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ABSTRACT

The Jones polynomial of a knot in 3-space is a Laurent polynomial in q, with integer
coefficients. Many people have pondered why this is so, and what a proper generalization
of the Jones polynomial for knots in other closed 3-manifolds is. Our paper centers around
this question. After reviewing several existing definitions of the Jones polynomial, we
argue that the Jones polynomial is really an analytic function, in the sense of Habiro.
Using this, we extend the holonomicity properties of the colored Jones function of a
knot in 3-space to the case of a knot in an integer homology sphere, and we formulate
an analogue of the AJ Conjecture. Our main tools are various integrality properties
of topological quantum field theory invariants of links in 3-manifolds, manifested in
Habiro’s work on the colored Jones function.

Keywords: Knots; Jones polynomial; Kauffman bracket; Habiro ring; homology spheres;
TQFT; holonomic functions; A-polynomial; AJ Conjecture.
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1. Introduction

1.1. The Jones polynomial of a knot

In 1985 Jones discovered the celebrated Jones polynomial of a knot/link in 3-space,
see [14]. The framed version of the Jones polynomial of a framed oriented knot/link
may be uniquely defined by the following skein theory:

From the above definition, the Jones polynomial JL of an oriented link L lies in
Z[q±1/4].
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An important and trivial observation is that knots may be considered to lie
in closed 3-manifolds other than S3. The paper is centered around the following
question:

Question 1.1. What is the Jones polynomial of a knot K in a closed 3-manifold
N? In particular, is the Jones polynomial of a knot in a closed 3-manifold really a
polynomial?

Before we reveal the answer, let us review some alternative definitions of the
Jones polynomial, namely the Kauffman bracket approach, the quantum group
approach, the TQFT (Witten–Reshetikhin–Turaev) approach, and the perturbative
TQFT approach. Note that being polynomial is closely related to the integrality
discussed in [21].

1.2. The Kauffman bracket of a knot

Soon after Jones’s discovery, Kauffman gave a reformulation of the Jones polynomial
in terms of the Kauffman bracket

〈·〉 : Framed unoriented links inS3 → Z[A±1].

The Kauffman bracket is defined by the following skein theory (see [15]):

(1.1)

and the relation between the Kauffman bracket and the Jones polynomial is the
following: if L is an oriented m-component link projection with writhe w(L), then

JL|q1/4=A = (−1)m(−A3)−w(L)〈L〉.
Since the Kauffman bracket takes values in Z[A±1], it implies once again that the
Jones polynomial of an oriented knot/link in 3-space takes values in Z[q±1/4].

The Kauffman bracket can be generalized to framed unoriented links in a closed
3-manifold N and the resulting Kauffman bracket skein module S(N) can be defined
to be the quotient of the free Z[A±1]-module on the set of framed unoriented links
in N , modulo the relations (1.1):

S(N)=Z[A±1]-linear combinations of framed unoriented links in N/(relations (1.1)).

From this point of view, the Kauffman bracket skein module of S(S3) is a free
Z[A±1] with basis the empty link. This explains why the Jones polynomial of a link
in S3 is an element of Z[A±1].

A knot in a general 3-manifold N gives, by definition, an element of the
Kauffman bracket skein module S(N). However, little is known about the skein
module S(N). In particular, it is not known when it is free, nor is known a basis of
it. In addition, S(N) is not a ring, but rather a module over the ring Z[A±1].

Thus, the skein module S(N) does not answer our Question 1.1.
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1.3. The quantum group approach

Using quantum group technology (see [25, 27]), one may define the colored Jones
polynomial of a framed oriented knot in 3-space. Let us postpone the technical
details to a later Sec. 2.1 and concentrate on a main idea: the notion of color.

Suppose L is a framed r-component link in S3 with ordered components. The
Jones polynomial of L is a powerful invariant that takes values in the Laurent
polynomial ring

R := Z[q±1/4]. (1.2)

An even more powerful invariant is the colored Jones function

JL : Nr → R,

which encodes the Jones polynomial of L together with its parallels. Here N is
the set of positive integers, and JL(n1, . . . , nr) is the quantum sl2 invariant of
the link L with colors the irreducible sl2-modules of dimensions n1, . . . , nr. When
n1 = · · · = nr = 2, the polynomial JL(n1, . . . , nr) is the Jones polynomial. Here we
use the normalization such that when U is the unknot of 0 framing,

JU (n) = [n] :=
qn/2 − q−n/2

q1/2 − q−1/2
.

