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Abstract. We discuss a matrix of periodic holomorphic functions in the upper and lower
half-plane which can be obtained from a factorization of an Andersen–Kashaev state integral
of a knot complement with remarkable analytic and asymptotic properties that defines
a PSL2(Z)-cocycle on the space of matrix-valued piecewise analytic functions on the real
numbers. We identify the corresponding cocycle with the one coming from the Kashaev
invariant of a knot (and its matrix-valued extension) via the refined quantum modularity
conjecture of [arXiv:2111.06645] and also relate the matrix-valued invariant with the 3D-
index of Dimofte–Gaiotto–Gukov. The cocycle also has an analytic extendability property
that leads to the notion of a matrix-valued holomorphic quantum modular form. This is
a tale of several independent discoveries, both empirical and theoretical, all illustrated by
the three simplest hyperbolic knots.
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1 Introduction

In this paper, which is a companion of [32], we want to tell a story about q-series and quantum
invariants of knots that seems to us very interesting. The story started 11 years ago with the
challenge to compute the asymptotic expansion at q → 1 of a q-hypergeometric series that
appeared in the evaluation of a tetrahedron quantum spin network. As it turned out, when
q = e2πiτ with τ tending to zero on the positive imaginary axis, the asymptotics were oscillatory
(with approximate oscillation 0.32306), and after some experimentation, it was found that the
oscillation was given by the volume of the simplest hyperbolic (figure eight) knot, divided by 2π.
The appearance of the 41 knot was a bit strange, since this knot has little to do with the
tetrahedral spin network (or its complement) in Euclidean or hyperbolic 3-dimensional space.
This strange coincidence persisted further, where it was found by a numerical computation that
the first and the second terms in the asymptotic expansion were, after some minor normalization,
rational numbers with numerator 11 and 697, respectively. A search in our databases revealed
that the number 697 appears as the second coefficient in the asymptotic expansion of the 41
knot, whereas the number 11 appears as the first coefficient. This was surely not an accident!
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Using numerical methods, we were able to match the asymptotics of the Kashaev invariant of
the 41 knot to the radial asymptotics of the above q-series to over 100 terms.

So, our q-series was certainly attached to an invariant of the 41-knot. A systematic collection
of such knot invariants (indexed by a pair of integers) was given by the 3D-index of Dimofte–
Gaiotto–Gukov [11, 12], and in fact, our q-series could be re-written as a q-hypergeometric
sum G0(q) related to the 3D-index, and nearly, but not quite, matched to the so-called total 3D-
index. An illegitimate (i.e., formal, but divergent) computation of the total 3D-index suggested
that the latter should equal to G0(q)

2, but a computation showed that it did not agree. Further
attempts to identify the quotient of the total 3D-index by G0(q) did not produce any results.

The next source of q-series attached to knots was the state-integral of Andersen–Kashaev [4].
Although the latter is an analytic function of τ in the cut plane C′ = C \ (−∞, 0], it was well
known in the physics literature (see [5]) that it should factorize into a finite sum of products of
q-series times q̃-series, where q = e2πiτ and q̃ = e−2πi/τ . In fact, Kashaev and the first author
exactly did so for the state-integral of the 41 knot (and for one dimensional state-integrals in
general) and found out a second q-series G1(q) [27]. What is more, the total 3D-index of the 41
knot experimentally was checked to be the product G0(q)G1(q), a statement that can be proven
rigorously.

We next looked at asymptotics of the vector (G0(q), G1(q)) of q-series of the 41 knot when q
approaches a root of unity e2πiα (for a rational number α), and without a surprise this time, we

found the pair of asymptotic series Φ̂
(σ1)
α (2πiτ) and Φ̂

(σ2)
α (2πiτ) (corresponding to the geometric

representation of the 41 knot and its complex conjugate) that appear in a refinement of the
quantum modularity conjecture [32]. Replacing the q and q̃-series in the state integral when q
is near a root of unity by their asymptotic expansions produced a bilinear combination of fac-
torially divergent series which are convergent power series! This phenomenon was illustrated by
a dramatic drop in the growth rate of the 150-th coefficient of the corresponding power series.

Having understood the story for the simplest hyperbolic knot, we observed two new phe-
nomena. One is quadratic relations (which are trivial for the 41 knot) for the vector of 3
q-series (inside and outside the unit disk) for the 52 knot, and for the vector of 6 q-series for the
(−2, 3, 7)-pretzel knot. Another is the presence of a level, being 2 for the (−2, 3, 7)-pretzel knot,
presumably related to the fact that its Newton polygon has half-integer slopes.

Returning to the case of the 41 knot, the factorization of its state-integral suggested that
we look at a bilinear q and q̃-combination of the vector (G0(q), G1(q)) of q-series where now
q̃ = e2πiγ(τ) for a fixed element γ of SL2(Z) (the case of the original state-integral being the
one with γ =

(
0 −1
1 0

)
). A priori, this function is analytic only for τ ∈ C \ R, but a numerical

computation revealed that this function is analytic on a cut plane Cγ . This suggested an
extension of the Andersen–Kashaev state integral that depends on an element γ of SL2(Z), and
even more to an SL2(Z)-version of the Faddeev quantum dilogarithm, which is studied in current
joint work of Kashaev and the authors [28].

A closer look at the asymptotics of the vector (G0(q), G1(q)) as q approaches 1, shows that
they were given by linear combinations of a pair of asymptotic series Φ̂(σ1)(2πiτ) and Φ̂(σ2)(2πiτ).
This suggested that suitable linear combination of the vector (G0(q), G1(q)) should be simply
asymptotic to one of the two Φ̂(σj)(2πiτ) series above. However, this statement is incorrect.
Instead, the radial asymptotics when q = e2πiτ and τ tends to zero in a fixed ray arg(τ) = θ0 de-
pend on the ray, but different rays detect asymptotic expansions of the form e−2πim/τ Φ̂(σj)(2πiτ)
for m a nonnegative integer. When arg(τ) = π/2, these exponentially small corrections cannot
be numerically observed, however when arg(τ) is near 0 or π, one can indeed see a multiple of
these series e−2πim/τ Φ̂(σj)(2πiτ), appearing, and what is more, the multiple is an integer num-
ber. This phenomenon is already hinted by the bilinear factorization of the state-integral as
a finite sum of products of q-series times q̃-series, and was glimpsed in the present work, and
studied more extensively in the work of Gu–Mariño and the first author [22, 23]. This lead to
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a matrix
( G

(m)
0 (q) G

(m)
1 (q)

G
(m+1)
0 (q) G

(m+1)
1 (q)

)
whose entries are descendant q-series indexed by the integers with

G
(0)
0 (q) = G0(q) and G

(1)
1 (q) = G1(q).

The matrix of descendant q-series defined for |q| ≠ 1 lead to a matrix of asymptotic series, and
to a matrix-valued PSL2(Z)-cocycle whose value at

(
0 −1
1 0

)
is given by a matrix of descendant

Andersen–Kashaev state-integrals and whose value at γ ∈ SL2(Z) is given by the matrix of
descendant state-integral invariants of [28].

The two matrix-valued cocycles, one from [32] and the other one from the current paper agree
at the rational numbers. This follows from a second factorization property of the state-integrals
at rational points [26]. This leads to the notion of a holomorphic quantum modular form,
a generalization of a mock modular form, whose realization as periodic functions at rational
numbers was the focus of [32] and whose realization as periodic holomorphic functions in C \R
was the focus of our paper.

In this paper, we will have a number of statements called “Observations”, all of which were
first observed empirically, but of which some are now proved and others still conjectural. We
will indicate this individually in each case.

A preliminary draft of this paper was already written in 2012 but then not published because
we kept finding new results which made the older versions obsolete. In the present paper, the
relation to the perturbative series and functions on roots of unity treated in [32] have finally
become clear. Related aspects of this work appeared in [13, 14, 21, 27, 36, 37]. Modular linear
q-difference equations were introduced in [29]. An extension of the matrix-valued q-series to
a matrix of one additional row and column that sees the trivial PSL2(C)-representation was
given in [24]. A detailed study of the asymptotics of the full 3D-index (as opposed to its total
version discussed here) and of the related Turaev–Viro invariant was given in [30]. A detailed
study of the 6× 6 matrix of q-series associated to the (−2, 3, 7)-pretzel knot is given by Ni An
and Yunsheng Li in [1].

Finally, we mention that this story of quantum knot invariants (i.e., 3-manifolds with torus
boundary) extends to the case of the Witten–Reshetikhin–Turaev of closed hyperbolic 3-mani-
folds, as confirmed by Campbell Wheeler in his Ph.D. Thesis [51, 52].

2 How the q-series arise

2.1 The quantum modularity conjecture

In this section, we tell the rather amusing story of how we purely accidentally found a q-series
whose asymptotics near roots of unity agreed with the divergent perturbative series arising from
the volume conjecture and the quantum modularity conjecture for the 41 knot, and how a series
of further numerical experiments led to the final picture that is described in this paper.

A knot K has two famous quantum invariants, the (colored) Jones polynomial JK
N (q) ∈

Z
[
q, q−1

]
and the Kashaev invariant ⟨K⟩N ∈ Q forN ∈ N. (Both definitions will be omitted since

they aren’t used here and can be found in many places [39, 41, 50].) Murakami–Murakami [48]
found that ⟨K⟩N is the value of JK

N (q) at q = ζN and this is the formula that we will need. For
any knot it can in principle be made explicit. For instance,

⟨41⟩N =
N−1∑
n=0

∣∣(ζN ; ζN )n
∣∣2

with (q; q)n :=
∏n

j=1(1 − qj) being the usual q-Pochhammer symbol and ζN = e2πi/N . The
Kashaev invariant can be extended equivariantly to a function J on complex roots of unity.
Moreover, it is known by the work of Murakami and Murakami [48] that the (similarly defined)
invariant JK(−1/N) for any knot K is equal to the knot invariant ⟨K⟩N defined by Kashaev [41].
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The famous volume conjecture of Kashaev states that for any hyperbolic knot K the logarithm
of ⟨K⟩N is asymptotically equal to CN as N tends to infinity, where C equals the (complexified)
hyperbolic volume of the knot divided by 2πi. There are very few cases for which the volume
conjecture has been rigorously proved, but for the 41 knot it is quite easy using the Euler–
Maclaurin formula and standard asymptotic techniques, because all of the terms in (2.1) are
positive, and one finds the much more precise formula

J41

(
− 1

N

)
∼ N3/2Φ̂

(
2πi

N

)
(2.1)

with Φ̂(h) defined by

Φ̂(h) = eiV/hΦ(h),

where V is the hyperbolic volume of the knot

V = Vol
(
S3 \ 41

)
= 2 Im

(
Li2
(
eπi/3

))
= 2.0298829 . . . , (2.2)

and where Φ(h) is the formal power series with algebraic coefficients (which up to a common
factor all lie in the trace field Q

(√
−3
)
of the 41 knot) having the form

Φ(h) =
∞∑
j=0

Ajh
j , Aj =

1
4
√
3

(
1

72
√
−3

)j aj
j!

(2.3)

with aj ∈ Q, the first values being given by

j 0 1 2 3 4 5 6 7

aj 1 11 697 724351
5

278392949
5

244284791741
7

1140363907117019
35

212114205337147471
5

A proof of (2.1) is given in [6] and in [32]. A weaker asymptotic formula with Φ(h) replaced by
its constant term a0 was proved by Andersen and Hansen [3].

