorithms do exist [HT, HO, Dun2], and additionally character-variety techniques
can sometimes be used to find boundary slopes [CCGLS, Cul]. However, there
remain quite small examples where bs(M) is unknown, e.g., for the exteriors of
certain 9-crossing knots in S3.

Here, we introduce a simple sufficient condition that ensures that a normal sur-
face is essential. While our condition is far from being necessary, it is powerful
enough to give two new results: the existence of alternating knots with noninteger
boundary slopes, and a proof of the Slope Conjecture for all 2-fusion knots. Along
with [BRT], these are the first results that come via applying directly normal sur-
face algorithms, which have been greatly studied for their inherent interest in the
past 50 years.

We work in the context of an ideal triangulation T of M and Thurston’s corre-
sponding theory of spun-normal surfaces (throughout, see Section 2 for definitions).
In normal surface theory, vertex surfaces corresponding to the vertices of the pro-
jectivized space of normal surfaces play a key role. Our basic result is

1.1. Theorem. Suppose S is a vertex spun-normal surface in T with nontrivial
boundary. If S has a quadrilateral in every tetrahedron of T , then S is essential.

While this statement is purely topological, the proof uses the Culler-Shalen
theory of essential surfaces arising from ideal points of the character variety [CS,
CGLS], as reinterpreted by Thurston [Thu1] and Yoshida [Yos] in the context of the
deformation variety defined by the hyperbolic gluing equations for T . Theorem 1.1
is a strengthening of a result of Kabaya [Kab], who shows that, with the same
hypotheses, the boundary slope of S is in bs(M). Our contribution to Theorem 1.1
is restating Kabaya’s work in the language of normal surface theory, allowing it to
be easily applied, and showing that S is itself incompressible.

1.2. Alternating knots. Our application of Theorem 1.1 concerns the bound-
ary slopes of (the exteriors of) alternating knots in S3. In the natural meridian-
longitude basis for H1(∂M), Hatcher and Oertel [HO] showed that the boundary
slopes of alternating Montesinos knots were always even integers, generalizing what
Hatcher and Thurston had found for 2-bridge knots [HT]. Hatcher and Oertel asked
whether this was true for all alternating knots. We use Theorem 1.1 to settle this
20 year-old question:

1.3. Theorem. There are alternating knots with nonintegral boundary slopes. In
particular, the knot 1079 has boundary slopes 10/3 and −10/3.
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Figure 1.7. The link L.

Many additional such examples are listed in Table 6.1.

1.4. Dehn filling. The technique of Kabaya that underlies Theorem 1.1 can be
generalized to manifolds that arise from Dehn filling all but one boundary compo-
nent of a more complicated manifold. Specifically, in the language of Section 7 we
show:

1.5. Theorem. Let W be a compact oriented 3-manifold whose boundary consists
of tori T0, T1, . . . , Tn. Let S be a spun-normal surface in an ideal triangulation T of
W , with nonempty boundary slope γk on each Tk. Suppose that S has a quadrilateral
in every tetrahedra of T , and is a vertex surface for the relative normal surface space
corresponding to ( · , γ1, . . . , γn). Then γ0 is a boundary slope of W (·, γ1, . . . , γn).

This broadens the applicability of Kabaya’s approach since any given M arises
in infinitely many ways by Dehn filling, and thus a fixed surface S ⊂ M has many
chances where Theorem 1.5 might apply.

1.6. The Slope Conjecture for 2-fusion knots. Our application of Theorem 1.5
involves constructing a boundary slope for every knot of a certain 2-parameter
family. We use this to prove the Slope Conjecture of [Gar1] in the case of 2-fusion
knots. This conjecture relates the degree of the Jones polynomial of a knot and its
parallels to boundary slopes of essential surfaces in the knot complement. To state
our result, consider the 3-component link L from Figure 1.7. For a pair of integers
(m1,m2) ∈ Z2, let L(m1,m2) denote the knot obtained by (−1/m1,−1/m2) filling
on the cusps C1 and C2 of L, leaving the cusp C0 unfilled. The 2-parameter family
of knots L(m1,m2), together with the double-twist knots coming from filling 2
cusps of the Borromean link, is the set of all knots of fusion number at most 2; see
[Gar2]. The family L(m1,m2) has some well-known members: L(2, 1) = L(−1, 2)
is the (−2, 3, 7) pretzel knot, L(−2, 1) is the 52 knot, L(−1, 3) is k43 which was the
focus of [GL], and L(m1, 1) is the (−2, 3, 3m1 + 3) pretzel knot.
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Figure 1.8. The (−2, 3, 7) pretzel, the 52 knot, and the k43 knot.

Together with the results of [Gar2], the following confirms the Slope Conjecture
for 2-fusion knots in one of three major cases:

1.9. Theorem. For m1 > 1,m2 > 0, one boundary slope of L(m1,m2) is

3(1 +m1) + 9m2 +
(m1 − 1)2

m1 +m2 − 1
.

It is mysterious how the Jones polynomial selects one (out of the many) boundary
slopes of a knot, and it was fortunate that this slope happens to be one of the few
accessible by the special method of Theorem 1.5 for the family L(m1,m2) of 2-fusion
knots. Indeed, we tried without success to apply our same method to confirm the
Slope Conjecture for the rest of the 2-fusion knots. Note also that the results of
[FKP] do not imply Theorem 1.9, as the former only produce integer boundary
slopes.

1.10. Technical results. In addition to Theorems 1.1 and 1.5, we make progress
on the question of which spun-normal surfaces in an ideal triangulation T arise
from an ideal point of the deformation variety D(T ) (see Section 3 for more on
the latter). In particular, given an ideal triangulation T of a manifold M with one
torus boundary component, the goal is to determine all the boundary slopes that
arise from ideal points of D(T ). Of course, one can find all such detected slopes
by computing the A-polynomial, but this is often a very difficult computation,
involving projecting an algebraic variety (i.e. eliminating variables).

For a fixed surface S, we give a relatively easy-to-check algebro-geometric con-
dition (Lemma 4.15) which is both necessary and sufficient for S to come from an
ideal point. However, there are often only finitely many ideal points but infinitely
many spun-normal surfaces, and so Lemma 4.15 does not completely solve this
problem. A natural hope is that the surfaces associated to ideal points would be
vertex or fundamental surfaces, but we give a simple example in Section 9.2 where
this is not the case.

1.11. Outline of contents. In Sections 2 and 3 we review the basics of spun-
normal surfaces and deformation varieties. Then in Section 4 we study a class of
algebraic varieties which includes these deformation varieties. We place Kabaya’s
motivating result into that context (Proposition 4.12) and also give a necessary and
sufficient condition for there to be an ideal point with certain data (Lemma 4.15).
Section 5 is devoted to the proof of Theorem 1.1, and then Section 6 applies this
result to give nonintegral boundary slopes for alternating knots. Likewise, Section 7
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Figure 2.1. At left is the intersection of a spun-normal surface
with a single tetrahedron, with infinitely many triangles in each
corner. At right are the edge shifts of the hexagon regions as
defined in Figure 2.2.

proves Theorem 1.5 and Section 8 applies it to the Slope Conjecture for 2-fusion
knots. Finally, Section 9 explores the effectiveness and limitations of the methods
studied here.

2. Spun-normal surfaces

In this section, we sketch Thurston’s theory of spun-normal surfaces in ideal
triangulations. We follow Tillmann’s exposition [Til1] which contains all the omit-
ted details (see also [Kang, KR]). Let M be a compact oriented 3-manifold whose
boundary is a nonempty union of tori. An ideal triangulation T of M is a Δ-
complex (in the language of [Hat2]) made by identifying faces of 3-simplices in
pairs so that T \ (vertices) is homeomorphic to int(M). Thus T is homeomorphic
to M with each component of ∂M collapsed to a point.

A spun-normal surface S in T is one which intersects each tetrahedron in finitely
many quads and infinitely many triangles marching out toward each vertex (see
Figure 2.1(a)). While there are infinitely many pieces, S is, in fact, typically the
interior of a properly embedded compact surface in M whose boundary has been
“spun” infinitely many times around each component of ∂M . (The other possibility
for S near a vertex is that it consists of infinitely many disjoint boundary-parallel
tori.) Notice from Figure 2.1(a) that on any face of a tetrahedron, there is exactly
one hexagon region and infinitely many four-sided regions. Thus to specify a spun-
normal surface S, we need only record the number and type of quads in each
tetrahedron of T , since the need to glue hexagons to hexagons uniquely specifies
how the local pictures of S must be glued together across adjoining tetrahedra. As
there are three kinds of quads, if T has n tetrahedra, then S is uniquely specified by
a vector in Z3n

+ called itsQ-coordinates. This vector satisfies certain linear equations
which we now describe, as they will explain how ideal points of the deformation
variety give rise to such surfaces.

For an edge of a tetrahedron, let s be the amount the adjacent hexagons are
shifted relative to each other; the orientation convention is given in Figure 2.2, and
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s = 2 s = 0 s = −1

Figure 2.2. The shift parameter s of an edge describes the rela-
tive positions of the adjacent hexagons, as viewed from outside the
simplex Δ. Here Δ is oriented by the orientation of M , and the
induced orientation of ∂Δ distinguishes between s > 0 and s < 0.
As each picture is invariant under rotation by π, the shift does not
depend on an orientation of the edges themselves. The convention
here agrees with [Til1].