1.4. The TQFT approach

Let us fix a framed oriented knot K in a 3-manifold N and a nonnegative integer
n ∈ N. The Witten–Reshetikhin–Turaev (WRT) invariant Z(N,K),ξ,Vn

∈ Q(ξ) is
a generalization of the colored Jones polynomial and can be defined under the
framework of topological quantum field theory (TQFT in short); see [27]. Here Vn is
the n-dimensional irreducible representation of sl2 and ξ is a complex root of unity
of order divisible by 4. When N = S3, and with the proper normalization, we may
identify the WRT invariant with the colored Jones polynomial as follows:

Z(S3,K),ξ,Vn
= evξJK(n),

where

evξ : Z[q±1/4] → Z[ξ]

is the evaluation q1/4 = ξ. From the TQFT approach, it is not clear why the Jones
polynomial is even a polynomial.

1.5. The perturbative approach

Perturbative quantum field theory also constructs an invariant Zpert
(N,K),Vn

which takes

values in the power series ring Q[[h]]. When N = S3, Zpert
(S3,K),Vn

is the composition
of the Kontsevich integral of a knot with the sl2 weight system, and when N is

J.
 K

no
t T

he
or

y 
R

am
if

ic
at

io
ns

 2
00

6.
15

:9
83

-1
00

0.
 D

ow
nl

oa
de

d 
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 M

A
X

-P
L

A
N

C
K

-I
N

ST
IT

U
T

E
 F

O
R

 M
A

T
H

E
M

A
T

IC
S 

L
IB

R
A

R
Y

 o
n 

03
/1

7/
20

. R
e-

us
e 

an
d 

di
st

ri
bu

tio
n 

is
 s

tr
ic

tly
 n

ot
 p

er
m

itt
ed

, e
xc

ep
t f

or
 O

pe
n 

A
cc

es
s 

ar
tic

le
s.



November 8, 2006 16:32 WSPC/134-JKTR 00491

986 S. Garoufalidis & T. T. Lê

arbitrary, Zpert
(N,K),Vn

is the composition of the LMO invariant with the sl2 weight
system, see [1, 18]. When N = S3, the main identity is:

evhJK(n) = Zpert
(N,K),Vn

∈ Q[[h]],

where

evh : Z[q±1/4] → Q[[h]]

is the evaluation q = eh; see, for example [22]. Thus, from the perturbative point
of view, the Jones polynomial of a knot in a homology sphere exists as a formal
power series in h.

1.6. The Habiro ring

Despite the apparent failure of TQFT to explain the polynomial aspect of the Jones
polynomial, there is one gain. Namely let us fix (N, K) a natural number n and let
Ω4 denote the set of complex roots of unity whose order is divisible by 4. Then, the
WRT invariant gives a function:

Z(N,K),Vn
: Ω4 → C. (1.3)

This function is not continuous, and does not have nice analytic properties. Habiro
introduced an alternative notion of analytic functions. The latter are by definition
elements of the Habiro ring, defined by:

Ẑ[q] := lim←n
Z[q]/((1 − q)(1 − q2) · · · (1 − qn)). (1.4)

The ring Ẑ[q] can be considered as the set of all series of the form

f(q) =
∞∑

n=0

fn(q) (1 − q)(1 − q2) · · · (1 − qn), wherefn(q) ∈ Z[q], (1.5)

with the warning that f(q) does not uniquely determine (fn(q)).
It turns out that the Habiro ring Ẑ[q] shares many properties with the ring

of germs of complex analytic functions, (see [9]) and plays an important role in
Quantum Topology. In particular, elements of the Habiro ring

(a) can be differentiated with respect to q,
(b) can be evaluated at the set Ω of complex roots of unity,
(c) have Taylor series expansions that uniquely determine them,
(d) form an integral domain.

These properties suggest that we consider Ẑ[q] as a class of “analytic functions”
with domain Ω. For proofs of these properties, we refer the reader to [10].

Let us comment a bit further on these properties. (a) is obvious from Eq. (1.5).
(b) also follows from (1.5) because when q is a root of unity, only a finite number of
terms in the right-hand side of Eq. (1.5) are not 0, hence f(q) is defined as a complex
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number. Thus one can consider every f ∈ Ẑ[q] as a function with domain Ω the set
of roots of unity. (a) and (b) imply that elements of the Habiro ring have Taylor
series expansions at every complex root of unity. In particular, every f ∈ Ẑ[q] has
a Taylor expansion

T1(f) ∈ Z[[q − 1]] ⊂ Q[[h]]

(where q = eh). What is nontrivial is the fact that T1(f) uniquely uniquely
determines f . (d) follows immediately from (c). Another nontrivial fact is that
if f(ξ) = g(ξ) at infinitely many roots ξ of prime power orders, then f = g in Ẑ[q].
Therefore, one has the following corollary of Habiro’s results.