2.2 A q-series G0(q)

The surprising discovery that we made, completely by accident, is that there is a close connection
between the asymptotic expression occurring here and the radial asymptotics of the function in
the unit disk defined by

G0(q) = (q; q)∞

∞∑
n=0

(−1)n
qn(3n+1)/2

(q; q)3n
= 1− q − 2q2 − 2q3 − 2q4 + q6 + · · · . (2.4)

The infinite sum in (2.4) occurred in the work of the first author on the stability of the coefficients
of the evaluation of the regular quantum spin network [21, Section 7], and in the course of
a numerical investigation of its asymptotics as q → 1 we discovered empirically the following:

Observation 2.1. We have

G0

(
e2πiτ

)
∼

√
τ
(
Φ̂(2πiτ)− iΦ̂(−2πiτ)

)
(2.5)

to all orders in τ as τ tends to 0 along any ray in the interior of the upper half-plane.

It was to achieve this simple statement that we included the factor (q; q)∞ in (2.4). The
proofs of this observation and the subsequent ones in this section are sketched in the appendix.
Our next discovery were two further formulas for G0 that we found empirically.
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Observation 2.2. We have

G0(q) =
1

(q; q)∞

∞∑
n,m=0

(−1)n+m q(n+m)(n+m+1)/2

(q; q)n(q; q)m
=

∞∑
n=0

(−1)n
qn(n+1)/2

(q; q)2n
. (2.6)

A proof of the above equation was given by S. Zwegers (see Appendix A.1). These expressions
are of interest because, unlike the original series in (2.4) whose origin had no obvious connection
with the 41 knot, these series are related to it: the first one, which was shown to us by T. Dimofte,
is typical of the series occurring in his work with Gaiotto and Gukov [11, 12, 20] on the 3D index
of a triangulation, while the second one is typical of those occurring in the work of Dimofte and
the first author on q-series associated to ideal triangulations of cusped 3-manifolds [13].

Equation (2.5) turns out to be only a part of a bigger story. On the one hand, the power
series Φ(h) is only a special case at α = 0 of the more general asymptotic series Φα(h) (α ∈ Q)
occurring in the modularity conjecture for J41(q) made by the second author in [54] and play
a central role in our prior paper [32]. These asymptotic series appear in the asymptotics of G0(q)
for q = e2πi(α+τ) as τ → 0 in a cone in the upper half-plane. This will be discussed in Section 3.3
below. On the other hand, the q-series G0(q) and the asymptotic formula (2.5) are related to
the Dimofte–Gaiotto–Gukov index and to the Hikami–Kashaev state integral. We explain this
next.

2.3 The index, the state integral and a second q-series G1(q)

After describing the radial asymptotics of G0(q) at roots of unity, our next step was to look
for a connection between the power series G0(q) and the index of 41. The index is an invariant
of suitable ideal triangulation introduced in [11, 12]. Necessary and sufficient conditions for its
convergence were established in [20] and its topological invariance was proven in [25], leading
in particular to an invariant IndK(q) for any knot K

(
in equation (2) of [25], this invariant was

denoted by ItotK (q)
)
. The index is defined as a sum over a lattice of products of the tetrahedron

index function

I∆(m, e) =
∞∑

n=max{0,−e}

(−1)n
q

1
2
n(n+1)−(n+ 1

2
e)m

(q; q)n(q; q)n+e
.

For the 41 knot, the rotated index at (0, 0) (abbreviated simply by the index below) is given by

Ind41(q) =
∑

k1,k2∈Z
I∆(k1, k2)I∆(k2, k1) = 1− 8q − 9q2 + 18q3 + 46q4 + 90q5 + · · · .

It seems quite natural to expect a relation between the Ind41(q) and G0(q). This is encouraged
by the illegitimate rewriting of Ind41(q) as a 4-dimensional sum over the integers (which is
divergent), but after some rearrangement it decouples into the product of two two-dimensional
sums each of which is equal to G0(q). Nonetheless, when we performed experiments no relation
between the series Ind41(q) and G0(q)

2 was observed.

The key to finding the missing relation between Ind41(q) and G0(q) turned out to involve the
Andersen–Kashaev state integral associated to the 41 knot [4] and its factorization [27] as a sum
of products of q-series and q̃-series.

State integrals appear in quantum hyperbolic geometry and in Chern–Simons theory with
complex gauge group pioneered by the work of Kashaev [4, 40], Dimofte [9, 10] and many other
researchers [15, 38]. Their building block is the Faddeev quantum dilogarithm, and a suit-
able combinatorial ideal triangulation of a cusped hyperbolic 3-manifold M and the result is
a holomorphic function which is often independent of the ideal triangulation, thus a topological
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invariant. Below, we will use the state integral of the Andersen–Kashaev invariant of a hyper-
bolic knot complement [4]. In the normalization that we will use this invariant is a holomorphic
function ZM (τ) on the cut plane C′, and for the 41 knot is given by (see [4, Section 11.4])

Z41(τ) =

∫
R+iε

Φ√
τ (x)

2e−πix2
dx, τ ∈ C′ = C \ (−∞, 0] (2.7)(

for convenience we write ZK in place of ZS3\K
)
, with small positive ε, where Φb(x) is Faddeev’s

quantum dilogarithm [17]

Φb(x) =

(
−q1/2e2πbx; q

)
∞(

−q̃1/2e2πb−1x; q
)
∞
, q = e2πiτ , q̃ = e−2πi/τ , τ = b2.

As is well known (see for instance [5, 27]), the structure of the set of poles of the quantum
dilogarithm permits one to factorize this integral as a finite sum of a product of functions
of q and q̃ as above. The answer here is given by the following theorem. Let G1(q) be the
q-hypergeometric series defined by

(qeε; q)2∞
(q; q)2∞

∞∑
m=0

(−1)m
qm(m+1)/2e(m+1/2)ε

(qeε; q)2m
= G0(q) +

ε

2
G1(q) +O(ε)2 (2.8)

and given explicitly by

G1(q) =
∞∑

m=0

(−1)mqm(m+1)/2

(q; q)2m

(
E1(q) + 2

m∑
j=1

1 + qj

1− qj

)
= 1− 7q − 14q2 − 8q3 − 2q4 + 30q5 + 43q6 + 95q7 + 109q8 + · · · , (2.9)

where E1(q)(“the non-modular Eisenstein series of weight 1”) is the power series

E1(q) = 1− 4

∞∑
n=1

qn

1− qn
= 1− 4

∞∑
n=1

d(n)qn, d(n) = number of divisors of n. (2.10)

Theorem ([27]). When Im(τ) > 0, we have

2i(q̃/q)1/24Z41(τ) = τ1/2G1(q)G0(q̃)− τ−1/2G0(q)G1(q̃), (2.11)

where q = e2πiτ and q̃ = e−2πi/τ .

The coefficients of G0(q) and G1(q) can be computed easily using that

G0(q) =
∞∑

m=0

Tm(q), G1(q) =
∞∑

m=0

Rm(q)Tm(q), (2.12)

where Tm(q) and Rm(q) are given by the recursion

Tm(q) = − qm

(1− qm)2
Tm−1(q), Rm(q) = Rm−1(q) + 2

1 + qm

1− qm

with initial conditions T0(1) = 1 and R0(q) = E1(q). For instance, we find

G1(q) = 1− 7q − 14q2 − 8q3 − 2q4 + 30q5 + 43q6 + 95q7 + 109q8 + 137q9 + 133q10

+ 118q11 + 20q12 − 64q13 − 232q14 − 468q15 − 714q16 − 1010q17 − 1324q18

− 1632q19 − 1878q20 + · · · − 207821606967484464484714504354799q1500 + · · · .

Quite by accident, when we compared the power series expansions of G0(q), G1(q), and the
index, we discovered the following.
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Observation 2.3. The three q-series G0(q), G1(q) and Ind41(q) are related by

Ind41(q) = G0(q)G1(q). (2.13)

A proof of equation (2.13) was communicated to us by T. Dimofte and an additional proof
follows from the results of [23, Section 5.3]. This observation suggests that the q-series G0(q)
and G1(q) are intimately related. Since we had already discovered a relationship between the
asymptotics of G0(q) as q → 1 and the power series occurring in (2.1) (Observation 2.1), it was
natural to make a similar numerical study of the asymptotics of G1(q) as q → 1. The result of
this experiment, stated in the following observation, was surprisingly simple.

Observation 2.4. We have

G1

(
e2πiτ

)
∼ 1√

τ

(
Φ̂(2πiτ) + iΦ̂(−2πiτ)

)
(2.14)

to all orders in τ as τ tends to 0 in a cone in the interior of the upper half-plane.

The right hand side of equation (2.8) defines a sequence of power series (one for every power
of ε) the first two of which are G0(q) and G1(q)/2. This is analogous to the ε-deformations of
linear differential equations studied for instance by Golyshev and the second author [34, 55],
and also analogous to the theory of Jacobi forms, where ε plays the role of a Jacobi variable.
The connection between ε-deformation and factorization of state integrals is discussed further in
Appendix A.5 below. One may wonder whether the q-series given by the coefficient of ε2

(
or εk

for k ≥ 2
)
in (2.8) has radial asymptotics given by a variation of Observations 2.1 and 2.4.

A relation was recently found by Wheeler [51].
We discovered empirically the following alternative q-series representation for G1, which is

just a slight modification of the second formula for G0 given in (2.6).

Observation 2.5. For |q| < 1 we have

G1(q) =
∞∑
n=0

(−1)n
q

n(n+1)
2 (6n+ 1)

(q; q)2n
. (2.15)

This was later proved in [23, Section 5.3].

2.4 Holomorphic functions in C \ R

The relation of the q-series G0 and G1 with the state integral given in equation (2.11) brings out
one more aspect to the q-series G0 and G1, namely their extension outside the unit disk |q| > 1.
This happens because on the one hand the state integral satisfies the symmetry

Z41(τ) = Z41

(
τ−1

)
, τ ∈ C \ R

(which in turn follows from the corresponding symmetry of Faddeev’s quantum dilogarithm),
and on the other hand the state integral is factorized in terms of explicit q-hypergeometric
series, which are guaranteed to be convergent when |q| ̸= 1. Indeed, the summand in last part
of equation (2.6) is invariant under the replacement of q by q−1, and hence the formula of the
equation defines an extension of G0 for |q| > 1 which satisfies the property G0(q) = G0

(
q−1
)
.

Likewise, equation (2.9), together with the convention that E1

(
q−1
)
= −E1(q) for |q| > 1,

defines an extension of G1 which satisfies the property G1(q) = −G1

(
q−1
)
. Summarizing, we

have

G0(q) = G0

(
q−1
)
, G1(q) = −G1

(
q−1
)
, q ∈ C, |q| ≠ 1

and equation (2.11) holds for τ ∈ C \ R.
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3 q-series and perturbative series

In this section, we discuss three further aspects of our pair (G0(q), G1(q)) of q-series. One is
that their asymptotic expansions depend on a sector. This seems to be a property of general
q-hypergeometric series not observed before, which is not only theoretically interesting, but also
practically so, since to numerically compute asymptotic expansions, we can choose rays with
a single dominant asymptotics, making the numerical computation much easier. From that point
of view, the numerical asymptotics when q ∈ [0, 1) tends to 1 is a very resonant situation.