Figure 2.1(b) shows the resulting shifts on all edges of a tetrahedron. It is not so
hard to see that v ∈ Z3n

+ corresponds to a spun-normal surface if and only if

(a) There is at most one nonzero quad weight in any given tetrahedron.
(b) As we go once around an edge, the positions of the hexagons match up.

That is, the sum of the shifts s must be 0.

The shifts are linear functions of the entries of v (see Figure 2.1), and so the
conditions in (b) form a linear system of equations called the Q-matching equations.

As their Q-coordinates satisfy various linear equalities and inequalities, spun-
normal surfaces fit into the following geometric picture. Let C(T ) be the inter-
section of R3n

+ with the subspace of solutions to the Q-matching equations. Thus
C(T ) is a finite-sided convex cone. If we impose condition (a) as well, we get a set
F (T ) which is a finite union of convex cones whose integral points are precisely the
Q-coordinates of spun-normal surfaces. Within each convex cone of F (T ), vector
addition of Q-coordinates corresponds to a natural geometric sum operation on the
associated spun-normal surfaces.

It is natural to projectivize F (T ) by intersecting it with the affine subspace where
the coordinates sum to 1. The resulting set PF (T ) is a finite union of compact
polytopes. Since all the defining equations had integral coefficients, the vertices
of these polytopes lie in Q3n

+ . For such a vertex v, consider the smallest rational
multiple of v which lies in Z3n

+ ; that vector gives a spun-normal surface, called a
vertex surface. Vertex surfaces play a key role in normal surface theory generally
and here in particular.

One major difference between spun-normal surface theory and the ordinary kind
for nonideal triangulations is that normalizing a given surface is much more sub-
tle. This is because of the infinitely many intersections of a spun surface with
the 1-skeleton of T . However, building on ideas of Thurston, Walsh has shown
that essential surfaces which are not fibers or semi-fibers can be spun-normalized,
using characteristic submanifold theory [Wal]. Despite this, some key algorith-
mic questions remain unanswered for spun-normal surfaces. For instance, when M
has one boundary component, do all the strict boundary slopes arise from vertex
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v

Δ3
v ⊂ Nv

Figure 2.4. Orienting S ∩ Bv. Notice that S meets the triangle
of Bv in at most two of the three possible types of normal arcs.

spun-normal surfaces which are also essential? For an ordinary triangulation of M
(which will typically have more tetrahedra than an ideal one), the answer is yes
[JS, Theorem 5.3].

2.3. Ends of spun-normal surfaces. We now describe how a spun-normal sur-
face gives rise to a properly embedded surface in M , closely following Sections
1.9-1.12 of [Til1]. For notational simplicity, we assume that M has a single bound-
ary component. Let v be the vertex of T , and consider a small neighborhood Nv of
v bounded by a normal torus Bv consisting of one normal triangle in each corner
of every tetrahedron in T . We can assume that Bv and S are in general position
and that Nv meets only normal triangles of S.

We put a canonical orientation on the curves of S ∩ Bv as follows. First, tri-
angulate Nv by taking the cone to v of the triangulation of Bv. If n is a normal
triangle of S meeting Nv, its interior meets exactly one tetrahedron Δ3

v in Nv.
We orient n by assigning +1 to the component of Δ3

v \ n which contains v. This
induces a consistent transverse orientation for each component of S ∩Bv as shown
in Figure 2.4.

By Lemma 1.31 of [Til1], we can also do a normal isotopy of S so that all the
components of S ∩ Bv are nonseparating in the torus Bv. If the components of
S ∩ Bv don’t all have the same orientation, apply the proof of Lemma 1.31 of
[Til1] to an annulus between two adjacent components with opposite orientations
to reduce the size of S ∩ Bv. Thus we can assume that all components of S ∩ Bv

have the same orientation. It then follows from Lemma 1.35 of [Til1] that S ∩Nv

consists of parallel half-open annuli spiraling out toward v.
We now identify T \ int(Nv) with M . Then S′ = S ∩M is a properly embedded

surface in M . Since we understand S ∩ Nv, it’s easy to see that the isotopy type
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Figure 3.1. The relationship between the shape parameters of
the edges of an oriented tetrahedron in H3. Our convention here
agrees with [CDW] and [Til1, Section 2.2].

of S′ is independent of the choice of such Nv. (Here isotopies of S′ are allowed to
move ∂S′ within ∂M ; the isotopy class of S′ with ∂S′ fixed typically does depend
on the choice of Nv.) Thus, it makes sense to talk about the number of boundary
components of S and their slope.

3. Deformation varieties

As in Section 2, let T be an ideal triangulation of a compact oriented 3-manifold
M with its boundary a union of tori. Thurston [Thu2] introduced the deformation
variety D(T ) parameterizing (incomplete) hyperbolic structures on int(M), where
each tetrahedron in T has the shape of some honest ideal tetrahedron in H3. The
deformation variety plays a key role in understanding hyperbolic Dehn filling [Thu2,
NZ] and is closely related to the PSL2C-character variety of π1(M). Via the latter
picture, ideal points of D(T ) often give rise to essential surfaces in M , and spun-
normal surfaces are the natural way to understand this process. In this section, we
sketch the needed properties of D(T ) from the point of view of [Dun3, Til2] which
contain the omitted details.

Suppose Δ is a nondegenerate ideal tetrahedron in H3, which has an intrinsic
orientation (i.e. an ordering of its vertices). Each edge of Δ has a shape parameter,
defined as follows. We apply an orientation preserving isometry of H3 so that the
vertices of Δ are (0, 1,∞, z), and so this ordering induces the orientation of Δ. The
shape parameter of the edge (0,∞) is then z, which lies in C \ {0, 1}. Opposite
edges have the same parameter, and any parameter determines all the others, as
described in Figure 3.1, or as encoded in

(3.2) z′(1− z) = 1 and z z′z′′ = −1.

Returning to our ideal triangulation T , suppose it has n tetrahedra. An assign-
ment of hyperbolic shapes to all the tetrahedra is given by a point in (C3)n which
satisfies n copies of equations (3.2). The deformation variety D(T ), also called
the gluing equation variety, is the subvariety of possible shapes where we require
in addition that the edge equations are satisfied: for each edge the product of the
shape parameters of the tetrahedra around it is 1. This requirement says that the
hyperbolic structures on the individual tetrahedra glue up along the edge.
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Because D(T ) ⊂ C3n satisfies the conditions coming from (3.2), at a point of
D(T ) no shape parameter takes on a degenerate value of {0, 1,∞}. Consequently,
a point of D(T ) gives rise to a developing map from the universal cover M̃ to H3

which takes each tetrahedron of T̃ to one of the appropriate shape (see Lemma 3.5
below). This developing map is equivariant with respect to a corresponding holo-
nomy representation ρ : π1(M) → PSL2C. In fact, there is a regular map

(3.3) D(T ) → X(M), where X(M) is the PSL2C-character variety of π1(M).

This map need not be onto; see e.g. the last part of Section 10 of [Dun3]. How-
ever, if M is hyperbolic and no edge of T is homotopically peripheral, then the
image is nonempty. In particular, it contains a 1-dimensional irreducible compo-
nent containing the discrete faithful representation π1(M) → PSL2C coming from
the unique oriented complete hyperbolic structure on M .

3.4. Remark. In Lemma 2.2 of [Til2], the existence of (3.3) is predicated on the edges
of T being homotopically nonperipheral, whereas this condition is not mentioned
in [Dun3]. Indeed it is not necessary to restrict T , but as [Dun3] is terse on this
point, we give a proof here of:

3.5. Lemma. For any triangulation T , a point in D(T ) gives rise to a developing

map M̃ → H3 and hence a holonomy representation π1(M) → PSL2C.

In fact, the proof will show that if D(T ) is nonempty, then a posteriori every
edge in T is homotopically nonperipheral, meshing with Lemma 2.2 of [Til2]. A
more detailed proof of a generalization of Lemma 3.5 is given in [ST].

Proof. Let N = M \ ∂M , which we identify with the underlying space of T minus
the vertices. Looking that the universal cover of N , we seek a map

d : Ñ → H3

which takes each ideal simplex in N to an ideal simplex of H3 with the assigned
shape (in particular, we are not yet trying to define the map at infinity). Let N•

be N minus the 1-skeleton of T , which deformation retracts to the dual 1-skeleton
of T . In particular, π1(N

•) is free, and the universal cover U of N• consists of
tetrahedra with their 1-skeletons deleted, arranged so the dual 1-skeleton is an
infinite tree. Thus it is trivial to inductively define a map

d̃ : U → H3

which takes what’s left of each tetrahedron in U to a correctly shaped ideal tetra-

hedron in H3 with its edges deleted. Let Ñ• be Ñ minus the lifted 1-skeleton of

T . Then we have covers U → Ñ• → N•. The cover Ñ• → N• corresponds to
the normal subgroup Γ of π1(N

•) generated by the boundaries of the dual 2-cells
of T , one corresponding to each edge. The condition that the shape parameters

have product 1 for each edge means that d̃ is invariant under the deck transfor-

mation corresponding to the boundary of a dual 2-cell; hence d̃ descends to a map

d of Ñ• = U/Γ to H3. The same edge condition also means that d extends over

the deleted 1-skeleton to the desired map d : Ñ → H3. (This is perhaps easier
to understand if one only wants the corresponding representation: the holonomy

representation π1(N
•) → PSL2C for d̃ clearly has the boundary of each dual 2-cell

in its kernel and thus factors through to a representation of π1(N).)
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Now that we have d : Ñ → H3 in hand, it is not hard to extend it to a continuous

map from the end-compactification N of Ñ to H = H3 ∪ S2
∞. This gives a pseudo-

developing map in the sense of [Dun1, Section 2.5], and a posteriori certifies that
the edges of T are homotopically nonperipheral, since they go to infinite geodesics
under d which have two distinct limit points in S2

∞. �

3.6. Ideal points and spun-normal surfaces. We now describe the connection
between D(T ) and essential surfaces in M , which has its genesis in the work of
Culler and Shalen on the character variety [CS, CGLS]. When M has one boundary
component, a geometric component of D(T ) has complex dimension one, and it
is common that all irreducible components of D(T ) are also curves. Thus for
simplicity we focus on an irreducible curve D ⊂ D(T ). For the full story of ideal
points as points in Bergman’s logarithmic limit set, see [Til2].