Proposition 1.2. The map Ẑ[q] →∏∞
n=1 Z[ξn], f → (f(ξ1), f(ξ2), . . .) is injective.

Here ξn = exp(2πi/n).

An example of a non-trivial element of the Habiro ring (of interest to quantum
topology) is the following element:

f(q) =
∞∑

n=0

(1 − q)(1 − q2) · · · (1 − qn)

studied by Kontsevich (unpublished), Zagier and the second author; see [21, 29].

1.7. Statement of the results

Ending our discussion on the Habiro ring, let us get back to Eq. (1.3), and let us
assume for simplicity that K is a 0-framed knot in an integer homology 3-sphere
N . It turns out that there is a function f ∈ qn/2Ẑ[q] such that for every ξ ∈ Ω4,

Z(N,K),Vn,ξ = evξf. (1.6)

Proposition 1.2 shows that this f is an invariant of the triple N, K, n, and we
denote it by J(N,K)(n). Note that if n is odd, then J(N,K)(n) ∈ Ẑ[q], otherwise
J(N,K)(n) ∈ q1/2Ẑ[q]. Our next definition answers Question 1.1 and also explains
the title of the paper.

Definition 1.3. The colored Jones function J(N,K) of a 0-framed knot K in an
integer homology 3-sphere N is defined by:

J(N,K) : N → Λ̂, (1.7)

where

Λ̂ := Ẑ[q] + q1/2 Ẑ[q]

∼= Ẑ[q][x]/(x2 − q). (1.8)
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Remark 1.4. If K is a 0-framed knot in an integer homology 3-sphere N and Kf

denotes the knot K with framing f (where f ∈ Z), then

J(N,Kf ) = qf n2−1
4 J(N,K).

Therefore, the colored Jones function of a framed knot in an integer homology
3-sphere takes value in the ring

Ẑ[q][x]/(x4 − q).

1.8. The colored Jones function is q-holonomic

Now that we know what the Jones polynomial of a knot in an integer homology
3-sphere really is, we may extend known results and conjectures of the Jones poly-
nomial of a knot in S3 to knots in integer homology 3-spheres. One of these results,
due to the authors, is the fact that the colored Jones function of a knot in S3 is
q-holonomic, see [7]. Let us recall this notion in our setting.

Define the linear operators L and M acting on maps f from N to an Z[q1/2]-
module by:

(Mf)(n) = qn/2f(n), (Lf)(n) = f(n + 1).

It is easy to see that LM = q1/2ML, and that L, M generate the quantum
plane A, the non-commutative ring with presentation

A = Z[q±1/2]〈M, L〉/(LM = q1/2ML).

The recurrence ideal of the discrete function f is the left ideal If in A that
annihilates f :

If = {P ∈ A |Pf = 0}.
We say that f is q-holonomic, or f satisfies a linear recurrence relation, if If �= 0.

In [7] we proved that for every knot K in S3, the function JK is q-holonomic. In other
words, JK satisfies a linear recursion relation with coefficients Laurent polynomials
in q1/2 and qn/2.

Theorem 1.5. For every 0-framed knot K in an integer homology 3-sphere N, the
colored Jones function J(N,K) is q-holonomic.

The main ideas behind the proof of the above theorem is that

• Every pair (N, K) as above is obtained from unit-framed surgery from an alge-
braically split link K ∪ L in S3.

• The function J(N,K) is obtained from the colored Jones function JK∪L by elimi-
nation of the variables corresponding to L.

• The function JK∪L is q-holonomic in all its variables (see Sec. 4.4 below), by [7].
• Elimination preserves q-holonomicity.
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1.9. The recurrence polynomial

Let I(N,K) denote the recurrence ideal of J(N,K). Then I(N,K) is a left ideal of A,
which is not a principal ideal domain. Hence I(N,K) might not be generated by a
single element. The first author [8] noticed that by adding to A all the inverses
of polynomials in M one gets a principal ideal domain Ã, and hence from the
ideal I(N,K) one can define a polynomial invariant. Formally, let Q(q1/2, M) be the
fractional field of the polynomial ring R[M ]. Let Ã be the set of all polynomials in
the variable L with coefficients in Q(q1/2, M):

Ã =

{ ∞∑
k=0

ak(M)Lk | ak(M) ∈ Q(q1/2, M), ak = 0 k 	 0

}
,

with multiplication given by

a(M)Lk · b(M)Ll = a(M) b(qk/2M)Lk+l.