A second aspect is that bilinear combinations of factorially divergent series give convergent
power series. These bilinear combinations are motivated by the factorization of state-integrals,
combined by the asymptotic expansions of our q-series, and lead to explicit formulas for the
Taylor series expansions of state-integrals at rational numbers, which subsequently have been
proven in [26].

The third aspect is that the asymptotic analysis of our q-series can be extended to any
complex root of unity. This is hardly a surprise, and relates the asymptotic expansions of the
pair (G0(q), G1(q)) as q approaches a root of unity to the asymptotic expansions of the Kashaev
invariant in the quantum modularity conjecture of the second author [54].

3.1 Asymptotics of holomorphic functions in sectors

Since we will be considering functions of q on |q| ̸= 1 as well as functions of τ ∈ C \ R with
q = e2πiτ , we will use capital letters for functions F (q) of q with |q| ≠ 1 and small letters for the
corresponding functions f(τ) := F

(
e2πiτ

)
of τ ∈ C \ R. For instance, we have

g0(τ) = G0

(
e2πiτ

)
, g1(τ) = G1

(
e2πiτ

)
, τ ∈ C \ R

and Observations 2.1 and 2.4 can be written in the form

g0(τ) ∼
√
τ
(
Φ̂(2πiτ)− iΦ̂(−2πiτ)

)
, g1(τ) ∼

1√
τ

(
Φ̂(2πiτ) + iΦ̂(−2πiτ)

)
(3.1)

as τ ∈ C \R goes to 0 in a cone in the interior of the upper half-plane. We emphasize here that
we are not only considering limits as q → 1 radially, which would correspond to taking τ = iϵ
with a positive real number ϵ tending to zero, but are also allowing τ to tend to 0 at an fixed
angle. This is important when actually doing the numerical experiments since often (and also
here) the limit when one moves along the imaginary axis only is hard to recognize because the
two terms in (2.14) are both oscillatory and have the same order of magnitude, so that they
interfere with one another, and it is only possible to see the numerical structure clearly when one
allows oneself more freedom. The two asymptotic series Φ̂(2πiτ) and iΦ̂(−2πiτ) partition the
upper half plane into two sectors S1 : arg(τ) ∈ (0, π/2] and S2 : arg(τ) ∈ [π/2, π); see Figure 1.
In the interior of S1, Φ̂(2πiτ) dominates exponentially, and the reverse happens in S2, while on
the common ray arg(τ) = π/2 both functions have oscillatory growth.

On a fixed ray, the asymptotic statements of equation (3.1) involves combinations of series
with different growth rates, and it would appear at first sight that the coefficient in front of the
dominated series in (3.1) is meaningless. However, the refined optimal truncation of [32, 33]
allows us to make numerical sense of the both divergent series Φ(±2πiτ) with a relative error
that is exponentially rather than merely polynomially small compared to the leading term, and
then we can “see” both terms in (3.1).

We can also try to take a linear combination of the two equations in (3.1) to get new holo-
morphic functions w(σ1)(τ) and w(σ2)(τ) whose asymptotic behavior near the origin gives each
of the individual completed series Φ̂(±2πiτ) separately. Specifically, if we define a holomorphic
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Figure 1. A plot of the growth rates Re(iV/(±2πiτ)) of Φ̂(±2πiτ) for arg(τ) = πθ with 0 < θ < 1

and |τ | fixed. 0 means + branch and 1 means − branch. The branches cross at 0.5 and partition the

interval (0, 1) in two sectors.

vector-valued function w(τ) =
(

w(σ1)(τ)

w(σ2)(τ)

)
by

w(τ) =
1

2

(
1 1
1 −1

)(
τ−1/2g0(τ)

τ1/2g1(τ)

)
,

(
τ−1/2g0(τ)

τ1/2g1(τ)

)
=

(
1 1
1 −1

)
w(τ), (3.2)

then equation (3.1) might seem to imply the asymptotic statements

w(σ1)(τ) ∼ Φ̂(2πiτ), w(σ2)(τ) ∼ −iΦ̂(−2πiτ) (3.3)

to all orders in both quarter-planes S1 and S2. In any case, the passage from g to w has several
other nice consequences. The first is a very simple formula for the index, namely

Ind41
(
e2πiτ

)
= w(σ1)(τ)2 − w(σ2)(τ)2

(combine equations (2.13) and (3.2)), which when combined with Observation 3.1 gives the
asymptotics of the 3D index when τ tends to zero on the vertical axis. The second, ob-
tained by combining equation (2.11) with Observation 2.3 as τ → 0, and using the fact that
g0(τ̃) ∼ G0(0) = 1 and g1(τ̃) ∼ G1(0) = 1, is the asymptotic formula

−(q̃/q)1/24Z41(τ) ∼ Φ̂(−2πiτ), τ → 0+.

In other words, the state integral as τ → 0 exponentially decays with the fastest possible rate and
with an asymptotic expansion matching to all orders that of the Kashaev invariant at q = 1. This
is a version of the Volume Conjecture for the state integral which has recently been established
for knot complements with suitable ideal triangulations in [2].

However, equation (3.3) is not quite true. Instead, we find that it is true in a wide neigh-
borhood of the imaginary axis, but fails when τ approaches 0 from very near the positive or
negative real axis. More precisely, what we find numerically is the following

Observation 3.1. The first asymptotic equation in (3.3) holds to all orders in τ as τ tends to 0
along a ray with argument between 0 and π− 0.11, but fails when the argument is larger, while
the second equation holds to all orders if τ tends to 0 along a ray with argument between 0.11
and π, but fails for small arguments.

As an illustration, for τ = −10+i
100000 we find

w(σ1)(τ) ≈ (−3.656− 4.937i)× 10−1313, Φ̂(2πiτ) ≈ (4.351 + 2.821i)× 10−1390,

w(σ2)(τ) ≈ (−6.057− 9.343i)× 101388, − iΦ̂(−2πiτ) ≈ (−6.057− 9.343i)× 101388,
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so that w(σ2)(τ) is indeed asymptotically close to −iΦ̂(−2πiτ) (and in fact their ratio equals 1
numerically to over 200 digits), but w(σ1)(τ) is not at all close to Φ̂(2πiτ). On the other hand,
the ratio of w(σ1)(τ) to w(σ2)(τ) is extremely close to 3 q̃, where q̃ := e−2πi/τ , and the cor-
rected value w(σ1)(τ)− 3q̃w(σ2)(τ) now coincides with Φ̂(2πiτ) with a relative accuracy of more
than 200 digits. In other words, in this region w(σ1)(τ) is always asymptotically very close to
Φ̂(2πiτ) + 3i q̃ Φ̂(−2πiτ), but there is a phase transition on the line arg(τ) = arctan

(
V/2π2

)
=

0.10247 . . . , where the two terms in this new approximation have the same order of magni-
tude as τ → 0. If we continue further to the left, then there is a new phase transition at
arg(τ) = arctan

(
V/4π2

)
= 0.05137 . . . , where we need a further correction term 18 q̃2w(σ2)(τ)

and similarly if we go further we find phase transitions whenever arg(τ) = arctan
(
V/2π2m

)
,

where q̃mΦ̂(−2πiτ) and Φ̂(−2πiτ) are of the same order of magnitude, the correction needed
at τ = −40+i

100000 for instance being
(
3q̃ + 18q̃2 + 99q̃3 + 555q̃4

)
w(σ2)(τ), which makes w(σ1) agree

with Φ̂(2πiτ) with a relative error of 10−148 as opposed to the huge 10+531 that we obtain with-
out any correction. Note that we cannot find these higher-order corrections in q̃ by looking for
a q̃-power series linear combination of Φ̂(−2πiτ) and Φ̂(−2πiτ) that is very close to w(σ1)(τ),
because even with improved optimal truncation we cannot evaluate q̃mΦ̂(−2πiτ) to the required
degree of precision, but since w(σ1)(τ) and w(σ2)(τ) are given in terms of convergent power series
that can be computed to any desired precision, we can find successive terms of a power series
a = a±(q) making w(σ1) − aw(σ2) agree with Φ̂(−2πiτ) to all orders τ approaches the real line
with any argument between 0 and π, and similarly (by studying the power series near the pos-
itive real axis) another Z[[q̃]]-power series linear combination of w(σ1) and w(σ2) that agrees to
all orders with Φ̂(2πiτ) in the entire upper half-plane. Both linear combinations are determined
by these requirements only up to multiplication of the whole expression by a power series in q̃
starting with 1. We will see later in Section 4 why this happens and how to find canonical
Z[[q̃]]-linear combinations of τ−1/2g0 and τ1/2g1 – see equation (4.3) below.

3.2 From divergent to convergent power series

The third interesting corollary of Observations 2.1 and 2.4 is obtained by combining them with
equation (2.11) and the fact that Z41(τ) is holomorphic in the cut plane C′, since this leads
to startling predictions regarding the factorially divergent formal power series Φ(h) ∈ R[[h]].
Specifically, using the factorization of the state integral given in (2.11), the fact that each w(σj)(τ)
is a linear combination of the functions τ−1/2g0(τ) and τ1/2g1, and the fact that g0 and g1 are
1-periodic, we can re-express the state integral in terms of w as follows:

(q̃/q)1/24Z41(τ) = −w(σ1)(τ − 1)w(σ2)

(
τ − 1

τ

)
+ w(σ2)(τ − 1)w(σ1)

(
τ − 1

τ

)
. (3.4)

The fact that the state integral is holomorphic in C′ implies that the right-hand side of (3.4)
has a Taylor expansion around τ = 1 with radius of convergence 1. However, this is wasteful
because it uses only the holomorphy of Z41 in the disk |τ − 1| < 1. If we use its holomorphy,
first in {Re(τ) > 0} and then in all of C′, then by making the changes of variables

τ = 1 + u =
1 + v

1− v
=

(
1 + w

1− w

)2

, (3.5)

which give biholomorphic maps between the unit u-, v- and w-disks and the sets {|τ − 1| < 1},
{Re(τ) > 0} and C′, respectively, we find:

Corollary 3.2. Let C = V/2π = 0.3230659 . . . and Φ(x) ∈ R[[x]] be given by (2.3). Each of
the three formal power series Q(u) ∈ R[[u]], R(v) ∈ R

[[
x2
]]

and S(w) ∈ R
[[
w2
]]

defined by

Q(u) = e−CΦ(2πiu)Φ

(
− 2πiu

1 + u

)
− eCΦ

(
2πiu

1 + u

)
Φ(−2πiu), (3.6a)
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R(v) = e−CΦ

(
4πiv

1− v

)
Φ

(
− 4πiv

1 + v

)
− eCΦ

(
− 4πiv

1− v

)
Φ

(
4πiv

1 + v

)
, (3.6b)

S(w) = e−CΦ

(
8πiw

(1− w)2

)
Φ

(
− 8πiw

(1 + w)2

)
− eCΦ

(
− 8πiw

(1− w)2

)
Φ

(
8πiw

(1 + w)2

)
(3.6c)

has radius of convergence 1.

Note that the original formulas obtained from (3.4) would have had Φ̂’s instead of Φ’s and
would not have had the scalar factors e±C , which arise from a cancellation of an exponentially
large and an exponentially small prefactor. This also means that each of the three power
series Q, R and S has coefficients in the ring Q

(
π,

√
−3, eC

)
.