As D is an affine algebraic variety, it is not compact. Let D̃ be a smooth
projective model for D, which in particular is a compact Riemann surface together

with a rational map f : D̃ → D which is generically 1-1. An ideal point of D

is a point of D̃ where f is not defined. For each edge of a tetrahedron in T ,
the corresponding shape parameter z gives an everywhere-defined regular function

z : D̃ → P1(C). From (3.2), it is easy to see that at an ideal point, the three shape
parameters of a given tetrahedron are either (z, z′, z′′) = (0, 1,∞) (or some cyclic
permutation thereof) or all take on values in C \ {0, 1}.

We next describe how to define from an ideal point ξ of D a spun-normal surface
S(ξ). For each tetrahedron Δ of T , we label each edge by the order of zero of
the corresponding shape parameter at ξ (poles count as negative order zeros). For
instance, in Figure 3.1, if z has a zero of order 2 at ξ, then the formulae for z′ and
z′′ mean that the edges of Δ are labeled as shown in Figure 2.1(b). In general, the
labeling associated to ξ similarly arises as the edge shifts of a unique spun-normal
picture in Δ. In the case just mentioned, this is shown in Figure 2.1(a). In general,
if n is the largest order of zero of the shape parameters, then S(ξ)∩Δ has n quads
which are disjoint from the edges whose shape parameters are 1 at ξ. That these
local descriptions of S(ξ) actually give a spun-normal surface can be seen as follows.
Focus on an edge of T , and let z1, . . . , zk be the shape parameters of the tetrahedra

around it. Now on D(T ) and hence on D̃ we have
∏

zi = 1, and taking orders of
zeros turns this into the Q-matching equation for that edge, namely that the sum
of the shifts is 0.

Before addressing the question of when S(ξ) is essential, we mention that there
is a closely related construction of Yoshida [Yos] which also associates a surface to
an ideal point of D. See Segerman [Seg1] for the exact relationship between these
two surfaces.

3.7. Ideal points and essential surfaces. Culler and Shalen showed how to
associate to an ideal point of the character variety X(M) an essential surface via a
nontrivial action on a tree [CS]. However, not every ideal point ξ of D(T ) gives rise
to an essential surface, as sometimes ideal points of D(T ) map to ordinary points
of X(M). We now describe how when S(ξ) has nonempty boundary (in the sense
of Section 2.3) it does come from an ideal point of X(M).

As this is the key condition, we first sketch how to determine whether the surface
S(ξ) has nonempty boundary along a component T of ∂M or instead consists of
infinitely many boundary-parallel tori; for details see [Til2, Section 4] and [Til1,
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Sections 1 and 3]. For an element γ ∈ π1(∂T ), here is how to calculate the intersec-
tion number between γ and ∂S(ξ). For a point D(T ), the holonomy in the sense
of [Thu1] and [NZ] is given by

h(γ) = z1z2 · · · zk for certain shape parameters zi.

View the components of ∂S(ξ) on T as all oriented in the same direction, the
direction being determined by how S(ξ) is spinning out toward the boundary (see
[Til1, Section 3.1]). Then the algebraic intersection number of γ and ∂S(ξ) is the
order of zero of h(γ) at ξ. In particular, by taking a basis for π1(T ), it is easy to
check whether S(ξ) has boundary and, if so, what the slope is.

We now turn to the question of when S(ξ) can be reduced to an essential surface,
in the following sense: a surface S is said to reduce to S′ if there is a sequence of
compressions, boundary compressions, elimination of trivial 2-spheres, and elimina-
tion of boundary-parallel components which turns S into S′. We then say that S′ is
a reduction of S. It will be convenient later to consider more broadly spun-normal
surfaces S whose Q-coordinates are a rational multiple of those of S(ξ); we call
such S associated to ξ.

3.8. Theorem. Let ξ be an ideal point of a curve D ⊂ D(T ). Suppose a two-sided
spun-normal surface S associated to ξ has nonempty boundary with slope α on a
component T of ∂M . Then any reduction of S has nonempty boundary along T
with slope α. In particular, S can be reduced to a nonempty essential surface in M
which also has boundary slope α.

Proof. This will follow easily from [Til2, Section 6], but to this end we note that we
have defined “spun-normal” slightly differently than [Til2]. In particular, what we
call spun-normal with nonempty boundary he calls simply spun-normal. Moreover,
in [Til2] the surface S(ξ) is made two-sided simply by doubling its Q-coordinates
if it’s not; we adopt this convention for this proof.

First, we reduce from an arbitrary S associated to ξ to S(ξ) itself. Let S0 be the
spun-normal surface corresponding to the primitive lattice point on the ray R+ ·S,
i.e. S0 = (1/g)S, where g is the gcd of the coordinates of S. If S0 is two-sided, then
both S and S(ξ) are simply a disjoint union of parallel copies of S0, and thus we
can focus on S(ξ) instead. Should S0 have a one-sided component, then as S and
S(ξ) are two-sided, they are both integer multiples of 2 ·S0, and again we can focus
on S(ξ).

We now relate S(ξ) to the Bass-Serre tree associated to an ideal point of the
PSL2C-character variety X(M). Following Section 5.3 of [Til2], we use TN to
denote the simplicial tree dual to the spun-normal surface S(ξ). (Unlike [Til2], we
require S(ξ) to have infinitely many triangles in every corner of every tetrahedron;
hence the dual tree to S(ξ) is TN rather than the TS of Section 5.2 of [Til2].) Let

N = T \ T 0 ∼= M \ ∂M , and let p : Ñ → N be the universal covering map. (Note:

our N is called M in [Til2].) There is an equivariant map f : Ñ → TN where the
preimage of the midpoints of the edges in TN is precisely p−1(S(ξ)).

Now fix a simple closed curve β ∈ π1(T ) which intersects α exactly once. As
discussed above, we can orient β so that the holonomy h(β) has a pole at ξ. By
Proposition 6.10 of [Til2], there is an associated ideal point ξ′ of a curve in X(M) so
that there is a π1(M)-equivariant map from TN to the simplicial tree Tξ′ associated
to ξ′. In particular, since h(β) has a pole, the action of β on Tξ′ is by a fixed-point
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free loxodromic transformation. Because of the map TN → Tξ′ , it follows that β
also acts on TN by a loxodromic.

As in Section 2.3, we identify M with a suitable subset of N , and henceforth
abuse notation by denoting S ∩M by S. By restricting the domain, we get that S

is dual to the equivariant map f : M̃ → TN . Now if S′ is a reduction of S, we can
modify f so that S′ is still dual to TN . If T ∩ S′ were empty, it follows that π1(T )
acts on TN with a global fixed point. Thus since β acts on TN as a loxodromic, we
have that S′ has nonempty boundary along T , as claimed. �

4. Ideal points of varieties of gluing equation type

In this section, we consider a class of complex algebraic varieties that arise from
the deformation varieties of the last section by focusing on a single shape parameter
for each tetrahedron. Such varieties were first considered by Thurston [Thu2] and
Neumann-Zagier [NZ].

We start with a subgroup Λ ⊂ Z2n+1, which we call a lattice even when its rank
is not maximal. Let C∗• = C \ {0, 1}, and consider the variety V (Λ) ⊂ (C∗•)n of
points satisfying

(4.1) za1
1 za2

2 · · · zan
n (1− z1)

b1(1− z2)
b2 · · · (1− zn)

bn = (−1)c

for all (a1, . . . , an, b1, . . . , bn, c) ∈ Λ. Since zi and (1− zi) are never 0 for zi ∈ C∗•,
these equations always make sense even when some ai or bi is negative. Henceforth,
we assume that rank(Λ) ≤ n− 1 and call such a V (Λ) a variety of gluing equation
type. In the final application, the variety V (Λ) will be a complex curve, and hence
rank(Λ) = n− 1.

4.2. Remark. Replacing the lattice Λ with an arbitrary subset Ω of Z2n+1 doesn’t
broaden this class of examples, since V (Ω) = V

(
span 〈Ω〉

)
. Conversely, when test-

ing whether a point is in V (Λ), it suffices to consider only the finitely many equa-
tions coming from a given Z-basis for Λ. More precisely, let M(Λ) be a matrix
whose r rows are a basis for Λ, and write it as

(4.3) M(Λ) =

⎛
⎝ A B c

⎞
⎠ ,

where A and B are r×n matrices and c is an r× 1 column vector. Then V (Λ) can
be described by (4.1) for all rows (a1, . . . , an, b1, . . . , bn, c) of the matrix M(Λ).