It is known that Ã is a twisted polynomial ring (an Ore extension of Q(q1/2, M)),
and consequently Ã is a principal left-ideal domain, and A embeds as a subring of Ã.
The ideal extension Ĩ(N,K) := Ã I(N,K) is then generated by a single polynomial

α(N,K)(L, M, q) =
n∑

i=0

α(N,K),i(M, q)Li,

where the degree in L is assumed to be minimal and all the coefficients
α(N,K),i(M, q) ∈ Z[q±1/2, M ] are assumed to be co-prime. That α(N,K) can be
chosen to have integer coefficients follows from the fact that J(N,K)(n) ∈ Λ̂. It is
clear that α(N,K)(L, M, q) annihilates J(N,K), and hence it is in the recurrence ideal
I(N,K). Note that α(N,K)(M, L; q) is defined up to a factor ±qa/2M b, a, b ∈ Z. We
will call α(N,K) the recurrence polynomial of (N, K).

Let us say that two non-zero polynomials p1 and p2 in variables L and M are
M -essentially equal (and write p1

M= p2) if their ratio is a function of M alone. The
next conjecture generalizes the AJ Conjecture of the first author (see [8]).

Conjecture 1.6. For every knot K in an integer homology 3-sphere N, we have:

α(N,K)(L, M, 1) M= A(N,K)(L, M),

where A(N,K)(L, M) is the A-polynomial of (N, K) defined by [6].

For some partial results confirming the conjecture, see [8, 12, 20]. In particu-
lar, in [20] the second author used Kauffman bracket modules to established the
conjecture for a large class of 2-bridge knots in S3. The above conjecture compares
a quantum invariant (the recurrence ideal of the colored Jones function) with a
classical one (namely the A-polynomial). One motivation of the conjecture is the
dream of quantization and semiclassical analysis, in the context of 3-manifolds with
torus boundary. Another motivation is the fact that the Kauffman bracket skein
module is in a sense a quantization of the coordinate ring of the SL2(C) character
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variety of a 3-manifold; see [24]. The A-polynomial is the coordinate ring of the
SL2(C) character variety of the knot complement, restricted to the boundary torus.
On the other hand, the recurrence polynomial is in a sense a quantization of the
classical coordinate ring. Thus, we are back to the Kauffman bracket skein module.
And with this happy thought in mind, we end this section.

2. A Review of Habiro’s Work

In this section, we review Habiro’s work on the integrality of the colored Jones
polynomial and the WRT invariants of links in integer homology 3-spheres. For a
detailed discussion, we refer the reader to [9, 11].

2.1. The quantum group Uq(sl2)

We begin by reviewing some necessary representation theory of quantum groups.
We will use the following analogs of quantum integers and quantum factorials:

{n} = qn/2 − q−n/2, {n}! =
n∏

i=1

{i}!.

Let

C(n, k) :=
n+k∏

j=n−k

{j} =
{n + k}!

{n − k − 1}! .

Notice that C(n, k) = 0 for k > n. Also C(n, k) ∈ qn/2Z[q±1] and hence
{n}C(n, k) ∈ Z[q±1].

Consider the quantized enveloping algebra Uq(sl2) be defined as in Jantzen’s
book [13], except that our q is equal to q2 of [13], and our ground field is extended
to C(q1/4), instead of C(q1/2) as in [13].

The theory of type 1 Uq(sl2)-modules is totally similar to that of sl2. For each
positive integer there is a unique irreducible type 1 Uq(sl2)-module Vn, see, e.g.
[13] (where Vn is denoted by L(n, +)). Let R be the Grothendieck ring of finite-
dimensional type 1 Uq(sl2)-modules, tensored by C(q1/4). Then R is freely spanned
by V1, V2, . . ., and as an algebra is isomorphic to the polynomial algebra C(q1/4)[V2].
Let Re denote the subspace of R spanned by even powers of V2. For every framed,
r-component, oriented link L whose components are ordered, the quantum invariant
JL, extended linearly, can be considered as a function from Rr to C(q1/4).

There is a symmetric bilinear form on R:

(2.1)

Here the right-hand side is the colored Jones polynomial of the Hopf link, colored
by V and U . For example, one has 〈Vn, Vm〉 = [nm].
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Habiro defines the following elements in R:

Sk : =
k∏

i=1

(V 2
2 − (qi/2 + q−i/2)2), and

Pk : =
k∏

i=1

(V2 − q(2i−1)/2 − q−(2i−1)/2), P ′
k :=

Pk

{k}! , P ′′
k :=

{1}
{2k + 1}!Pk.