What the corollary says is that, although the original power series Φ(x) occurring in the
asymptotic expansion of the Kashaev invariant ⟨41⟩N was factorially divergent, each of the com-
binations Q, R and S defined by (3.6) are convergent power series with radius of convergence 1.
This can be seen dramatically in following table showing the growth of the coefficients (rounded),
part of which was already given in [32, equations (35) and (83)]:

k 0 50 100 150

[hk]Φ(h) 0.75 6.7 · 1071 3.1 · 10174 7.4 · 10283

[vk]Q(v) −0.379 0.012 −0.007 0.002

[uk]R(u ) −0.380 −0.037 0.009 −0.001

[wk]S(w) −0.379 −52068.5 −43932564.0 −75312313899.2

Note that the fact that the coefficients of S, although very much smaller than those of Φ, are
much larger than those of Q and R, does not mean that S is the worst of these three series, but
actually the best one, since the larger growth reflects the fact that the unit w-disk corresponds
to the entire domain of holomorphy C′ of the state integral rather than a subset like the two
other series, and that consequently this power series has essential singularities on the entire unit
circle rather than at only one or two points. (This observation was already made in [32].)

3.3 The asymptotics of G0(q) and G1(q) at roots of unity

Observations 2.1 and 2.4 express the asymptotics of the functions G0(q) and G1(q) at q = 1 in
terms of the series Φ̂41(h) which appears in the asymptotics of the Kashaev invariant at q = 1.
We now extend the above observation to all roots of unity using the series Φ41

α (h) that appear
in the quantum modularity theorem of the Kashaev invariant of the 41 knot [32]. Let us briefly
recall the latter. Let

J : Q → Q ⊂ C

denote the extension of the Kashaev invariant of 41 [41] to Q where J(−1/N) = ⟨K⟩N . The
quantum modularity theorem for the 41 knot asserts that for every matrix γ =

(
a b
c d

)
∈ SL2(Z)

we have

J

(
aX + b

cX + d

)
∼ (cX + d)3/2Φ̂a/c

(
2πi

c(cX + d)

)
J(X) (3.7)

to all orders in 1/X as X → ∞ in Q with bounded denominator where α = a/c,

Φ̂α(h) = eiV/c
2hΦα(h)

and Φα(h) is a power series with algebraic coefficients. Various refinements of the quantum
modularity conjecture were discussed in detail in [32]. Since J is 1-periodic (i.e., defined for
α ∈ Q/Z), it follows that the series Φ̂α(h) depends on α ∈ Q/Z.

The reflection of the quantum modularity statement (3.7) for the power series g0 and g1 is
the following extension of equation (3.1), in which we have set τ = α+ ε/c:
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Observation 3.3. For a rational number α = a/c, we have

g0(α+ ε/c) ∼
√
ε
(
Φ̂−α(2πiε)− iΦ̂α(−2πiε)

)
, (3.8a)

g1(α+ ε/c) ∼ 1√
ε

(
Φ̂−α(2πiε) + iΦ̂α(−2πiε)

)
(3.8b)

to all orders in ε as ε ∈ C \ R tends to 0 in a cone in the interior of the upper half-plane.

Finally, we reformulate the asymptotic expansions given in equations (3.8) in a way that
resembles the quantum modularity conjecture. Consider the vector-valued holomorphic function
g =

( g0
g1

)
on C \ R, where g0 and g1 are declared to have weights −1/2 and 1/2, and define the

corresponding vector-valued “slash operator” by

(
g
∣∣γ)(τ) = ( (cτ + d)1/2g0(γτ)

(cτ + d)−1/2g1(γτ)

)
for γ =

(
a b
c d

)
∈ SL2(R), where γτ = aτ+b

cτ+d as usual. Then equations (3.8a) and (3.8b) can be
written in the equivalent form

Observation 3.4. For any γ =
(
a b
c d

)
in SL2(Z), we have

(
g|γ
)
(τ) ∼

(
1 −1
1 1

)
Φ̂·
α

(
2πi

c(cτ + d)

)
, τ ∈ C \ R, | Im(τ)| → ∞

to all orders in 1/τ , where Φ̂·
α(h) =

(
Φ̂α(h)

iΦ̂α(−h)

)
.

Notice that Observation 3.4 has a corollary generalizing the one given in Section 3.2, giving
linear combinations of two products of a Φa-series and a Φ−1/α-series with radius of convergence 1
for any rational number α, and not just for α = 1 as before. We leave the details to the reader.

3.4 The quadratic relation

We now describe some new phenomena that we observed using other knots. The knot 41 was
amphicheiral and hence special: in general one should expect an r-tuple of pairs of q-series, one
on each half-plane, hence a total of 2r q-series. (We will see in a later Section 5.4 the topological
meaning of this number r). However, in the case of the 41 knot, the four q-series are actually
two, each appearing twice, due to the amphicheirality of the 41 knot. On the other hand, the
factorization integral for the 52 knot and for the (−2, 3, 7) pretzel knot gives a total of 6 and 12
q-series. For each knot, the collection of these q-series satisfies one quadratic relation, which is
trivial for the case of the 41 knot.

Let us illustrate the quadratic relation using the 52 knot as an example. The Andersen–
Kashaev state integral of the 52 knot is given by [4, equation (39)]

Z52(τ) =

∫
R+iε

Φ√
τ (x)

3e−2πix2
dx, τ ∈ C′.

In [27], by the same type of residue calculation as in the 41 case, it is shown that Z52 has the
decomposition

2e3iπ/4(q̃/q)1/8Z52(τ) = τh2(τ)h0
(
τ−1

)
+ 2h1(τ)h1

(
τ−1

)
+

1

τ
h0(τ)h2

(
τ−1

)
(3.9)

for τ ∈ C \ R, where

hj(τ) = (±1)jH±
j

(
e±2πiτ

)
for ± Im(τ) > 0 (3.10)
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are holomorphic functions in a half-plane andH±
j (q) ∈ Z[[q]] are q-series with coefficients in 1/6Z

defined by

(qeε; q)3∞
(q; q)3∞

∞∑
m=0

qm(m+1)e(2m+1)ε

(qeε; q)3m

= H+
0 (q) + εH+

1 (q) +
ε2

2

(
H+

2 (q) +
1

6
E2(q)H+

0 (q)

)
+O(ε)3,

(q; q)3∞
(qe−ε; q)3∞

∞∑
n=0

(−1)n
qn(n+1)/2e(n+1/2)ε

(qeε; q)3n

= H−
0 (q) + εH−

1 (q) +
ε2

2

(
H−

2 (q) +

(
1

4
− 1

6
E2(q)

)
H−

0 (q)

)
+O(ε)3, (3.11)

whose first few terms are given by

H+
0 (q) = 1 + q2 + 3q3 + 6q4 + 10q5 + · · · ,

H−
0 (q) = 1− q − 3q2 − 5q3 − 7q4 − 6q5 + · · · ,

H+
1 (q) = 1− 3q − 3q2 + 3q3 + 6q4 + 12q5 + · · · ,

H−
1 (q) = 1

2

(
1− 9q − 21q2 − 19q3 − 9q4 + 54q5

)
+ · · · ,

H+
2 (q) =

5

6
− 5q +

53

6
q2 +

117

2
q3 + 117q4 +

601

3
q5 + · · · ,

H−
2 (q) =

1

6
− 37

6
q − 17

2
q2 +

115

6
q3 +

389

6
q4 + · · · ,

and whose further properties are given in Appendix A.4. Here, E2(q) = 1 − 24
∑

n≥1
qn

(1−qn)2
is

the weight 2 Eisenstein series and (x; q)∞ =
∏∞

k=0

(
1− qkx

)
.

The index of the 52 knot is given by the following expression:

Ind52(q) =
∑

k1,k2,k3∈Z
I∆(−k1, k1 − k2)I∆(−k1, k1 − k2 − k3)I∆(2k1 − 2k2 − k3,−k1)

= 1− 12q + 3q2 + 74q3 + 90q4 + 33q5 − 288q6 − 684q7 − · · · .

The next observation (a proof follows from results of [23, Section 5.3]) was expected given what
we knew from the case of the 41 knot.

Observation 3.5. The q-series Hj are related to the index by

Ind52(q) = 2H+
1 (q)H−

1 (q).

The next observation, a quadratic relation among the 3 pairs of q-series was unexpected and
found by accident. This relation could not be seen in the case of the 41 knot, since it reduces
to the empty equation G0(q)G1(q) − G1(q)G0(q) = 0, as a consequence of the fact that the 41
knot is amphicheiral.

Observation 3.6. The q-series Hj satisfy the quadratic relation

H+
0 (q)H−

2 (q)− 2H+
1 (q)H−

1 (q) +H+
2 (q)H−

0 (q) = 0.

We now discuss the asymptotics of the six q-series of the 52 knot. Just as in the case
of the 41 knot, the asymptotics of hj(τ) as τ ∈ C \ R tends to zero in a ray are given by

a rational linear combination of three asymptotic series Φ̂(σ)(h) that appear in the quantum
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Figure 2. A plot of the growth rates Re(VolC(ρj)/2πiτ) of w(σj)(x) defined in equation (3.13)

for j = 1, 2, 3 where arg(τ) = πθ and θ ∈ (0, π). The branches cross at 0.19, 0.5, 0.81 and partition

the interval [0, 1] in four sectors.

modularity conjecture of the 52 knot [32], where σ denotes one of the three embeddings of the
trace field of the 52 knot (the cubic field of discriminant −23 generated by ξ with ξ3 − ξ2 +
1 = 0). Each embedding corresponds to a boundary parabolic SL2(C) representations of the
fundamental group of the complement of the knot, with the convention that σ1, σ2 and σ3
denotes the geometric embedding, (corresponding to Im(ξ) < 0, its complex conjugate, and the
real embedding of the trace field). When τ approaches zero in a fixed generic ray, the three
asymptotic series Φ̂(σj)(h) have different growth rates and this divides each of the upper and
lower half-plane into four sectors shown in Figure 2.

Just as in the case of the 41 knot, the refined optimal truncation of [32] finds in each sector
R a unique matrix MR such that h(τ) ∼ MRΦ̂(2πiτ) as τ ∈ R and τ → 0, where

h =

τ−1h0
h1
τh2

 and Φ̂ =

Φ̂(σ1)

Φ̂(σ3)

Φ̂(σ2)

 .

Using 108 exact coefficients of the power series Φ̂ and refined optimal truncation, we found the
following.

Observation 3.7. We have

h(τ) ∼

{
N+Φ̂(2πiτ) when arg(τ) ∈ (0, 0.19),

N−Φ̂(2πiτ) when arg(τ) ∈ (−π/2, 0),
(3.12)

where

N+ =

 1/2 1/2 1
0 1/2 1/2

−1/12 5/12 −2/3

 , N− =

 −1/2 −1/2 1/2
3/4 −1/4 −1/4

−13/12 −1/12 1/12

 .