4.4. Example. As in Section 3, suppose T is an ideal triangulation of a manifold
M , and consider its deformation variety D(T ) ⊂ C3n, where n is the number of
tetrahedra in T . If we fix a preferred edge in each tetrahedron, then its shape
parameter zi determines z′i and z′′i as noted in Figure 3.1. Using these expressions
for z′i and z′′i turns each edge equation into one of the form (4.1). Thus projecting
away the other coordinates gives an injection D(T ) ↪→ (C∗•)n, and the image
variety V is given by V (Λ) for some Λ. The number of edges of T is equal to n,
but if D(T ) is nonempty, then we argue that the rank of Λ is n− k, where k is the
number of components of ∂M .

First, the matrix M(Λ) minus its last column has rank r = n − k. This is
Proposition 2.3 of [NZ] when M is hyperbolic, and Theorem 4.1 and the remark
following it in [Neu] for the general case. Thus Λ has a basis where r of the vectors
have nonzero a or b components and the rest have only the c component being
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nonzero. Since D(T ) is assumed nonempty, all of the latter must correspond to the
equation 1 = 1 rather than 1 = −1 and hence may be omitted. Thus V is defined
by a lattice Λ of rank r. As r ≤ n− 1, the projection V of D(T ) is indeed a variety
of gluing equation type.

4.5. Remark. F. Rodriguez Villegas pointed out to us that V (Λ) is the intersection
of a toric variety with an affine subspace. Precisely, if C∗ = C \ {0}, then it is
isomorphic to the subspace of (C∗)2n+1 cut out by

(4.6) za1
1 za2

2 · · · zan
n wb1

1 wb2
2 · · ·wbn

n uc = 1 for all (a1, . . . , an, b1, . . . , bn, c) ∈ Λ,

together with u = −1 and zi + wi = 1 for 1 ≤ i ≤ n. This seems potentially very
useful, though we do not exploit it here.

4.7. Ideal points. Let C∗ = C \ {0} and C• = C \ {1}. Now in (C•)n, consider
the closure V (Λ) of V (Λ) in (equivalently) either the Zariski or the analytic (naive)
topology. Points of V \ V will be called ideal points. In the context of Example 4.4
and Section 3.6, these are images of ideal points ξ ofD(T ) where the preferred shape
parameters are either 0 or nondegenerate at ξ. By choosing the shape parameters
appropriately, any ideal point of D(T ) gives an ideal point of the corresponding
V (Λ). The individual ideal points of D(T ) can be found by analyzing the local
structure, typically highly singular, of the ideal points of the V (Λ).

So returning to the context of a general V = V (Λ), we seek to understand
the local structure of V near an ideal point p. In particular, we need to find a
holomorphic map from the open unit disc D ⊂ C of the form

(4.8) f : (D, 0) → (V , p), where f(D \ {0}) ⊂ V .

Taking t as the parameter on D, we have

(4.9) zi = tdiui(t),

where di ≥ 0 and ui are holomorphic functions on D with ui(0) = 0 for all i, and
ui(0) = 1 when di = 0. As always, each ui can be represented by a convergent
power series in C[[t]].

The lattice Λ constrains the possibilities for d = (d1, d2, . . . , dn) as follows. Con-
sider the equations coming from a matrix M(Λ) as in (4.3), and substitute (4.9)
into (4.1). If we send t → 0, it follows that d is in ker(A). This motivates:

4.10. Definition. A degeneration vector is a nonzero element d ∈ ker(A)∩ (Z≥0)
n.

It is genuine if it arises as in (4.9) for some ideal point of V (Λ).

4.11. Remark. If V comes fromD(T ) as discussed in Example 4.4, then degeneration
vectors correspond precisely to the Q-coordinates of certain spun-normal surfaces as
follows. In a tetrahedron with a preferred shape parameter z, we say the preferred
quad is the one with shift +1 along the preferred edge. Equivalently, the preferred
quad of the tetrahedron labeled as in Figure 3.1 is shown in Figure 2.1(a). Now,
in the notation of Section 2, consider the face C ′ of C(T ) where all nonpreferred
quads have weight zero. The relationship described in Section 3.6 between edge
equations and Q-matching equations shows that if we focus on the subspace of
preferred quads, the Q-matching equations are simply given by the A part of the
M(Λ) matrix. Thus degeneration vectors are precisely the integer points of C ′,
and each corresponds to a spun-normal surface. So when d is genuine, it is the Q-
coordinates of a spun-normal surface S(d) associated to an ideal point ξ of D(T ).
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(Technical aside: we have not insisted that f in (4.8) is generically 1 − 1, thus
d may be an integer multiple of the vector of the orders of zero of the z at the
corresponding ideal point ξ. Hence, S(d) may be some integer multiple of S(ξ).)

Thus the key question for us here is when a given degeneration vector is gen-
uine. The following is the main technical tool from [Kab], and it underlies our
Theorems 1.1 and it 1.5:

4.12. Proposition. Suppose a degeneration vector d is totally positive, i.e., each
di > 0. If A has rank n− 1, then d is genuine.

We include a detailed proof of this in our current framework, as part of a more
general discussion in which degeneration vectors are genuine.

4.13. Genuine degeneration vectors. Fix a degeneration vector d which we
wish to test for being genuine. For convenience, we reorder our variables so that
di = 0 for precisely i ≥ k > 1. Taking our lead from the substitution in (4.9), and
arbitrarily folding u1 into t, we consider

π : Cn → Cn, given by (t, u2, . . . , un) �→ (td1 , td2u2, . . . , t
dnun).

We set W (Λ, d) to be the preimage of V under π, regarded as a subvariety of

U = π−1
(
(C∗•)n

)
= (C∗)n \ {td1 = 1, tdiui = 1}.

Equivalently, using (4.9), we see W (Λ, d) is the subset of U cut out by

(4.14) ua2
2 · · ·uan

n (1− td1)b1(1− td2u2)
b2 · · · (1− tdnun)

bn = (−1)c

for (a, b, c) ∈ Λ. To examine whether d is genuine, we need to allow t to be zero.
So consider

U = C× (C∗)n−1 \ {td1 = 1, tdiui = 1}
and let W (Λ, d) be the closure of W (Λ, d) in U . Defining

W 0(Λ, d) = W (Λ, d) ∩ {t = 0},
we have a simple test for when d is genuine:

4.15. Lemma. If d is genuine, then W 0(Λ, d) is nonempty. Almost conversely, if
W 0(Λ, d) is nonempty, then a positive integer multiple of d is genuine.

The reader whose focus is on Theorems 1.1 and 1.5 may skip the proof of
Lemma 4.15, as the proof of Proposition 4.12 does not depend on it.

Proof. First suppose that d is genuine. Consider the analytic functions ui(t) in

(4.9). By replacing t with t
(
u1(t)

)−1/d1 , which is analytic near t = 0, we may
assume u1(t) is the constant function 1. Now, for small t = 0 the function

t �→
(
t, u2(t), u3(t), . . . , un(t)

)
has image contained in W (Λ, d). Thus by continuity, the point

(
0, u2(0), . . . , un(0)

)
is in W 0(Λ, d), as needed.

Now suppose instead that p is a point of W 0(Λ, d). Dropping Λ and d from the
notation, we argue that it is enough to show

4.16. Claim. There is an irreducible curve C ⊂ W containing p on which t is
nonconstant.
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If the claim holds, let C̃ be a smooth projective model for C, with f : C̃ → C
the corresponding rational map. If we take s to be a holomorphic parameter on

C̃ which is 0 at some preimage of p, then π ◦ f ◦ s shows that m · d is a genuine
degeneration vector, where m > 0 is the order of zero of the t-coordinate of f at
s = 0.

To prove the claim, let Y be an irreducible component of W containing p. Since
W was defined by taking the closure of W in U , it follows that t is nonconstant on
Y . If j = dimY > 1, we will construct an irreducible subvariety Y ′ of dimension
j − 1 which contains p and on which t is nonconstant. Repeating this inductively
will produce the needed curve C.

As Y is irreducible and Y0 = Y ∩{t = 0} is a nonempty proper algebraic subset,
it follows that dimY0 = j− 1. There are coefficients αi ∈ C so that the polynomial

g = α1 + α2u2 + α3u3 + · · ·+ αnun

is nonconstant on every irreducible component of Y0, and where g(p) = 0. (If we
temporarily view p as the origin of our coordinate system, then any linear functional
whose kernel fails to contain the linear envelope of any component of Y0 works for
g.) Now set Y ′ = Y ∩ {g = 0}, which contains p and has dimension j − 1 as g is
nonconstant on Y . Moreover, Y ′ ∩ {t = 0} = Y0 ∩ {g = 0} has dimension j − 2, as
g is nonconstant on every component of Y0. Thus an irreducible component of Y ′

containing p has dimension j − 1, and t is nonconstant on it, as needed. �

4.17. The first-order system. Suppose that β = (0, β2, β3, . . . , βn) is a point of
W (Λ, d). Substituting t = 0 into (4.14) we get that β satisfies

(4.18) βa2
2 · · ·βan

n (1− βk)
bk · · · (1− βn)

bn = (−1)c for all (a; b; c) ∈ Λ.