It is clear that {Sk}k∈N and {Pk}k∈N are bases of Re and R respectively. Moreover,
the two bases are dual under the pairing (2.1). That is, we have:

〈P ′′
k , Sn〉 = δn,k. (2.2)

It is easy to show that

〈Vn, Sk〉 =
C(n, k)
{1} . (2.3)

2.2. Universal quantum invariant of knots

Suppose K is a 0-framed oriented knot in S3. Then JK can be considered as a
C(q1/4)-linear map from R to the ground field C(q1/4). Using the bilinear form
(2.1) one can also consider each Sk as a linear form on R. Habiro showed that JK

is always an infinite linear combination of the Sk, i.e. for every V ∈ R,

JK(V ) =
∞∑

k=0

CK(k)〈V, Sk〉. (2.4)

One sees that for every fixed V ∈ R, we have 〈V, Sk〉 = 0 for large enough k.
Hence the right-hand side has a meaning for every V ∈ R. Using the orthogonality
(2.2), one sees that

CK(k) = JK(P ′′
k ).

A priori CK(k) belongs to the ground field C(q1/4). A difficult result of Habiro
is that CK(k) is always a Laurent polynomial in q with integer coefficients, CK(k) ∈
Z[q±1].

Using Eq. (2.4) for V = Vn and (2.3), one has

JK(n) =
∞∑

k=0

CK(k)C(n, k)/{1}. (2.5)

2.3. The case of links

Suppose L is an algebraically split r-component link in S3 with 0 framing on each
component. Then it is known that JL(n1, . . . , nr) is in Z[q±1] or in q1/2Z[q±1],
according as n1 + · · · + nr − r is even or odd.
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Equation (2.4) can be generalized to the link case, and we have the fundamental
equation:

JL(W1, . . . , Wr) =
∞∑

ki=0

CL(k1, . . . , kr)〈W1, Sk1〉 · · · 〈Wr , Skr〉, (2.6)

for every W1, . . . ,Wr ∈ R, and

CL(k1, . . . , kr) = JL(P ′′
k1

, . . . , P ′′
kr

).

The analogue of Eq. (2.5) is:

JL(n1, . . . , nr) =
∞∑

k1,...,kr=0

CL(k1, . . . , kr)
r∏

i=1

C(ni, ki)
{1} . (2.7)

Unlike the knot case, the coefficient CL(k1, . . . , kr) of the right hand-side is not
always a Laurent polynomial, but rather a rational function in q. One of the main
results of Habiro is the integrality of a minor modification C̃L of the cyclotomic
function CL. Let us define

C̃L(k1, . . . , kr) := JL(P ′
k1

, . . . , P ′
kr

)

= CL(k1, . . . , kr)
{2k1 + 1}!
{k1}!{1} · · · {2kr + 1}!

{kr}!{1} .

Habiro proves that

Theorem 2.1 [9, Theorem 3.3]. If L is an algebraically split and zero framed
link in S3, then

C̃L(k1, . . . , kr) ∈ {2m + 1}!
{m}!{1} Z[q±1/2],

where m = max{k1, . . . , kr}.

The important thing is that for every n, {2n+1}!
{n}!{1} is divisible by (1−q) · · · (1−qn).

This guarantees that for any sequence f(k) ∈ Z[q±1] (for k ∈ N), the series

∞∑
k=0

f(k)
{2k + 1}!
{k}!{1}

converges in Λ̂.

2.4. Invariants of integer homology 3-spheres

Suppose N is an integer homology 3-sphere, which is obtained by surgery on S3

along an algebraically split r-component link L, with framings f1 = ±1, . . . , fr =±1.
Let L(0) be the link L with all framing switched to 0.
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Habiro introduced the following elements ω±1 in some completion of R:

ω =
∞∑

j=0

qj(j+3)/4P ′
j ,

ω−1 =
∞∑

j=0

(−1)jq−j(j+3)/4P ′
j .

Although each of w±1 is an infinite sum of elements in R, Theorem 2.1 (with the
remark after the theorem) shows that JL(0)(w±1, . . . , w±1) always belongs to Ẑ[q].

Using a version of Kirby’s calculus for algebraically split links, Habiro proved that

JN := JL(0)(w−f1 , . . . , w−fr ) ∈ Ẑ[q]

is an invariant of the integer homology 3-sphere N , i.e. does not depend on the
choice of the surgery link L. Moreover, one has the following

Proposition 2.2 [Habiro].. The evaluation of JN (as an element of Ẑ[q]) at a
root of unity coincides with the WRT invariant ZN at that same root of unity.

Proof. We give a proof for this fact here, since we will adapt the proof for the
relative case later.

Orthogonality (that is, Eqs. (2.2) and (2.3)) implies that

〈P ′
k, Sn〉 = δn,k

{2k + 1}!
{k}!{1} .

Thus, for f = ±1 we have:

〈ω−f , Sk〉 = 〈(−fq)−fk(k+3)/4P ′
k, Sk〉 = (−fq)−fk(k+3)/4 {2k + 1}!

{k}!{1} .