Inverting the matrices N± we obtain a vector w =

(
w(σ1)

w(σ3)

w(σ2)

)
of holomorphic functions on C\R

w(τ) =

{
N−1

+ h(τ) when arg(τ) ∈ (0, 0.19),

N−1
− h(τ) when arg(τ) ∈ (−π/2, 0),

that express equation (3.12) in the equivalent form

w(σj)(τ) ∼ Φ̂(σj)(2πiτ), τ → 0, (3.13)
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when arg(τ) ∈ (−π/2, 0.19) \ {0} and j = 1, 2, 3. Since the functions h and w are related by
a linear transformation, it follows that the state integral, the index and the quadratic identity
can be expressed in terms of the function w as follows:

0 =
3∑

j=1

w(σj)(τ)w(σj)(−τ), (3.14)

2Z52(τ) =

3∑
j=1

w(σj)(τ − 1)w(σj)
(
τ−1 − 1

)
, (3.15)

4Ind52
(
e2πiτ

)
= w(σ3)(τ)w(σ3)(−τ)− w(σ1)(τ)w(σ2)(−τ)− w(σ2)(τ)w(σ1)(−τ).

In terms of the Φ(σj) series, equation (3.14) and (3.13) implies the quadratic identity∑
σ

Φ(σ)(x)Φ(σ)(−x) = 0,

(where we are summing over σ ∈ {σ1, σ2, σ3}) whereas equation (3.15) and (3.13) implies that
the expansion of Z52(τ) around τ = 1 when τ is given by (3.5) is a power series

∑
σ

e−CσΦ(σ)

(
2x

1− x

)
Φ(σ)

(
− 2x

1 + x

)

convergent when |x| < 1. Here, Cσ = VolC(ρ)/(2πi) where VolC(ρ) is the complexified volume
of the corresponding boundary parabolic SL2(C)-representation ρ of the fundamental group of
the complement of the 52 knot.

3.5 Higher level and weight spaces

In this section, we describe a new phenomenon, the level of a knot, and examples where the
weight spaces have higher multiplicity. For the (−2, 3, 7) pretzel knot, there are 6 pairs of q-series,
and the weight spaces are not one-dimensional; there are weights 0, 1 and 2 with dimensions 1, 4
and 1, respectively. The 6 pairs of q-series involve power series in integer powers of q1/2, meaning
level N = 2, and so we should introduce the level of a knot, presumably the same as the one
coming from the periodicity of the degree of the colored Jones polynomial [18, 19]. This q1/2

will be upgraded to a whole SL2(Z) and Γ(2) story in Section 4. As an added complexity for
the (−2, 3, 7) knot, the 6 asymptotic series come in two Galois orbits of size 3 defined over
the cubic field of discriminant −23 (the trace field) and over the abelian field Q(cos(2π/7))
of discriminant 49. Moreover, the 3 complex volumes of the latter Galois orbit are rational
multiples of π2.

To illustrate the new phenomenon, we begin by introducing the 6 pairs of q-series for the
(−2, 3, 7) pretzel knot. The state integral of the (−2, 3, 7) pretzel knot was given in [26, Ap-
pendix B]. Using the functional equation for Faddeev’s quantum dilogarithm [26, equation (78)],
and ignoring some prefactors, the state integral is given by

Z(−2,3,7)(τ) =

(
q

q̃

)− 1
24
∫
R+icb/2+iε

Φ√
τ (x)

2Φ√
τ (2x− cb)e

−πi(2x−cb)
2
dx, τ ∈ C′ (3.16)

with small positive ε, where b =
√
τ and cb = i

2

(
b + b−1

)
. Using the method of [27], we can

express the above state integral in terms of 6 q-series as follows.
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Proposition 3.8. We have

2e
πi
4 (q/q̃

)1/24
Z(−2,3,7)(τ) = − 1

2τ
h0(τ)h2

(
τ−1

)
+ h1(τ)h1

(
τ−1

)
− τ

2
h2(τ)h0

(
τ−1

)
+

1

τ

(
h3(τ)h4

(
τ−1

)
− h4(τ)h3

(
τ−1

)
+ h5(τ)h5

(
τ−1

))
for τ ∈ C \ R, with the same convention as in (3.10), but with (±1)j replaced by (±1)δj where
(δ0, . . . , δ5) = (0, 1, 2, 0, 0, 0) denotes the ε-deformation degree and where the H±

j (q) are power

series in q1/2 whose first few terms are given by

H+
0 (q) = 1 + q3 + 3q4 + 7q5 + 13q6 + · · · ,

H−
0 (q) = 1 + q2 + 3q3 + 7q4 + 13q5 + · · · ,

H+
1 (q) = 1− 4q − 8q2 − 3q3 + 3q4 + · · · ,

H−
1 (q) = 1− 4q − 5q2 + q3 + 7q4 + · · · ,

H+
2 (q) =

2

3
− 6q + 6q2 +

242

3
q3 + 200q4 + · · · ,

H−
2 (q) =

5

6
− 10q +

17

6
q2 +

141

2
q3 +

971

6
q4 + · · · ,

H+
3 (q) = q + 3q2 − 2q5/2 + 8q3 − 8q7/2 + · · · ,

H−
3 (q) = q + 4q3/2 + 9q2 + 18q5/2 + 31q3 + · · · ,

H+
4 (q) = 1 + 4q + 12q2 + 33q3 + 79q4 + · · · ,

H−
4 (q) =

1

4
− q +

5

4
q2 − 5

4
q3 +

15

4
q4 + · · · ,

H+
5 (q) = q + 3q2 + 2q5/2 + 8q3 + 8q7/2 + · · · ,

H−
5 (q) = q − 4q3/2 + 9q2 − 18q5/2 + 31q3 + · · · , (3.17)

and whose precise definition and properties are given in Appendix A.6.

The vector space ⟨H⟩ spanned by (H0, . . . ,H5) has the (ε-deformation) weight decomposition

⟨h⟩ = W0 ⊕W1 ⊕W2, W0 = ⟨H0, H3, H4, H5⟩, W1 = ⟨H1⟩, W2 = ⟨H2⟩.

There is a representation ρ of SL2(Z) on ⟨H⟩ which is the identity on W1 and W2 and has
kernel Γ(2) on W0. Thus, the action of ρ on W0 comes from a representation ρ′ of the quotient
group S3 = Γ/Γ(2). The latter decomposes as the direct sum of the 2-dimensional irreducible
representation of S3 and two copies of the trivial representation of S3.

The index of the (−2, 3, 7) pretzel knot is given by the following expression:

Ind(−2,3,7)(q) =
∑

k1,k2,k3∈Z
(−q

1
2 )k1−2k2I∆(2k2, k1 − 2k2 − k3)

× I∆(−k1 + k2, k1 − 2k2)I∆(k1 − 2k2 − 2k3, k2)

= 1− 8q + 3q2 + 50q3 + 58q4 + 13q5 − 196q6 − 456q7 − · · · .

Observation 3.9. The relation with the index is given by

Ind(−2,3,7)(q) = H+
1 (q)H−

1 (q)

and the following quadratic relation holds:

1

2
H+

0 (q)H−
2 (q)−H+

1 (q)H−
1 (q) +

1

2
H+

2 (q)H−
0 (q)

−H+
3 (q)H−

3 (q) +H+
4 (q)H−

4 (q)−H+
5 (q)H−

5 (q) = 0.
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Figure 3. A plot of the growth rates Re(VolC(ρj)/2πiτ) of w
(j)(x) for j = 0, . . . , 5 where arg(τ) = πθ

and θ ∈ (0, π). The two Galois orbits are 1, 2, 4 and 0, 3, 5 for the number fields of discriminant 49

and -23. The branches cross at 0., 0.16, 0.19, 0.22, 0.28, 0.5, 0.71, 0.77, 0.81, 0.84, 1 and partition the

interval [0, 1] in 10 sectors.

Just in the case of the 41 knot and the 52 knots, the asymptotics of hj(τ) as τ ∈ C \ R
tends to zero in a ray are given by a rational linear combination of the asymptotic series
Φ̂(σ)(h) that appear in the quantum modularity conjecture of the (−2, 3, 7) knot [32]. How-
ever, this knot has 6 boundary parabolic SL2(C) representations, arranged in two Galois or-
bits of size 3, one defined over the trace field of the (−2, 3, 7) pretzel knot

(
the cubic field

of discriminant −23 generated by ξ with ξ3 − ξ2 + 1 = 0
)
and another defined over the

real abelian field Q(2 cos(2π/7)). Let {σ1, σ2, σ3} denote the three embeddings of the trace
field corresponding to Im(ξ) < 0, Im(ξ) > 0 and Im(ξ) = 0, and let {σ4, σ5, σ6} denote
the three embeddings of Q(η) with η3 + η2 − 2η − 1 = 0 (the abelian cubic field with dis-
criminant 49) into C given by sending η to 2 cos(2π/7), 2 cos(4π/7) and 2 cos(6π/7), respec-
tively. When τ approaches zero in a fixed generic ray, the six asymptotic series Φ̂(σj)(h) have
different growth rates, and the ordering of the growth rates in each ray is dictated by Fig-
ure 3.

Let Φ̂α(h) =
(
Φ̂(σj)(h)

)6
j=1

denote the vector of asymptotic series, and let h(τ) = (hj(τ))
5
j=0

denote the vector of holomorphic functions on C \ R with weight (−1, 0, 1,−1,−1,−1). As
before, if we let X → ∞ in a fixed sector and γ ∈ SL2(Z), we can fit the asymptotic expansion
of the vector h|γ(X) with the asymptotic series Φ̂α(2πi/(cX+d)) after multiplication by a matrix.
There is an additional subtlety which is absent in the case of the 41 and 52 knots, namely the fact
that some of the q-series H±

j (q) are power series in q1/2, which implies that the functions hj(τ)
are 2-periodic, but not 1-periodic. This implies that the matrices that determine the linear
combinations depend on the cosets of Γ(2) in SL2(Z).

Observation 3.10. As X ∈ C \ R in a sector near the positive real axis and X → ∞, we have

h|γ(X) ∼ ρ(γ)



0 1 −1 0 −1 −1/2
0 1 1 0 0 0
0 2/3 −2/3 0 4/3 1/6
0 −1 1 0 1 −1/2
0 0 0 −1/2 −1 0
2 0 0 −1/2 −1 0

 Φ̂α

(
2πi

cX + d

)
(3.18)

to all orders in 1/X.

Inverting the matrix in equation (3.18), allows one to define holomorphic lifts w(σ) in C \ R
of the asymptotic series Φ(σ)(h). This gives a practical method for computing the coefficients
of the 6 asymptotic series Φ(σ)(h). Indeed, a numerical computation of the series w(σ) at cusps
and the Galois invariant of the series Φ(σ)(h) reduces the computation of their coefficient to
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the recognition of rational numbers with prescribed denominators. We used this method to
compute 37 terms of the six Φ(σ)(h), and to compare the results with the asymptotics of the
Kashaev invariant in [32].

4 From vector-valued to matrix-valued q-series

So far, we used the state integral of a knot to define a vector of q-series for |q| ̸= 1 whose
asymptotics were found to be related to the r-vector of asymptotic series of the knot from our
earlier paper [32]. In this section, we report a recent discovery, descendants, which places the
vector as the first column of an invertible r by r matrix of q-series for |q| ̸= 1. It turns out
that asymptotic series [32], q-series and state integrals [22, 23] all have descendants. We will
explain the notion of descendants in Section 4.1 for the 41 knot, where there will be infinitely

many descendants G
(m)
0 (q) and G

(m)
1 (q) (Laurent series in q with integer coefficients) with m

ranging over Z, and then we will construct the matrix Q(q) whose second column is 1
2

(
qG

(1)
j −

q−1G
(−1)
j

)
for j = 0, 1. (We will explain in Section 5.3 below why we choose this particular

linear combination.) In Section 4.2 we discuss the asymptotic properties of these descendants,
and in Section 4.3 we state the analogous results for the 52 knot.