We call the union of all such equations, together with t = 0, the first-order system,
and denote the corresponding subset of {0} × (C∗)k−2 × (C∗•)n−k+1 by W0(Λ, d).
Notice that W0(Λ, d) contains W 0(Λ, d), but is not a priori equal to it, as the latter
may contain points which are not in the closure of W (Λ, d). As the former is easier
to work with in practice, we show

4.19. Lemma. Suppose W0(Λ, d) is nonempty and has dimension 0. Then some
multiple of d is genuine.

As we discuss later, in small examples this condition is easy to check by using
Gröbner bases. As with Lemma 4.15, on which it depends, it is not actually used
to prove Proposition 4.12.

Proof. Consider the subvariety W̃ of U cut out by the equations (4.14) coming
from the r rows of a fixed matrix M(Λ) defining our original variety V (Λ). Then

W̃ contains both W0(Λ, d) and W (Λ, d). Let p be a point of W0(Λ, d), and Y an

irreducible component of W̃ containing p. As W̃ is defined by r ≤ n− 1 equations
and dimU = n, the variety Y must have dimension at least 1. As Y ∩ {t = 0} is
contained in the finite set W0(Λ, d), it follows that all but finitely many points of
Y are in W (Λ, d). Hence p ∈ W (Λ, d), and Lemma 4.15 implies that a multiple of
d is genuine. �

We now have the needed framework to show Proposition 4.12.
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Proof of Proposition 4.12. Let d be a totally positive degeneration vector. By hy-
pothesis, the submatrix A of M(Λ) has rank n− 1, and so in particular M(Λ) has
n − 1 rows. We reorder the variables so that the matrix A′ obtained by deleting
the first column of A also has rank n− 1.

To show d is genuine, we start by examining the solutions W0(Λ, d) to the first-
order equations. As all di > 0, these equations are simply t = 0, and

(4.20) βa2
2 βa3

3 · · ·βan
n = (−1)c for all (a; b; c) ∈ Λ,

where we require each βi ∈ C∗. Note that any solution in Cn−1 to the linear
equations

(4.21) a2x2 + a3x3 + · · ·+ anxn = cπi for all (a; b; c) ∈ Λ

gives rise to one of (4.20) via the map Cn−1 → (C∗)n−1 which exponentiates each
coordinate. Since rank(A′) = n−1, the equations (4.21) have a solution, and hence
so do (4.20).

We will use the inverse function theorem to show that d is genuine. To set this

up, let W̃ be the subvariety of Cn with coordinates (t, u2, u3, . . . , un) cut out by
the n − 1 equations (4.14) coming from rows of the matrix M(Λ). Fix a point

β ∈ W0(Λ, d) ⊂ W̃ , and let J be the (n− 1)×n Jacobian matrix of these equations
at β. Let J ′ be the submatrix of J obtained by deleting the first column (which
corresponds to ∂/∂t). If J ′ has rank n−1, then the inverse function theorem implies

that W̃ is a smooth curve at β. Moreover, this curve is transverse to {t = 0} since

rank(J ′) = n − 1 forces any nonzero element of ker(J) = TpW̃ to have a nonzero
first component.

Thus it remains to calculate the matrix J ′. As all di > 0, taking ∂/∂ui of (4.14)
at β gives ai(−1)c/βi. Thus the columns of J ′ are nonzero multiples of those of A′,
and hence rank(J ′) = rank(A′) = n− 1, as needed. Thus d is genuine. �

4.22. Examples. Both hypotheses of Proposition 4.12 are necessary, even for the
weaker conclusion that the first-order equations have a solution. Here are two
examples with V (Λ) = 0 which illustrate this.

First, for n = 2 consider the span Λ of (0, 1; 1,−1; 1). Here, V (Λ) is given by
a single equation

(4.23)
z2(1− z1)

1− z2
= −1

which defines the nonempty plane conic z1z2 = 1. For the degeneration vector
d = (1, 0), the first-order system is

β2

1− β2
= −1,

which is equivalent to 0 = −1 and hence has no solutions. So d is not genuine, even
though A = (0, 1) has maximal rank. This shows that the total positivity of d is
necessary for Proposition 4.12.

Second, again for n = 2, consider the span Λ of (0, 0; 1, 1; −1). Then V (Λ) is
again a nonempty plane conic and is given by

(4.24) (1− z1)(1− z2) = −1.

Here, any d is a degeneration vector since A = (0, 0), so take d = (1, 2). Then the
first-order system is simply 1 = −1, which has no solutions. So d is not genuine,
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even though d is totally positive. This shows that the condition that rank(A) is
maximal is also necessary for Proposition 4.12.

5. Proof of Theorem 1.1

In this section, we prove

1.1. Theorem. Let T be an ideal triangulation of a compact oriented 3-manifold M
with ∂M a torus. Suppose S is a vertex spun-normal surface in T with nontrivial
boundary. If S has a quad in every tetrahedron of T , then S is essential.

The requirement that ∂M is a single torus, rather than several, is simply for
notational convenience; the proof works whenever S has at least one nontrivial
boundary component.

We first rephrase Theorem 1.1 in the form in which we will prove it. Throughout
this section, let T be an ideal triangulation as in Theorem 1.1. Recall from Section 2
that if T has n tetrahedra, then the Q-coordinates of a spun-normal surface are
given by a vector in R3n that lives in the linear subspace L(T ) of solutions to
the Q-matching equations. Specifically, each spun-normal surface gives an integer
vector in the convex cone C(T ) = L(T ) ∩ R3n

+ .
Suppose we fix a preferred type of quad in each tetrahedron; such a choice will be

denoted by Q. Let Rn
Q ⊂ R3n be the corresponding subspace where all nonpreferred

quads have weight 0. Define L(T , Q) = L(T )∩Rn
Q and C(T , Q) = C(T )∩Rn

Q. We
will show the following:

5.1. Theorem. Suppose S is a spun-normal surface with nonempty boundary
which has a quad in every tetrahedron. Let Q be the corresponding quad type.
If dimL(T , Q) = 1, then S is essential.

Proof of Theorem 1.1 from Theorem 5.1. Let S be a vertex spun-normal surface
which has a quad in every tetrahedron; we need to show that dimL(T , Q) = 1.
Since C(T ) = L(T )∩R3n

+ , a face (of any dimension) of C(T ) corresponds to setting
some subset of the coordinates to 0. Thus since S is a vertex solution, there are
coordinates ui so that C(T ) ∩ {u1 = · · · = uk = 0} is the ray R+ · S. Let Q be the
unique quad type compatible with S. As S has nonzero weight on every quad in
Q, we must have

(5.2) R+ · S = C(T ) ∩ {ui = 0 | ui ∈ Q} = C(T ) ∩ Rn
Q = C(T , Q).

Next we argue that C(T , Q) = L(T , Q) ∩ R3n
+ has the same dimension as L(T , Q)

itself. This follows since all Rn
Q-coordinates of S are positive, and thus all nearby

points to S in L(T , Q) are also in C(T , Q). Thus dimC(T , Q) = dimL(T , Q). As
dimC(T , Q) = 1 by (5.2), the fact that dimC(T , Q) = dimL(T , Q) shows that the
hypotheses of Theorem 1.1 imply those of Theorem 5.1. (In fact, the hypotheses of
the two theorems are equivalent.) �

We break the proof of Theorem 5.1 into two lemmas.

5.3. Lemma. Suppose S is a spun-normal surface with a quad in every tetrahedron.
Suppose that dimL(T , Q) = 1 for the quad type Q determined by S. Then there is
an ideal point ξ of D(T ) so that S is associated to ξ.

5.4. Lemma. Suppose S is a connected, two-sided, spun-normal surface with a quad
in every tetrahedron. Suppose that dimL(T , Q) = 1 for the quad type Q determined
by S. If every reduction of S has nonempty boundary, then S is essential.
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We establish these lemmas below after first deriving the theorem from them.

Proof of Theorem 5.1. First, we reduce to the case that S is two-sided and con-
nected. Let S0 be the spun-normal surface corresponding to the primitive lattice
point on the ray R+ · S, i.e., S0 = (1/g)S, where g is the gcd of the coordinates
of S. The surface S0 must be connected, since if not, it would be the sum of two
surfaces in C(T , Q), which is just R+ · S since dimL(T , Q) = 1. Now, the surface
S is essential if and only if S0 is, so we shift our focus to S0. If S0 is one-sided,
then by definition S0 is essential if and only if 2 · S0 is, and we focus on the latter
(which is still connected). Thus we have reduced to the case that S is connected
and two-sided.