This, together with Eq. (2.6) implies that

JN =
∞∑

k1,...,kr=0

C(k1, . . . , kr)〈ω−f1 , Sk1〉 · · · 〈ω−fr , Skr 〉

=
∞∑

k1,...,kr=0

C(k1, . . . , kr)
r∏

i=1

{2ki + 1}!
{ki}!{1} (−fiq)−fiki(k3+3)/4.

Hence

JN =
∞∑

k1,...,kr=0

C̃(k1, . . . , kr)
r∏

i=1

(−fiq)−fiki(ki+3)/4. (2.8)

So far q was a variable. Now assume that q1/4 is a root of unity of order 4d.
Then the quantum invariant ZN(q) is given by (see, e.g. [16])

ZN(q) =

∑4d
ni=1 JL(0)(n1, . . . , nr)

∏r
i=1[ni]q

fi
4 (n2

i−1)∏r
i=1

(∑4d
j=1[ni]2q

fi
4 (n2

i −1)
) ,

which, by (2.7) and Corollary 2.5 below, is equal to the right-hand side of (2.8).
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2.5. The Laplace transform

Suppose q1/4 is a primitive root of unity of order 4d. For f = ±1, let γf be the
Gauss sum

γf :=
4d∑

k=1

q
f
4 (k2−1).

The exact value of γf can be calculated, see, e.g. [16], but for us it is only important
that γf �= 0.

We define the Laplace transform Lf ;n as follows

Lf ;n(qna+b) := qb−fa2
.

Lemma 2.3. For any integers a, b we have

4d∑
n=1

q
f
4 (n2−1) qb+na = γf Lf ;n(qb+na).

Proof. We have

q
f
4 (n2−1) qb+na = q

f
4 ((n+2a)2−1) qb−fa2

.

Summing up n from 1 to 4d we get the result.

The following lemma, in another notation, was [2, Lemma 2.2].

Lemma 2.4. One has

Lf,n([n]C(n, k)/{1}) = 2(q−f − 1)(−fq)−fk(k+3)/4 {2k + 1}!
{k}!{1} .

Corollary 2.5. For q1/4 a root of unity of order 4d, one has∑4d
n=1 q

f
4 (n2−1) [n]C(n, k)/{1}∑4d
n=1 q

f
4 (n2−1) [n]2

= (−fq)−fk(k+3)/4 {2k + 1}!
{k}!{1} .

Remark 2.6. Despite the appearance of powers of q1/4 in ω±, JN contains integral
powers of q. This follows from

qn(n+3)/4 {2n + 1}!
{n}!{1} = (−1)nq−n(n+1)/2 {2n + 1}−!

{n}−!{1}− , (2.9)

(−1)nq−n(n+3)/4 {2n + 1}!
{n}!{1} = q−n(n+2) {2n + 1}−!

{n}−!{1}− , (2.10)

where the unbalanced quantum integers and factorials are defined by:

{n}− = 1 − qn, {n}−! = {1}− · · · {n}−.
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The next corollary gives a formula for JN , where N is obtained by ±1 surgery
on a knot K in S3:

Corollary 2.7. If S3
K,±1 denotes the result of ±1 surgery on a knot K in S3, then

JS3
K,−1

=
∞∑

k=0

JK(P ′′
k )qk(k+3)/4 {2k + 1}!

{k}!{1}

=
∞∑

k=0

JK(P ′′
k )(−1)kq−k(k+1)/2 {2k + 1}−!

{k}−!{1}− , (2.11)

JS3
K,+1

=
∞∑

k=0

JK(P ′′
k )(−1)kq−k(k+3)/4 {2k + 1}!

{k}!{1}

=
∞∑

k=0

JK(P ′′
k )q−k(k+2) {2k + 1}−!

{k}−!{1}− . (2.12)

3. A Relative Version

Suppose L is an algebraically split r-component link in an integer homology 3-
sphere N , each component of which has framing 0. It is known that there is an
algebraically split framed link in S3, which is the disjoint union of 2 sublinks L1

and L2, such that the framing of each component of L2 is ±1, and that the surgery
along L2 transforms (S3,L1) to (N,L). Then L1 has r components, each with
framing 0. Assume that L2 has s components whose framings are f1, f2, . . . , fs. Let
L(0) be the link L1 ∪ L2 with all the framings switched to 0.

Suppose n1, . . . , nr are positive integers. Let ZN,L(n1, . . . , nr; ξ) be the WRT
invariant of the pair (N,L), when L is colored by the Uq(sl2)-module Vn1 , . . . , Vnr ,
at the root ξ of unity of order divisible by 4. Our ξ here (which is q1/4) is equal to
t in [16].

3.1. WRT invariant Z(N,L) as element of Λ̂

Let us begin with the following integrality lemma.