4.1 Descendant q-series

In this section, we will focus on the 41 knot following the work of the first author, Gu and
Mariño [22] (with detailed proofs provided in [23, Section 3.1]) but using a slightly different

notation. Consider the pair G
(m)
0 (q) and G

(m)
1 (q) of q-series from [22] for integers m

G
(m)
0 (q) =

∞∑
n=0

(−1)n
qn(n+1)/2+mn

(q; q)2n
,

G
(m)
1 (q) =

∞∑
n=0

(−1)n
qn(n+1)/2+mn

(q; q)2n

(
2m+ E1(q) + 2

n∑
j=1

1 + qj

1− qj

)
,

for |q| < 1 and extended to |q| > 1 by G
(m)
j

(
q−1
)
= (−1)jG

(m)
j (q). Observe that G

(0)
j (q) = Gj(q)

for j = 0, 1, with G0(q) and G1(q) given in (2.6) and (2.9), respectively. Consider the matrix

wm(q) =

(
G

(m)
0 (q) G

(m)
1 (q)

G
(m+1)
0 (q) G

(m+1)
1 (q)

)
, |q| ≠ 1.

The properties of these functions are given in [23, Section 3.1].

Theorem ([23]). The matrix wm(q) is a fundamental solution of the linear q-difference equation

ym+1(q)− (2− qm)ym(q) + ym−1(q) = 0, m ∈ Z. (4.1)

It has constant determinant

det(wm(q)) = 2 (4.2)

and satisfies the symmetry and orthogonality properties

wm

(
q−1
)
= w−m(q)

(
1 0
0 −1

)
,

1

2
wm(q)

(
0 1
1 0

)
wm

(
q−1
)T

=

(
0 1

−1 0

)
for all integers m and for |q| ≠ 1.
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The descendant series G
(m)
j (q) arise from a factorization of the “descendant state integral”

Z41,m,m′(τ) =

∫
R+i0

Φ√
τ (v)

2e−πiv2+2π(mτ1/2−m′τ−1/2)vdv, m,m′ ∈ Z

introduced in [22]. This is a holomorphic function of τ ∈ C′ that coincides with Z41(τ) when

m = m′ = 0 and can be expressed bilinearly in terms of G
(m)
j (q) and G

(m′)
j (q̃) as follows [22,

equation (69)]:

Z41,m,m′(τ) = (−1)m−m′+1 i

2
q

m
2
+ 1

24 q̃
m′
2
− 1

24

(√
τG

(m′)
0 (q̃)G

(m)
1 (q)− 1√

τ
G

(m′)
1 (q̃)G

(m)
0 (q)

)
.

(Here q̃ = e(−1/τ) as usual.) This implies that the matrix-valued function

Wm,m′(τ) =
(
wm′(q̃)T

)−1
(
1/τ 0
0 1

)
wm(q)T , (4.3)

which is originally defined only for τ ∈ C\R, extends holomorphically to τ ∈ C′ for all integers m
and m′. A similar story of descendants for the 52 knot was given in [23, Section 4.1k], and will
be reproduced in Section 4.3 below.

4.2 The asymptotics of the descendants

In [32], studying the refined quantum modularity conjecture for the 41 knot, we found a 2 by 2
matrix of asymptotic series

Φ̂(x) =

(
Φ̂(x) Ψ̂(x)

iΦ̂(−x) −iΨ̂(−x)

)
,

where Ψ̂(x) = eC/hΨ(x) where Ψ(x) is the series

Ψ(x) =
∞∑
j=0

Bjx
j , Bj = i

4
√
3

2

(
1

72
√
−3

)j bj
j!

with bj ∈ Q, the first values being given by

j 0 1 2 3 4 5 6

bj −1 37 1511 1211729/5 407317963/5 331484358355/7 1471507944921541/35

Naturally, we looked into the asymptotics of its descendant holomorphic blocks. Since any
three consecutive are related by the recursion (4.1), so are their asymptotics. For consistency,
and for symmetry, we looked into the asymptotics of the descendant holomorphic blocks for
m = −1, 0, 1. Naturally, we expected that the series Ψ̂ as well as the series Φ̂ would show up,
and indeed we found the following asymptotics for the matrix of q-series defined by

Q(τ) = w0(q)
T

(
1 −1

2
0 1

)
=

(
G

(0)
0 (q) 1

2

(
G

(1)
0 (q)−G

(−1)
0 (q)

)
G

(0)
1 (q) 1

2

(
G

(1)
1 (q)−G

(−1)
1 (q)

)) , q = e(τ). (4.4)

Observation 4.1. As τ → 0 in the upper half-plane, we have(
1/

√
τ 0

0
√
τ

)
Q(τ) ∼

(
1 −1
1 1

)
Φ̂(2πiτ).
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Note that equation (4.2) implies that det(Q(τ)) = 2 for all τ , and combined with the above,
it follows that the function Φ̂(x) satisfies

det(Φ̂(x)) = 1

as well as the orthogonality property

Φ̂(−x)Φ̂(x)t =

(
0 i
i 0

)
.

4.3 The case of the 52 knot

Consider the linear q-difference equation

ym(q)− 3ym+1(q) +
(
3− q2+m

)
ym+2(q)− ym+3(q) = 0, m ∈ Z, (4.5)

In [23, Section 3.2], it was shown that it has a fundamental solution sets given by the columns
of the following matrix

wm(q) = w52
m (q) =

H
(m)
0 (q) H

(m+1)
0 (q) H

(m+2)
0 (q)

H
(m)
1 (q) H

(m+1)
1 (q) H

(m+2)
1 (q)

H
(m)
2 (q) H

(m+1)
2 (q) H

(m+2)
2 (q)

 , m ∈ Z, |q| ≠ 1, (4.6)

where for |q| < 1

H
(m)
0 (q) =

∞∑
n=0

qn(n+1)+nm

(q; q)3n
,

H
(m)
1 (q) =

∞∑
n=0

qn(n+1)+nm

(q; q)3n

(
1 + 2n+m− 3E(n)

1 (q)
)
,

H
(m)
2 (q) =

∞∑
n=0

qn(n+1)+nm

(q; q)3n

(
(1 + 2n+m− 3E(n)

1 (q))2 − 3E(n)
2 (q)− 1

6
E2(q)

)
,

and

H
(−m)
0

(
q−1
)
=

∞∑
n=0

(−1)n
q

1
2
n(n+1)+nm

(q; q)3n
,

H
(−m)
1

(
q−1
)
=

∞∑
n=0

(−1)n
q

1
2
n(n+1)+nm

(q; q)3n

(
1

2
+ n+m− 3E(n)

1 (q)

)
,

H
(−m)
2

(
q−1
)
=

∞∑
n=0

(−1)n
q

1
2
n(n+1)+nm

(q; q)3n

((
1

2
+ n+m− 3E(n)

1 (q)

)2

− 3E(n)
2 (q)− 1

12
E2(q)

)

with E(n)
k (q) defined in equation (A.16) below. Note that when m = 0, H

(0)
j (q±1) = H±

j (q)

where H±
j (q) are the six q-series of the 52 knot (3.11) that appear in the factorization of its

state-integral.

Theorem ([23]). The function wm(q) defined by (4.6) is a fundamental solution of the linear
q-difference equation (4.5) that has constant determinant

det(wm(q)) = 2,
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satisfies the orthogonality property

1

2
wm−1(q)

0 0 1
0 2 0
1 0 0

w−m−1

(
q−1
)T

=

1 0 0
0 0 1
0 1 3− qm

 (4.7)

as well as

1

2
wm(q)

0 0 1
0 2 0
1 0 0

wℓ

(
q−1
)T ∈ SL

(
3,Z

[
q±
])

for all integers m, ℓ and for |q| ≠ 1.

The series H(m)(q) for |q| ̸= 1 appear in the factorization of the descendant state integral of
the 52 knot

Z52,m,m′(τ) =

∫
R+i0

Φ√
τ (v)

3e−2πiv2+2π(mτ1/2−m′τ−1/2)vdv, m,m′ ∈ Z, τ ∈ C′

of [22]. It is a holomorphic function of τ ∈ C′ that coincides with Z52(τ) when m = m′ = 0 and
can be expressed bilinearly in terms of H(m)(q) as follows:

Z52,m,m′(τ) = (−1)m−m′+1 e
πi
4

2
q

m
2 q̃

m′
2

(
q

q̃

) 1
8

×
(
τh

(m)
2 (τ)h

(m′)
0

(
τ−1

)
+ 2h

(m)
1 (τ)h

(m′)
1

(
τ−1

)
+

1

τ
h
(m)
0 (τ)h

(m′)
2

(
τ−1

))
,

(4.8)

where

h
(m)
j (τ) := (−1)jH

(m)
j

(
e2πiτ

)
, τ ∈ C \ R

for j = 0, 1, 2 and m ∈ Z. It follows that the matrix-valued function

Wm,m′(τ) =
(
wm′(q̃)T

)−1

τ−1 0 0
0 1 0
0 0 τ

wm(q)T

defined for τ = C \ R, has entries given by the descendant state integrals (up to multiplication
by a prefactor of (4.8)) and hence extends to a holomorphic function of τ ∈ C′ for all integers m
and m′. Using this for m = −1 and m′ = 0 and the orthogonality relation (4.7), it follows that
we can express the Borel sums of Φ(τ) in a region R in terms of descendant state integrals and
hence, as holomorphic functions of τ ∈ C′ as follows.

5 The matrix-valued cocycle of a knot

In this section, we extend the observations of the previous sections to matrix-valued analytic
functions which naturally give rise to a cocycle on on the set of matrix-valued piece-wise analytic
functions on P1(R). What’s more, we conjecture (and in the case of the 41, prove) that this
cocycle, restricted to the rational numbers, exactly agrees with the cocycle of our previous
work [32], which naturally binds the two works together and naturally leads to the concept of
a matrix-valued holomorphic quantum modular form.
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5.1 An equivariant state integral

We return to the 41 knot. The factorization of the state-integral (2.7) given in equation (2.11)
in terms of the pair (g0(τ), g1(τ)) motivates us to consider the following function:

Z41(γ; τ) =
i

2
(q̃/q)1/24

(
(cτ + d)−1/2g0(τ)g1(γ(τ))− (cτ + d)1/2g1(τ)g0(γ(τ))

)
(5.1)

for an element γ of SL2(Z) and for τ ∈ C\R, where now q̃ denotes e(γτ). A priori, this function
is not defined for any real value of the argument. However, experimentally (by looking at the
asymptotics of the function as we approach real points vertically) we found the following.

Observation 5.1. For every γ =
(
a b
c d

)
∈ SL2(Z), the function Z41(γ; τ) extends to the cut

plane Cγ := C \ {τ | cτ + d ≤ 0}.

To explain and prove this observation, we introduced an SL2(Z)-version of the state-integral
using an SL2(Z)-version of Faddeev’s quantum dilogarithm

(
where the latter function corre-

sponds to γ =
(
0 −1
1 0

))
that satisfies a pentagon identity. The functional properties of this

quantum dilogarithm implies that the corresponding state-integral extends on Cγ , and its fac-
torization coincides, up to elementary factors, with the function Z41(γ; τ) for the case of the 41
knot. This is discussed in current joint work with Kashaev [28], where in particular a proof of
the above observation is given.