Now by Lemma 5.3, there is an ideal point ξ of D(T ) so that S is associated to
ξ. By Theorem 3.8, the surface S can be reduced to a nonempty essential surface
S′ with nonempty boundary. By Lemma 5.4, the surface S = S′ and S is essential,
as required. �

Proof of Lemma 5.3. In each tetrahedron Δ of T , focus on the edge which has shift
+1 with respect to the quad that is in S. By Example 4.4, if we focus solely on the
corresponding shape parameters, this expresses the deformation variety D(T ) as a
variety V (Λ) of gluing equation type. Moreover, as discussed in Remark 4.11, the
degeneration vectors d of V (Λ) correspond precisely to the spun-normal surfaces
in C(T , Q). Indeed, the Q-matching equations cutting out L(T , Q) from Rn

Q are

equivalent to those given by the A submatrix of M(Λ).
Let d be the degeneration vector corresponding to the surface S. By hypoth-

esis dimL(T , Q) = 1, and so by the connection above we know that rank(A) =
n − 1. Thus by Proposition 4.12, the degeneration vector d is genuine, and so
by Remark 4.11 the surface S is associated to some ideal point ξ of D(T ), as
needed. �

Before proving Lemma 5.4, we sketch the basic idea, which was suggested to
us by Saul Schleimer and Eric Sedgwick. If S compresses, do so once to yield a
surface S′ which is disjoint from S. Now normalize S′ to S′′; while this may result
in additional compressions, the surface S′′ is nonempty by hypothesis. The original
normal surface S acts as a barrier during the normalization of S′ [Rub], and so S′′

is disjoint from S. Thus the quads in S′′ are compatible with those of S. Now as
dimL(T , Q) = 1, we must have that S = S′′, and so the initial compression was
trivial and hence S is essential.

If S was an ordinary (nonspun) normal surface, this sketch would essentially be
a complete proof. Unfortunately, the spun-normal case introduces some additional
technicalities, in particular, as we are not assuming that M is hyperbolic, and hence
we can’t appeal directly to [Wal] to ensure that S′ can be normalized at all.

Proof of Lemma 5.4. As in Section 2.3, we pick a neighborhood Nv of the vertex v

of T so that S meets the torus Bv = ∂Nv in nonseparating curves with consistent
canonical orientations. We now identify M with T \ int(Nv). Except for the very
end of the proof, we will focus on S ∩M and so denote it simply by S.

If S is not essential as the lemma claims, there are three possibilities:

(a) S has a genuine compressing disc D.
(b) S is incompressible but has a genuine ∂-compression D.
(c) S is boundary parallel.
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Figure 5.5. Some normal discs in a truncated tetrahedron, with
a choice of orientation for the arcs meeting ∂M . Comparing with
the copy of Figure 2.4 at right, we see the quad can be spun but
not the lower triangle.

Case (c) is ruled out since S can be reduced to an essential surface. In case (b),
consider the arc α = D∩ ∂M . If the end points of α are on the same component of
∂S, then the incompressibility of S forces D to be a trivial ∂-compression. When
instead α joins two components of ∂M , incompressibility means that the connected
surface S is an annulus. But then compressing S along D gives a disc S′ whose
boundary is inessential in ∂M . This contradicts the fact that every reduction of S
yields a surface with nonempty boundary.

Thus it remains to rule out (a). Now letD be a compressing disc for S. Compress
S along D and slightly isotope the result to yield a surface S1 disjoint from S. Now
further compress and otherwise reduce S1 in the complement of S to give a surface
S2 which is disjoint from S and essential in its complement. By hypothesis, S2 has
nonempty boundary. If S2 is not connected, replace it by any connected component
with nonempty boundary.

Now M has a cell structure T coming from T consisting of truncated tetrahedra,
and note that S is normal with respect to T . Our goal is to normalize S2 in T and
then spin the result into a spun-normal surface. However, not every normal surface
in (M, T ) can be spun. The boundary curves need an orientation which satisfies
the condition in Section 1.12 of [Til1], and that orientation must be compatible
with the “tilt” of the normal discs (see Figure 5.5). To finesse this issue, we isotope
S2 in the complement of S so that ∂S2 consists of normal curves, each of which lies
just to the positive side of a parallel curve in ∂S.

Now normalize S2 with respect to T to yield a surface S3 (see e.g. [Mat, Ch. 3]).
As mentioned above, this normalization takes place in the complement of S. A
concise way of seeing this is to cut M open along S to yield M ′ with a cell structure
T ′. If we normalize S2 in M ′ with respect to T ′, the result is necessarily normal
with respect to T . Moreover, the final surface is still disjoint from the two copies
of S in ∂M ′ since normalizing never increases the number of intersections of the
surface with an edge.

The normalization process may result in compressions or other reductions to
the surface. However, since S2 is essential in M ′, it follows that S3 has the same
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b
a

S

S

Figure 5.6. There are at most two kinds of normal arcs in ∂S3,
labeled here a and b. From the their position relative to the surface
S, any normal disc of S3 adjacent to ∂S3 must be parallel to those
in S.

topology as S2. (If M
′ is irreducible, then S2 and S3 are of course isotopic.) Focus

on a component of ∂M ∩ M ′, which is an annulus A. The components of ∂S2 in
A are all normally isotopic, and moreover intersect any 2-dimensional face of T ′

at most once (see the right half of Figure 5.5). Thus the first ∂-compression that
occurs while normalizing S2 must join two distinct boundary components, reducing
the total number of boundary components. As S2 and S3 have the same number of
boundary components, there can be no ∂-compressions during normalization and
so ∂S2 and ∂S3 are setwise the same.

Focus now on one normal arc α in ∂S3. By construction, it lies just to the
positive side of a normal arc α′ of ∂S. If n is a normal disc of S3 with α as an
edge, from Figure 5.6 we see that n must be parallel to the normal disc of S along
α′. Hence, we can build a spun-normal surface S′ from S3 which is disjoint from S
by attaching half-open annuli in Nv which are combinatorially parallel to those of
Nv ∩ S.

Now S and S′ are disjoint spun-normal surfaces in T , and hence they have
compatible quad types. Thus S′ is in L(T , Q). We know that both S and S′ are
nonempty, two-sided, connected, and not vertex linking tori. Hence as L(T , Q) is
one dimensional, the Q-coordinates of S and S′ must be the same. Hence they
are normally isotopic, and so they have the same topology. This contradicts the
fact that we started with a genuine compression of S, ruling out (a). Hence S is
essential. �

6. Slopes of alternating knots

In this section, we prove Theorem 1.3 by showing that the alternating knot
1079 = 10a78 has nonintegral boundary slopes, namely 10/3 and −10/3. Additional
nonintegral slopes of alternating knots are given in Table 6.1. Let M denote the
complement of 1079; as M is amphichiral, we simply show that 10/3 is a boundary
slope.
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Table 6.1. Some nonintegral boundary slopes of alternating
knots, numbered as in [HT]; the first three are 1080, 1079, and
10106 in the standard table [Rol]. These were proven to exist by
Theorem 1.1 using triangulations with 14–23 tetrahedra.

10a8: −20/3 11a275: −20/3 12a120: −52/3

10a78: −10/3, 10/3 11a281: −28/3 12a125: −10/3, −2/3, 2/3
10a95: 4/3 11a284: −2/3 12a126: −2/3
11a17: −2/3 11a296: 34/3 12a127: −22/3
11a19: −2/3 11a299: −4/3 12a132: −2/3
11a25: −2/3 11a300: −28/3, 34/3 12a134: 2/3
11a38: 10/3 11a301: −22/3, 34/3 12a154: −20/3
11a49: −28/3 11a313: −20/3 12a155: 4/3

11a102: −16/3 11a314: −2/3 12a162: −20/3
11a113: 2/3 11a320: −46/3, −22/3 12a177: 10/3, 22/3
11a125: −34/3 11a321: 20/3 12a186: 34/3
11a127: −40/3 11a323: 26/3 12a188: 2/3
11a129: 40/3 11a326: 22/3, 28/3 12a211: 2/3
11a130: −34/3 11a329: −4/3 12a222: −23/2
11a136: −34/3 11a345: −10/3 12a223: −10/3
11a147: −34/3 11a349: 34/3 12a224: −27/2
11a151: 34/3 12a45: 26/3 12a233: −23/2
11a152: −40/3 12a46: 7/2, 22/3 12a264: −40/3
11a156: −4/3 12a52: −52/5 12a267: −28/3
11a157: 40/3 12a53: −32/3 12a276: −20/3
11a158: 28/3 12a57: 16/3 12a284: 4/3
11a162: 34/3 12a59: −8/3 12a292: 22/3
11a164: 34/3 12a63: −8/3 12a293: −14/3
11a168: −10/3 12a65: 26/3 12a294: 34/3

11a169: 22/3 12a70: 34/3, 46/3 12a296: −8/3
11a171: −34/3 12a72: 34/3, 46/3 12a301: −22/3
11a217: 40/3 12a88: −52/3, −8/3, 68/5 12a309: 22/3
11a218: 2/3 12a89: 34/3 12a311: −76/3
11a227: −2/3 12a91: −58/3, −8/3 12a315: −4/5, 4/3
11a233: 28/3 12a93: −48/5 12a316: 36/5, 28/3
11a239: 22/3 12a94: −32/3 12a317: 10/3
11a244: −2/3 12a100: 7/2 12a318: 46/5, 34/3
11a249: −20/3 12a101: 78/5 12a319: −13/2
11a251: −4/3 12a102: −32/3, 28/5 12a320: −52/3, −4/3
11a253: −4/3 12a105: −8/3 12a321: −40/3, −26/3, −8/3
11a255: 34/3 12a107: −32/3, 28/5 12a334: 16/3
11a256: −40/3, −20/3 12a108: −52/3 12a337: 22/3
11a272: −10/3 12a109: 7/2 12a339: −40/3, −16/3
11a273: 22/3 12a111: −58/3, −8/3 12a340: −64/3
11a274: −28/3, 34/3 12a115: 78/5 12a344: −52/3, −27/2
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Table 6.2. Checking Theorem 1.3 using SnapPy [CDW] within
Sage [SAGE].