Lemma 3.1. For positive integers n1, . . . , nr, one has JL(0)(n1, . . . , nr,

ω−f1 , . . . , ω−fs) belongs to Λ̂.

Proof. Using (2.6) and a computation analogous to the one in the proof of Propo-
sition 2.2, one obtains that

JL(0)(n1, . . . , nr, ω
−f1 , . . . , ω−fs) =

∑
0≤ki<ni

(
r∏

i=1

C(ni, ki)
{1}

)
D(k1, . . . , ki), (3.1)
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where

D(k1, . . . , kr) =
∞∑

l1,...,ls=0

(
s∏

i=1

(−fiq)−fili(li+3)/4

)
JL(0)(P ′′

k1
, . . . , P ′′

kr
, P ′

l1 , . . . , P
′
ls).

(3.2)

Theorem 2.1 implies that

JL(0)(P ′′
k1

, . . . , P ′′
kr

, P ′
l1 , . . . , P

′
ls) ∈

(
r∏

i=1

{ki}!{1}
{2ki + 1}!

)
{2m + 1}!
{m}!{1} R, (3.3)

where m = max{k1, . . . , kr, l1, . . . , ls}. Using the easily verified identity

C(n, k)
{1}

{k}!{1}
{2k + 1}! =

[
n + k

2k + 1

]
{k}!,

we see that

r∏
i=1

C(ni, ki)
{1} JL(0)(P ′′

k1
, . . . , P ′′

kr
, P ′

l1 , . . . , P
′
ls) ∈

(
r∏

i=1

{ki}!
)

{2m + 1}!
{m}!{1} R.

Hence for fixed k1, . . . , kr, the term in the sum of the right-hand side of (3.1) is
in Λ̂.

Recall that if q1/4 is a root of unity of order 4d, then the WRT invariant is
defined by

Z(N,L)(n1, . . . , nr; q) =

∑4d
ni=1 JL(0)(n1, . . . , nr)

∏r
i=1[ni]q

fi
4 (n2

i −1)∏r
i=1

(∑4d
j=1[ni]2q

fi
4 (n2

i−1)
) .

Hence the proof of Proposition 2.2 can be easily generalized to the relative case,
and one gets

Proposition 3.2. The evaluation of JL(0)(n1, . . . , nr, ω
−f1 , . . . , ω−fs) at a root

q1/4 = ξ of unity coincides with the quantum invariant Z(N,L)(n1, . . . , nr) at that
same root of unity. Hence JL(0)(n1, . . . , nr, ω

−f1 , . . . , ω−fs) is an invariant of the
link L in N, colored by n1, . . . , nr.

Remark 3.3. Habiro’s argument can directly show that JL(0)(n1, . . . , nr,

ω−f1 , . . . , ω−fs) is an invariant of the link L in N , colored by n1, . . . , nr.

Let us denote JL(0)(n1, . . . , nr, ω
−f1 , . . . , ω−fs) by J(N,L)(n1, . . . , nr), which is

an element of Λ̂. We can consider J(N,L) as a function from Nr to Λ̂.
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4. q-Holonomicity in Many Variables

Theorem 1.5 is a special case of Theorem 4.1 below, which follows from the fact that
the quantum invariants can be built from elementary blocks that are q-holonomic,
and the operations that patch the blocks together to give the colored Jones func-
tion preserve q-holonomicity. First we need the notion of q-holonomicity in many
variables, introduced by Sabbah [5], generalizing Bernstein’s notion of (usual) holo-
nomicity [3, 4].

4.1. q-holonomicity in many variables

Consider the operators Li and Mj for 1 ≤ i, j ≤ r which act on functions f from
Nr to a Z[q±1/2]-module by

(Mif)(n1, . . . , nr) = qni/2f(n1, . . . , nr),

(Lif)(n1, . . . , nr) = f(n1, . . . , ni−1, ni + 1, ni+1, . . . , nr).

It is easy to see that the following relations hold:

MiMj = MjMi, LiLj = LjLi,

MiLj = LjMi, for i �= j LiMi = q1/2MiLi,
(Relq)

We define the r-dimensional quantum space Ar to be a noncommutative algebra
with presentation

Ar =
Z[q±1/2]〈M1, . . . , Mr, L1, . . . , Lr〉

(Relq)
.

For a function f as above one can define the left ideal If in Ar by

If := {P ∈ Ar|Pf = 0}.
If we want to determine a function f by a finite list of initial conditions, it does
not suffice to ensure that f satisfies one nontrivial recursion relation if r ≥ 2. The
key notion that we need instead is q-holonomicity. Intuitively, f is q-holonomic if
it satisfies a maximally overdetermined system of linear difference equations with
polynomial coefficients. The exact definition of holonomicity is through homological
dimension, as follows.