5.2 A matrix-valued cocycle

The state integral Z41(τ) is just one component of a 2 × 2 matrix closely related to the ma-
trix W0,0(τ) defined in equation (4.3), and similarly the equivariant state integral (5.1), up to
elementary factors, becomes just one component of a 2× 2 matrix-valued function

Wγ(τ) = Q(γτ)−1 diag
(
(cτ + d)−1, 1

)
Q(τ), τ ∈ C \ R. (5.2)

Observation 5.1 now generalizes to the statement that the function Wγ extends holomorphically
from the upper and lower half-planes to Cγ . Its restriction to C\R is a matrix-valued holomorphic
cocycle there, meaning that it satisfies

Wγγ′(τ) = Wγ(γ
′τ)Wγ′(τ) (5.3)

because the diagonal matrix appearing as the middle factor in (5.2) is a cocycle, so that the
function γ 7→ Wγ is a “twisted coboundary”. If Wγ extended to the whole plane, then this
cocycle property would automatically extend to the real line by continuity. This doesn’t quite
work since Wγ does not extend to the whole real line, but only to a subset of it, namely the
set of x with cx + d > 0, depending on γ. To solve this problem, we pass from SL2(Z) to its
quotient PSL2(Z) = SL2(Z)/{±1} and define a PSL2(Z)-cocycle γ 7→ WR

γ with values in the

group of piecewise-analytic invertible matrix-valued functions on P1(R) by setting

WR
γ (x) = Wγ(τ)

∣∣
τ=x

for cx+ d > 0, (5.4)

observing that for any element γ of PSL2(Z) and x ∈ R\{−d/c} we can lift γ to a unique element
γ ∈ SL2(Z) with cx+ d positive. Of course the new cocycle on P1(R) is no longer a coboundary
in any sense. But this is a bonus rather than a defect, since non-trivial cohomology classes are
more interesting than trivial ones.

In the paper [32] we had also found a cocycle on piecewise analytic functions on R with
a completely different definition, in terms of the asymptotics near rational numbers of gener-
alized Habiro-like functions. The two cocycles turn out to agree, provably for the 41 knot and
conjecturally in general. We discuss this next.
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5.3 The two cocycles agree

We now show that the cocycle (5.4) and the one from our prior paper [32] agree for the case of
the 41 knot.

We first recall from [32, Section 7.1] the periodic function J = J (41) on Q defined by

J(x) =

(
J1,1(x) J1,2(x)
J2,1(x) J2,2(x)

)
, (5.5)

where

J1,1(x) =
1

√
c 4
√
3

∑
Zc=ζ6

c∏
j=1

∣∣1− qjZ
∣∣2j/c,

J2,1(x) =
i

√
c 4
√
3

∑
Zc=ζ−1

6

c∏
j=1

∣∣1− qjZ
∣∣2j/c,

J1,2(x) =
1

2
√
c 4
√
3

∑
Zc=ζ6

(
Zq − Z−1q−1

) c∏
j=1

∣∣1− qjZ
∣∣2j/c,

J2,2(x) =
i

2
√
c 4
√
3

∑
Zc=ζ−1

6

(
Zq − Z−1q−1

) c∏
j=1

∣∣1− qjZ
∣∣2j/c (5.6)

with q = e(x) and c = denom(x) being the denominator of x. (Actually, the periodic function
defined in [32], and denoted there by J = J(41), was a 3× 3 matrix with first column (100)T and
bottom 2× 2 piece J , but we will only need this part of it.) The matrix J defines a cocycle [32,
Section 5]

WHab
γ (x) = J(γx)−1 diag

(
eCλγ(x), e−Cλγ(x)

)
J(x), (5.7)

where C is 1/2π times the volume of the figure 8 knot and γ 7→ λγ is the Q-valued cocycle
defined in equation (24) of [32]

λγ(x) :=
1

den(x)2
(
x− γ−1(∞)

) =
c

s(cr + ds)
= ± c

den(x)den(γx)
.

One of the main discoveries of [32], conjectural in general but proved for the 41 knot, is that this
coboundary extends smoothly from Q\{−d/c} to R\{−d/c}. (Actually, in [32] only a somewhat
weaker statement was discussed, namely, that the function on Q has a power series to all orders
in x − x0 as the argument x tends to a fixed rational number x0, with the stronger statement
with smoothness, or even real-analyticity, being mentioned there as an consequence of the results
in the current paper.)

The next theorem links the cocycle of our paper [32] with the one of the current paper and
explains the bond between our two papers.

Theorem 5.2. The cocycles WR and WHab coincide.

Because SL2(Z) is generated by S =
(
0 −1
1 0

)
and T =

(
1 1
0 1

)
, and both of the functions under

consideration are cocycles and are trivial on T , and because both are continuous on R \ {0}, it
is enough to prove the equality

WHab
S (x) = WS(x) for x ∈ Q∗.

The proof of this identity, given in Appendix A.3, uses a “factorization” of state integrals at
positive rational points (i.e., a bilinear expression of a vector of functions of τ ∈ Q and −1/τ)
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established by Kashaev and the first author [26], similar to the “factorization” of state integrals
when τ ∈ C \ R of the first author and Kashaev [27]. These two “factorization” properties of
state integrals, one in the upper-half plane and another in the positive rational numbers, are
separate (in the sense that we do not know how to deduce one from the other) but closely-related
facts.

5.4 Matrix-valued holomorphic quantum modular forms

We believe that the results we have been describing for the 41 knot will apply to all hyperbolic
knots (possibly with the disclaimers given in the introduction to [32] about the behavior of
character varieties of general knots). Some part of the story, the matrix of “descendant” functions
and the factorization formula (4.8), was carried out for the 52 knot in [22] and described in
Section 4.3, and another part, the asymptotics (analogue of Observation 4.1) was carried out
for the same knot in [30]. For the (−2, 3, 7)-pretzel knot, only a part of the story, concerning
what should be the upper left-hand of the matrix WS(τ) for this knot, was given in Section 3.5.
We have not done the corresponding calculations for any other knots, but the expected pattern
is clear and will be told here. These examples will also lead to a new notion of “matrix-valued
holomorphic quantum modular forms” which we expect will be of interest also in areas that are
unrelated to quantum topology.

To each hyperbolic knot we are going to assign various r×r matrices, where r is the number of
non-trivial boundary parabolic SL2(C)-representations. (Some of them, and perhaps all, extend
to square matrices of size r + 1 including also the trivial representation, as discussed in [32]
and [51], but we will not go into this here. These larger matrices were denoted by boldface
letters there and we will use non-boldface names here to distinguish them.) Some of these will
be periodic functions (on either Q or C \ R), but with the property that the corresponding
coboundaries lead to the same cocycle Wγ with values in the group of invertible matrices of
piecewise analytic functions on P1(R). The periodic functions on Q are either the generalized
Habiro functions J(K)(α) or the related matrices of power series Φ(α) of the previous paper [32],
whereas the matrix-valued functions in C \ R are the functions Q = QK(τ) studied here. They
have the following properties and interrelations:

(i) The matrix Q = QK is a holomorphic and periodic in C \ R and meromorphic at infinity,
meaning that each of its entries is a power series in some rational power of q = e(τ)
in the upper half-plane and in q−1 in the lower half-plane. We also have “weight” k =
(k1, . . . , kr) ∈ Zr and a representation ρ : SL2(Z) → GLr(C) which factors through Γ(N)
for some integer N (called the level of the knot) which are compatible in the sense that
the map

γ 7→ jγ(τ) := ρ(γ) diag
(
(cτ + d)ki

)
for γ =

(
a b
c d

)
is a cocycle on SL2(Z). (The representation ρ is a minor technical point that arose in [32]
for the (−2, 3, 7)-pretzel knot but was trivial for both the 41 and 52 knots and can be
ignored.) The key property, which is the one that says that Q is a holomorphic quantum
modular form, is that the matrix-valued function

Wγ(τ) = Q(γτ)−1jγ(τ)Q(τ), τ ∈ C \ R

extends holomorphically from C\R to Cγ for each γ ∈ SL2(Z), just as we saw above for the
41 knot. This map automatically satisfies equation (5.3), and therefore leads to a PSL2(Z)-
cocycle wR, with values in the ring of invertible piecewise analytic matrix-valued functions
on P1(R), by the same formula (5.4) as before.
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(ii) Secondly, we associate to the knot K a collection α 7→ Φ̂α(h) of matrices, indexed by
numbers α ∈ Q/Z) (or equivalently, by roots of unity), which are the generalized Habiro
invariants whose existence was conjectured, and in some cases extensively checked nu-
merically, in [32]. The entries of these matrices are completed power series in an formal
variable h, where “completed” means that they belong to ev/hC[[h]] for some v, which
in fact will depend only the column of the matrix in which the entry lies and will be
the appropriate complexified hyperbolic volume. We think of Φa(h) as the value of some
formal function Φ̂ at x = α + iℏ, defined in infinitesimal neighborhoods of all rational
points α. The group PSL2(Z) acts on the space of such formal functions, so that we again
get a coboundary Φ̂(γx)−1Φγ(x), and this turns out to become a smooth function WHab

γ (x)
of γ and of a real variable x ∈ R \

{
γ−1(∞))

}
. (For a more precise statement, see [32,

equation (78)].) This new function is then of course a cocycle, and the conjectural gen-
eral statement is that it simply coincides with WR. The relation with what we said for
the 41 knot in Section 5.3 is that, if we write the completed power series-valued matrix
Φ̂a(h) as the product on the left of a true power series-valued matrix Φa(h) by the di-
agonal matrix with entries eVj/c

2h (j = 1, . . . , r, c =denom(α)), and then define J(α) to
be the constant term Φα(0) of this matrix, then we have yet another coboundary defined
by the obvious analogue of equation (5.7). The latter is now a GLr(C)-valued function
on rational numbers, that again extends continuously to the same smooth cocycle Wγ as
before. It is this latter statement that directly generalizes Theorem 5.2 above, but the
statement that we want to emphasize is that the same cocycle γ 7→ Wγ trivializes (i.e.,
becomes a coboundary) in each of three larger spaces than the space of piecewise real-
analytic functions on P1(R) in which it is originally defined. We can think of each of these
trivializations

(
given by Q, Φ̂ and J

)
as realizations of the same object in different spaces,

similar to the various realizations of motives in differently defined cohomology groups.

(iii) Finally, and in some sense quite amazingly, the cocycle W is not only determined by the
completed power series-valued matrix-valued function α 7→ Φα as its coboundary, but
conversely determines this function uniquely by the asymptotic property.

Wγ(X)−1 ∼ Φ̂γ(∞)

(
2πi

c(cX + d)

)
.

The matrices we have been discussing have a number of further interesting properties, some
of which we list in no particular order.

Orthogonality. There exists a matrix B ∈ GLr(C) such that

Q(−τ)tBQ(τ) = I. (5.8)

q-holonomicity. This property was discussed for the Habiro-like matrix invariants in [32],
while its q-series analogue, of which equation (4.1) is a special case, was the starting point
of [29].

Unimodularity. In the cases that we have looked at, all of the matrices we have been discussing
were unimodular. We do not know whether to expect this property in general.