sage: from snappy import *

sage: M = Manifold("10_79-certificate.tri")

sage: N = Manifold("10_79")

sage: M.is_isometric_to(N, return_isometries=True)[1]

0 -> 0

[1 0]

[0 1]

Extends to link

sage: data = M.gluing_equations(form="rect")

sage: gluing_data, cusp_data = data[:-2], data[-2:]

sage: A = matrix( [e[0] for e in gluing_data] )

sage: B = matrix( [e[1] for e in gluing_data] )

sage: c = matrix( [ [e[2]] for e in gluing_data] )

sage: cusp_holonomy_A_part = matrix( [e[0] for e in cusp_data] )

sage: L = A.right_kernel(); L

Free module of degree 14 and rank 1 over Integer Ring

Echelon basis matrix:

[2 3 3 3 2 5 2 1 4 1 3 1 3 3]

sage: S = L.basis()[0]

sage: cusp_holonomy_A_part * S

(-3, 10)

To apply Theorem 1.1, we need to specify an ideal triangulation T with a spun-
normal surface S and check:

(a) The ideal triangulation T is homeomorphic to the complement of 1079, and
the peripheral basis that comes with T is the standard homological one.

(b) The surface S is a vertex surface with a quad in every tetrahedron. In the
reformulation of Theorem 5.1, the former is equivalent to dimL(T , Q) = 1,
where Q is the quad type determined by S.

(c) The boundary slope of S is 10/3, which can be done as described in Sec-
tion 3.7.

The triangulation T we use has 14 tetrahedra and is given in the file “10 79-
certificate.tri” available at [DG]. The surface S has the same quad type in each
tetrahedron, namely the one disjoint from the edges 01 and 23 in Figure 3.1, which
also corresponds to the shape degeneration z → 0. The number of quads is given
by

S = (2, 3, 3, 3, 2, 5, 2, 1, 4, 1, 3, 1, 3, 3) ∈ R14
Q .

Now (a) above is easily checked using SnapPy [CDW]. The information needed for
(b)-(c) comes directly from the A part of the matrix M(Λ) describing the gluing
equations for T together with the corresponding part of the cusp equations. Ex-
plicitly, using SnapPy within Sage [SAGE] as shown in Table 6.2 suffices to confirm
Theorem 1.3.
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7. Dehn filling

We turn to the case of a 3-manifold W where ∂W consists of several tori
T0, T1, . . . , Tb. For k > 0, we pick a slope γk on Tk. If we fix an ideal triangu-
lation T of W , we can consider all spun-normal surfaces S whose boundary slope
on Tk is either γk or ∅. Equivalently, we consider surfaces S where the geometric
intersection of γk with S ∩ Tk is 0. By the discussion in Section 3.7, for each k
this requirement imposes an additional linear condition on the cone C(T ) of spun-
normal surfaces. We call the resulting subcone C(T , {γk}) the relative normal
surface space corresponding to ( · , γ1, . . . , γb). This section is devoted to:

1.5. Theorem. Let W be a compact oriented 3-manifold whose boundary consists
of tori T0, T1, . . . , Tb. Let S be a spun-normal surface in an ideal triangulation T of
W , with nonempty boundary slope γk on each Tk. Suppose that S has a quadrilateral
in every tetrahedra of T and is a vertex surface of C(T , {γ1, . . . , γb}). Then γ0 is
a boundary slope of W (·, γ1, . . . , γb).

Proof. We consider the relative gluing equation variety D(T , {γk}) obtained from
adding the b conditions that the holonomy h(γk) of each γk is 1. For the Dehn
filled manifold M = W ( · , γ1, . . . , γb), the relative variety D(T , {γk}) is closely
related to the character variety X(M). However, while every point in D(T , {γk})
gives a representation ρ : π1(W ) → PSL2C, these representations do not all factor
through π1(M); the condition h(γk) = 1 only gives that ρ(γk) is trivial or parabolic.
However, ρ(γk) can only be nontrivial if h(α) = 1 for every element α ∈ π1(Tk).

As in Remark 4.11, we take the preferred shape parameter z in a tetrahedron
to be the one where the quad of S has shift +1. Then following Example 4.4, we
consider the variety V = V (Λ) arising from D(T , {γk}) by focusing on the preferred
shape parameters. If T has n tetrahedra, then the rank of Λ is at most n− 1 since
there are n − b − 1 equations coming from D(T ) (by Example 4.4) and also one
equation for each condition h(γk) = 1 (by Section 3.7). Thus V is indeed a variety
of the kind studied in Section 4. Just as in Remark 4.11, the degeneration vectors
for V are precisely the spun-normal surfaces in the relative space C(T , {γk}). Thus
we can apply Proposition 4.12 to see that the surface S is associated to an ideal
point p of V . Let f : (D, 0) → (V , p) be an associated holomorphic map. For each
k ≥ 0, pick a curve αk on Tk which meets γk in one point. Then as γk is the
boundary slope of S, the function h(αk) ◦ f has a nontrivial pole or zero at 0. In
particular, we can restrict the domain D of f so that h(αk) = 1 on f(D\{0}). Then
every point in f(D \ {0}) gives rise to a representation of π1(M). Thus we have
found an ideal point ξ of X(M) where tr (ρ(α0)) has a pole and tr (ρ(γ0)) = ±2.
The essential surface associated to ξ has boundary slope γ0, as needed. �

8. The 2-fusion link

Let W be the complement of the link in Figure 1.7. The manifold W has a
hyperbolic structure obtained by gluing two regular ideal octahedra. We consider a
certain ideal triangulation T of W with 8 tetrahedra described in the file “2fusion-
certificate.tri” available at [DG]. As in Section 6, we look at surfaces with the same
quad type in each tetrahedron, the one which corresponds to the shape degeneration
z → 0, and use Q to denote this choice of quads.
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One finds that the first part of the matrix M(Λ) = (A|B|c) is

A =

⎛
⎜⎜⎜⎜⎝

1 0 −1 0 0 0 0 0
0 −1 0 1 0 0 0 1

−1 1 1 −1 0 −2 0 0
0 0 0 0 0 0 0 0
0 0 −1 0 0 2 1 −1
0 0 0 1 −1 0 0 0
0 0 1 −1 1 0 −1 0
0 0 0 0 0 0 0 0

⎞
⎟⎟⎟⎟⎠ ,

which has rank 5. Three vectors which span kerA = L(T , Q) are

S1 =
(
0, 1, 0, 1, 1, 0, 0, 0

)
,

S2 =
(
0, 2, 0, 0, 0, 1, 0, 2

)
,

S3 =
(
1, 0, 1, 0, 0, 0, 1, 0

)
.

Thus on L(T , Q) = {a1S1+a2S2+a3S3}, the condition defining C(T , Q) where the
original variables satisfy uk ≥ 0 translates into having each ak ≥ 0. Hence C(T , Q)
is simply the positive orthant in L(T , Q) with respect to the basis {S1, S2, S3}. So
we can identify the projective solution space P (T , Q) with the triangle spanned by
the vertex surfaces Sk.

Now with the peripheral basis curves ordered (μ0, λ0, μ1, λ1, μ2, λ2), the A part
of the matrix specifying the cusp equations is⎛

⎜⎜⎝
0 −1 0 0 0 0 0 0

−1 2 0 0 0 0 0 0
0 0 0 0 0 0 −1 −1
0 0 0 0 0 0 0 −1
0 0 1 0 0 0 0 0
0 1 0 0 0 0 0 −1

⎞
⎟⎟⎠ ,

and hence the boundary slopes of each of our vertex surfaces is

(8.1)

T0 T1 T2

∂S1 : 2μ0 + λ0 ∅ μ2

∂S2 : 4μ0 + 2λ0 −2μ1 + 2λ1 ∅
∂S3 : −μ0 λ1 −λ2

We will show

8.2. Proposition. The surface S = a1S1 + a2S2 + a3S3 for ak ∈ N has nonempty
boundary slopes γ0, γ1, γ2 on each boundary torus Tk, and γ0 is a boundary slope of
M = W ( · , γ1, γ2).
Proof. Since all ak > 0, it is clear from (8.1) that ∂S has nontrivial coefficients along
each λk and so has nonempty boundary slope γk on each Tk. Consider the boundary
slope map from the convex hull of the Sk to the space R4 = H1(T1;R)⊕H1(T2;R).
From (8.1), it is clear this is injective, even if we projectivize the image. Thus, the
relative normal surface space C(T , {γ1, γ2}) is just the ray generated by S, and so
S is a vertex surface for C(T , {γ1, γ2}). Hence we can apply Theorem 1.5 to see
that γ0 is a boundary slope of M . �

We now prove Theorem 1.9 by considering the surface

S = 2(m1 − 1)S1 +m2S2 + 2(m1 − 1)m2S3

for some m1 > 1 and m2 > 0. This surface has boundary slopes as follows, written
as elements of Q:

γ0 = − (m1 − 3)m2 − 2m1 + 2

m1 +m2 − 1
, γ1 = − 1

m1
, γ2 = − 1

m2
.
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Thus by Proposition 8.2, the slope γ0 above is a boundary slope for

M = W
(
· ,−1/m1,−1/m2

)
.