Suppose I is a left Ar-module. Let Fm be the sub-space of Ar spanned by poly-
nomials in Mi, Li of total degree ≤ m. Then the module Ar/I can be approximated
by the sequence Fm/(Fm∩I), m = 1, 2, . . .. It turns out that, for m 	 1, the dimen-
sion (over the fractional field Q(q1/2)) of Fm/(Fm ∩ I) is a polynomial in m whose
degree is called the homological dimension of Ar/I and is denoted by d(Ar/I).

Bernstein’s famous inequality (proved by Sabbah in the q-case) states that the
dimension of a non-0 module is ≥ r, if the module has no monomial torsions, i.e.
any non-trivial element of the module cannot be annihilated by a monomial in
Mi, Li. Note that the left Ar-module Ar/If does not have monomial torsion.
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We say that a discrete function f is q-holonomic if d(Ar/If ) ≤ r. Note that if f

is q-holonomic, then by Bernstein’s inequality, either Ar/If = 0 or d(Ar/If ) = r.
The former can happen only if f = 0.

4.2. Assembling q-holonomic functions

Here are some important operations that preserve q-holonomicity:

• Sums and products of q-holonomic functions are q-holonomic.
• Specializations and extensions of q-holonomic functions are q-holonomic. In other

words, if f(n1, . . . , nm) is q-holonomic, the so are the functions g(n2, . . . , nm) :=
f(a, n2, . . . , nm) and h(n1, . . . , nm, nm+1) := f(n1, . . . , nm).

• Diagonals of q-holonomic functions are q-holonomic. In other words, if
f(n1, . . . , nm) is q-holonomic, then so is the function

g(n2, . . . , nm) := f(n2, n2, n3, . . . , nm).

• Linear substitution. If f(n1, . . . , nm) is q-holonomic, then so is the function,
g(n′

1, . . . , n
′
m′), where each n′

j is a linear function of the ni’s.
• Multisums of q-holonomic functions are q-holonomic. In other words, if

f(n1, . . . , nm) is q-holonomic, the so are the functions g and h, defined by

g(a, b, n2, . . . , nm) :=
b∑

n1=a

f(n1, n2, . . . , nm),

h(a, n2, . . . , nm) :=
∞∑

n1=a

f(n1, n2, . . . , nm)

(assuming that the latter sum is finite for each a).

For a user-friendly explanation of these facts and for many examples, see [23, 28].

4.3. Examples of q-holonomic functions

The following functions are q-holonomic:

n → {n}, n → [n], n → [n]! :=
n∏

i=1

[i], n → {n}!,

(n, k) → {n}k :=

{∏k
i=1{n − i + 1}, if k ≥ 0,

0, if k < 0,

(n, k) →
[

n

k

]
:=

{ {n}k

{k}k
, if k ≥ 0,

0, if k < 0.

Also q-holonomic is the delta function δn,k. In fact, we will encounter only
sums, products, extensions, specializations, diagonals, and multisums of the above
functions.
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4.4. q-holonomicity of quantum invariants

Theorem 4.1. For a 0-framed, algebraically split, r-component, oriented link L in
an integer homology 3-sphere N, the function J(N,L) : Zr → Λ̂ is q-holonomic.

Proof. From [7] we know that the function

R(n, k) := (−1)n+1−k {1}{2k}
{n + 1 − k}!{n + 1 + k}!

is q-holonomic, and that

P ′′
n =

n+1∑
k=1

R(n, k)Vk.

By the result of [7] we know that JL(0)(k1, . . . , kr, l1, . . . , ls) is q-holonomic in
all variables, hence JL(0)(P ′′

k1
, . . . , P ′′

kr
, P ′

l1
, . . . , P ′

ls
) is q-holonomic in all variables

k1, . . . , kr, l1, . . . , ls. It follows from (3.2) that D(k1, . . . , kr) is q-holonomic, since
(−f1q)−f1k1(k1+3)/4 · · · (−frq)−frkr(kr+3)/4 is q-holonomic in all variables. Then
Eq. (3.1) shows that J(N,L) is q-holonomic.
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[23] M. Petkovšek, H. S. Wilf and D. Zeilberger, A = B (A.K. Peters, Wellesley, MA,

1996).
[24] J. Przytycki and A. Sikora, Skein algebra of a group, Knot Theory, Banach Center

Publications, Vol. 42 (Polish Academy of Sciences, Warsaw, 1998), pp. 297–306.
[25] N. Reshetikhin and V. Turaev, Ribbon graphs and their invariants derived from

quantum groups, Commun. Math. Phys. 127 (1990) 1–26.
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