Now, the manifold M is the exterior of the knot L(m1,m2) from Theorem 1.9, but
the peripheral basis {μ0, λ0} is the one that comes from W , and so λ0 is not the
homological longitude λ′

0 for M . As the components C1 and C2 are unlinked, we
can adjust for this via

λ′
0 =

(
−m1 · lk(C0, C1)

2 −m2 · lk(C0, C2)
2
)
μ0 + λ0 = (−4m1 − 9m2)μ0 + λ0

and thus find that in the usual homological basis

γ′
0 = (4m1 + 9m2) + γ0 = 3(m1 + 1) + 9m2 +

(m1 − 1)2

(m1 +m2 − 1)

is a boundary slope of L(m1,m2), proving Theorem 1.9.

9. Which spun-normal surfaces come from ideal points?

Given an ideal triangulation T of a 3-manifold M with one torus boundary
component, we would like to determine all the boundary slopes that arise from
ideal points of D(T ). Of course, one can find all such detected slopes by computing
the A-polynomial, but this is often a very difficult computation which involves
projecting an algebraic variety (i.e. eliminating variables). While Culler has a
clever new numerical method for such computations [Cul], there are still 9 crossing
knots whose A-polynomials have not been computed.

For a spun-normal surface S with nonempty boundary, we have an effectively
checkable condition (Lemma 4.15) which is necessary and sufficient for S to be
associated to an ideal point of D(T ). However, since there are typically infinitely
many spun-normal surfaces, this does not allow for the computation of all such
detected slopes unless we can restrict ourselves to a finite set of surfaces. From the
point of view of normal surface theory, two natural finite subsets are:

(a) The vertex surfaces introduced in Section 2.
(b) The larger set of fundamental surfaces, which are the integer points in

C(T ) which are not proper sums of other such points.

However, we show below that neither of these subsets suffices. In fact, there is a
geometric triangulation T of the complement of the knot 63 where none of the 22
fundamental surfaces is associated with an ideal point of D(T )!

Independent of this issue, we’ve also seen three conditions which ensure that a
surface S is associated to an ideal point of D(T ):

(a) Kabaya’s original criterion, Proposition 4.12, which was used in proving
Theorem 1.1. This requires that S is a vertex surface and has a quad in
every tetrahedron.

(b) Lemma 4.19 applies when the first-order system W0(Λ, d) has dimension 0,
where d is the degeneration vector corresponding to S.

(c) Lemma 4.15 applies when W 0(Λ, d) is nonempty.

Here, each condition implies the next, and (c) is necessary as well as sufficient.
Condition (b) is easier to check than (c), as it only needs the dimension of a va-
riety, which is one of the easiest tasks for Gröbner bases. In contrast, (c) requires
eliminating a variable, albeit one that appears only in fairly simple equations, and
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thus (c) is still much easier than finding the A-polynomial using Gröbner bases. For
manifolds with less than 20 tetrahedra, tests (a) and (b) are usually quite feasible
for any given surface. However, a naive Gröbner basis approach to applying (c)
sometimes failed even for manifolds with less than 10 tetrahedra.

9.1. Experimental data. There are 173 Montesinos knots with < 11 crossings.
As we know the boundary slopes for these [HO, Dun2], we tested the three methods
above on each of them, using triangulations with between 2 and 15 tetrahedra.
These knots have an average of 6.1 boundary slopes, but method (a) yields an
average of only 1.2 slopes, or about 20% of the total. When (b) is applied to all
vertex surfaces, it finds an average of 3.8 slopes, or about 64% of the actual number
of slopes. The third test (c) was not practical on enough of these vertex surfaces
to give any real data.

When the manifolds were ordered by the size of their triangulations, the number
of slopes found by (a) decreased (in absolute and relative terms) as the number
of tetrahedra increased. A more marked variant of this pattern was observed in
punctured torus bundles. When the triangulations were small there was an average
of 1.0 slope found with (a), but when there were 15 tetrahedra the average had
dropped to below < 0.1.

Also for punctured torus bundles, method (b) always found exactly two slopes.
Henry Segerman pointed out to us that these are the two surfaces corresponding
to the edges of the Farey strip in [FH]. This can be deduced from [Seg2] where the
solutions to the tilde equations of their Section 8 are closely related to our W (Λ, d).
Another interesting observation of Segerman is the following simple way that (b)
can fail. If the detected surface S has a tube of quads encircling an edge, then all
the edge parameters around it are 1 at the ideal point. Thus the equation (4.18)
for that edge is simply 1 = 1, and so the dimension of W0(Λ, d) will be at least one
if it is not empty, and hence (b) will not apply. Of course, such an S has an obvious
compression from the tube of quads (which is typically a genuine compression),
but for the examples in [Seg2] the spun-normal surfaces associated to ideal points
frequently do have such tubes.

9.2. The knot 63. We illustrate some of the subtleties of these questions with
the complement M of the hyperbolic knot 63 in S3. Using that this is the two-
bridge knot K(5/13), one finds that the boundary slopes are: −6,−2, 0, 2, 6. (The
symmetry here comes from the fact that M is amphichiral.)

From the A-polynomial, we see that the character variety X(M) has a single
irreducible component (excluding the component of reducible representations). All
boundary slopes are strongly detected on X(M), with the exception of 0 which
comes from a fibration of M over the circle. We focus on the boundary slope 2,
which is associated to a unique ideal point of X(M).

From now on, let T be the canonical triangulation of M as saved in “6 3-
canon.tri” available at [DG]. It has 6 tetrahedra, which come in three different
shapes:

• Tets 0 and 2 have the same shape, which is an isosceles triangle.
• Tets 1 and 3 have the same shape, which has no symmetries.
• Tets 4 and 5 have the same shape, which is the mirror image of those of
tets 1 and 3.
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All of this is compatible with the fact that the isometry group of M is the dihedral
group with eight elements. It turns out that there are 16 spun-normal vertex
surfaces, all of which have nontrivial boundary slopes, and also 4 other fundamental
surfaces.

Four vertex surfaces have slope 2, all of which are compatible with a single
quad-type

Q = [Q03, Q13, Q13, Q03, Q13, Q13]

and have weights

S8 = [0, 1, 2, 0, 1, 1], S10 = [2, 1, 0, 0, 1, 1],

S9 = [0, 0, 2, 1, 1, 1], S11 = [2, 0, 0, 1, 1, 1].

While each of these vertex surfaces has exactly one boundary component, they
differ in the direction the surface is spun out to the boundary. The surfaces S8 and
S9 are spun one way, and S10 and S11 are spun the other. Additionally, there are
two other fundamental surfaces in this component of F (T ):

Sa = (1/2)
(
S8 + S10

)
= [1, 1, 1, 0, 1, 1],

Sb = (1/2)
(
S9 + S11

)
= [1, 0, 1, 1, 1, 1].

Oddity the first The surfaces S8 and S10 are compatible and each has nonempty
boundary, but S8 + S10 is actually a closed surface. In fact, it’s the double of Sa

which has genus 2 and is just the boundary torus plus a tube linking the edge e3.
This is in stark contrast with the nonspun case, where compatible normal surfaces
with boundary always sum to a surface with nonempty boundary. (This is because
the two surfaces lie on a common branched surface.) Thus this is a potential
problem for proving that all boundary slopes can be determined solely by looking
at the spun-normal vertex surfaces.

Oddity the second None of the 22 fundamental surfaces arise from an ideal
point of the gluing equation variety D(T ). For instance, for the surfaces with slope
2, choose the preferred edge parameters so that zi → 0 corresponds to the quad
in Q. Then the gluing equations include z1 = z3 and z4 = z5; the former is not
compatible with any of the above fundamental surfaces. Instead, after some work
it turns out that Lemma 4.15 shows that the surfaces

S = S8 + Sb = S9 + Sa = [1, 1, 3, 1, 2, 2],

S′ = S10 + Sb = S11 + Sa = [3, 1, 1, 1, 2, 2]
(9.3)

are associated to the two ideal points of D(T ) which detect the slope +2. (These
two ideal points map to the same ideal point of X(M) and differ in the direction
in which the associated surfaces are spun out toward the boundary.)

A posteriori, the failure of the fundamental surfaces to appear at ideal points
of D(T ) is not so surprising, given the large symmetry group G of T . The four
vertex surfaces above are the vertices of a tetrahedron Δ in the projectivized space
PF (T ) of embedded spun-normal surfaces. The subgroup H of G which preserves Δ
is isomorphic to Z/2⊕Z/2 and acts transitively on the vertices of Δ by orientation
preserving symmetries. Now D(T ) has two ideal points with slope 2 and there is
a unique nontrivial element g of H which fixes both; this g acts by S8 ↔ S9 and
S10 ↔ S11 (i.e. interchanges the pairs of surfaces that spin in the same direction).
Thus a surface associated with either ideal point must lie on the line segment
joining (1/2)(S8 + S9) to (1/2)(S10 + S11) and hence cannot be a fundamental
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surface. However, since we also know that g interchanges Sa and Sb, we can see
that the surfaces S and S′ in (9.3) will indeed be fixed by g.
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