Bilinearity. Property (5.8) implies that W can be expressed bilinearly in terms of the entries
of Q by

Wγ(τ) = (Q|εγε)t(ετ)BQ(τ),

where ε =
(−1 0

0 1

)
.

Taylor series. The cocycle property of Wγ allows one to compute the Taylor series expansion
of the smooth function Wγ at every rational point and express them bilinearly in terms of the

matrix Φ̂ as was done in [32, Proposition 5.2].
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6 Final remarks

In this paper, we discussed the properties of a 2 by 2 matrix Q of periodic functions on C \ R
associated to the 41 knot (see equation (4.4)). On the other hand, in our companion paper [32],
we constructed a 3 by 3 matrix Q+ of periodic functions on Q (see equation (5.5)). Wheeler [51]
has found an extension of our 2 by 2 matrix Q (with one boring column (1, 0, 0)t and one
interesting row) using the ε-deformation series (2.8).

Another aspect of the matrix Q of q-series associated to a knot appears to be in connection
to the resurgence, i.e., analytic continuation, of the the factorially divergent series Φ̂(h) in the
complex Borel plane. In fact the matrix Q appears to completely describe this problem of
analytic continuation as found by the first author and Gu and Mariño [22, 23]. The so-called
Stokes constants of the analytic continuation problem are integers, multiplied by integer powers
of q̃ = e−2πi/τ that assemble into power series with integer coefficients which are none other
than the matrix Q(−1/τ). This approach to resurgence of asymptotic series is similar to the
one proposed abstractly by Kontsevich–Soibelman [43, 44, 45, 46, 47].

It is clear from the data that is used to define a state integral that the proposed holomorphic
quantum modular forms are not only associated to knots, but more generally to suitable half-
symplectic matrices introduced in [32], or alternatively to combinatorial gadgets often called K2

Lagrangians.

The proposed quantum holomorphic modular forms that appear here presumably correspond
to the partition functions Z(h) and Ẑ(q) predicted by the ongoing program of Gukov and
collaborators [16, 35, 36, 37] for general 3-manifolds.

In the present paper we do not study the dependence of the invariants on Jacobi variables,
but postpone this for a later study. An example of such invariants with the Jacobi variable
corresponding to the holonomy of the meridian of a knot complement was given in [23].

A Complements and proofs

In this appendix, we provide proofs of some of the observations, in particular regarding the 41
knot, that were made in Sections 2 and 3.

A.1 q-series identities

We begin by giving the proof of the two identities of equation (2.6), as communicated to us by
Sander Zwegers. We will use the identity (A.17) and

1

(q)m(q)n
=

∑
r,s,t≥0

r+s=m,s+t=n

qrt

(q)r(q)s(q)t
, (A.1)

which may be found for instance in [53], where we abbreviate (q)n = (q; q)n. If we sum over m
using (A.17) we find

∑
m,n≥0

(−1)m+n q
1
2
m2+mn+ 1

2
n2+ 1

2
m+ 1

2
n

(q)m(q)n

=
∑
n≥0

(−1)n
q

1
2
n2+ 1

2
n

(q)n
(qn+1)∞ = (q; q)∞

∑
n≥0

(−1)n
q

1
2
n2+ 1

2
n

(q)2n
.
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Equation (A.1) with m = n gives

1

(q)2n
=

∑
r,s,t≥0

r+s=n,s+t=n

qrt

(q)r(q)s(q)t
=
∑
r,s≥0
r+s=n

qr
2

(q)2r(q)s
,

and so∑
m,n≥0

(−1)m+n q
1
2
m2+mn+ 1

2
n2+ 1

2
m+ 1

2
n

(q)m(q)n
= (q; q)∞

∑
n≥0

(−1)nq
1
2
n2+ 1

2
n
∑
r,s≥0
r+s=n

qr
2

(q)2r(q)s

which we can also write as

(q; q)∞
∑
r,s≥0

(−1)r+s q
3
2
r2+rs+ 1

2
s2+ 1

2
r+ 1

2
s

(q)2r(q)s
.

Summing over s and using (A.17) with x = qr, we get that this equals to

(q; q)∞
∑
r≥0

(−1)r
q

3
2
r2+ 1

2
r

(q)2r
(qr+1)∞ = (q; q)2∞

∑
r≥0

(−1)r
q

3
2
r2+ 1

2
r

(q)3r
.

This concludes the proof of (2.6). ■

A.2 Asymptotics at roots of unity

For the comparison of the results of this paper and those of [32], we need to understand the
asymptotics of our q-series near roots of unity. This is not the main theme of the paper and we
will not go into detail, but as an indication of the method we prove Observation 2.1 giving the
asymptotics (to all orders) of the two q-series G0(q) and G1(q) associated to the 41 knot at q = 1.
For this purpose we will use the formula for G0(q) given in the second part of equation (2.6).

To find the asymptotics of G0(q), we use the “Meinardus trick” as explained in [53, pp. 54–55].
This would work using either identity in equation (2.6), but since the first would lead to a double
rather than a single integral, we use only the second one. From the second representation of
G0(q) in equation (2.6) and the standard expansion

1

(x; q)∞
:=

∞∏
i=0

1

1− qix
=

∞∑
n=0

xn

(q; q)n
, q, x ∈ C, |q| < 1,

we get the integral representation

(q; q)∞G0(q) = c.t.

(
Θq(x)

(x; q)2∞

)
=

∫
iε+R/Z

Θq(e(u))

(e(u); q)2∞
du,

where ε > 0 is a small and positive, “c.t.” means “constant term” with respect to x, and Θq(x)
is defined by

Θq(x) =

∞∑
n=−∞

(−1)nq(
n+1
2 )x−n, q, x ∈ C, |q| < 1.

From the transformation law θ(τ, u) =
√

i/τe
(
−u2/iτ

)
θ(−1/τ, u/τ) of the Jacobi theta function

θ(τ, u) = e(τ/8 + u/2)Θq(e(u)) we get

Θq(e(u)) =

√
i

τ

∑
λ∈u− 1+τ

2
+Z

e

(
λ2τ̃

2

)
, q = e(τ), τ̃ = −1/τ.
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Inserting this into the integral representations of G0(q) and unfolding in the usual way gives√
τ

i
G0(q) =

1

(q; q)∞

∫
iε+R

e
(
τ̃
2

(
u− 1+τ

2

)2)
(e(u); q)2∞

du.

We now apply the method of stationary phase to this integral, deforming the path of integration
to pass through a point where the derivative of the integrand vanishes and then expanding as
a Gaussian integral around this point to get the desired asymptotic expansion. We use the
standard (and easy) expansion

1

(x; e−h)∞
= exp

(
Li2(x)

h
+

1

2
log

(
1

1− x

)
+

x

1− x

h

12
+ O

(
h2
))

, h → 0,

where Li2(x) is the dilogarithm function, to find that the logarithm of the integrand has an
asymptotic expansion of the form

∑∞
n=−1An(u)h

n, where

A−1(u) = −2π2

(
u− 1

2

)2

+ 2Li2(e(u)).

The function A−1(u) has two local maxima at u = 1
2 ± 1

3 . A careful analysis of each of the
local maxima, whose details we omit, reproduces each of the two terms in the asymptotic
expansion (2.5). A similar analysis can be done for the asymptotics of the series G1(q) at q = 1
using equation (2.15). All of this was sketched for q = 1 (q = e−h, h ↘ 0), however it can
be extended to the case of q = ζe−h following ideas similar to those discussed in [31]. Finally,
we mention that in principle the formulas we have given for 52 would allow us to compute the
asymptotics for this case too, but we have not done this.

A.3 The two matrix-valued cocycles for the 41 knot agree

In this section, we give the proof of Theorem 5.2. Let us begin by explaining the choice of
matrix Q(q) of q-series for the 41 knot given in equation (4.4), using the matrix-valued function J
on the rational numbers from [32, equation (95)] whose first row is 1, J0(x) and 1

2(qJ1(q) −
q−1J−1(q)) when q = e(x), where

Jm(q) =

∞∑
n=0

(q; q)n
(
q−1; q−1

)
n
qmn

is a sequence of elements of the Habiro ring for integers m that satisfies the linear q-difference
equation

Jm+1(q)− (2− qm)Jm(q) + Jm−1(q) = 1, m ∈ Z. (A.2)

It follows that the first row of J is a basis for the Q[q±]-module spanned by {Jm(q)|m ∈ Z}.
The recursion (A.2) is an inhomogeneous analogue of (4.1) and the first row of J above explains
the choice for the second column of the matrix (4.4).

Observe next that the elements of the matrix J given in (5.6) can be written in the form

J1,1(x) =
1√

c
√
−3

∑
Zc=ζ6

Dq(Z)Dq−1

(
Z−1

)
,

J2,1(x) =
1√

c
√
−3

i
∑

Zc=ζ−1
6

Dq(Z)Dq−1

(
Z−1

)
,
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J1,2(x) =
1

2
√

c
√
−3

∑
Zc=ζ6

(
qn+1 − q−n−1

)
Dq(Z)Dq−1

(
Z−1

)
,

J2,2(x) =
1

2
√

c
√
−3

i
∑

Zc=ζ−1
6

(
qn+1 − q−n−1

)
Dq(Z)Dq−1

(
Z−1

)
, (A.3)

where c = den(x) and q = e(x) where Dζ(x) is the renormalized version of the cyclic quantum
dilogarithm Dζ(x) given by

Dζ(x) = e−1/2s(a,c)Dζ(x), Dζ(x) = e−1/2s(a,c) exp

(
c−1∑
j=1

j

c
log
(
1− ζjx

))

when ζ = e(a/c), where s(a, c) is the Dedekind sum [49] and where the logarithm is the principal
one away from the cut at the negative real axis and equals to the average one on the cut. The
cyclic quantum dilogarithm appears in the expansion of Faddeev’s quantum dilogarithm at
roots of unity (see for example [26, 42]) and plays a key role in the definition of the near units
associated to elements of the Bloch group [8].

With the notation of Section 5.3, the 2 × 2 matrix J from (5.6) has determinant 1, hence

its inverse is given by J−1 =
( J2,2 −J1,2
−J2,1 J1,1

)
. Since λS(α) =

1
den(α)num(α) [32, Section 3.1] (where

num(α) and den(α) > 0 denote the numerator and the denominator of a rational number), it
follows that when γ = S, the cocycle (5.7) is given by

WHab
S (α) =

(
J2,2(−1/α) −J1,2(−1/α)

−J2,1(−1/α) J1,1(−1/α)

)e
C

den(α)num(α) 0

0 e
− C
den(α)num(α)


×
(
J1,1(α) J1,2(α)
J2,1(α) J2,2(α)

)
(A.4)

for α a positive rational number and C = V/(2π) = 0.32 . . . with V as in (2.2), On the other
hand, the 2×2 matrixQ(τ) of equation (4.4) has determinant 1, and when γ = S, the cocycleWR

S

of equation (5.4) is given by

WR
S (τ) =

(
Q2,2(−1/τ) −Q1,2(−1/τ)

−Q2,1(−1/τ) Q1,1(−1/τ)

)(
τ−1 0
0 1

)(
Q1,1(τ) Q1,2(τ)
Q2,1(α) Q2,2(τ)

)
. (A.5)

This and the factorization (2.11) of the state-integral implies that WR
S (τ)σ2,σ1 equals to the

state-integral Z41(τ), up to multiplication by elementary factors that involve a (q/q̃)1/24, a root
of unity, a rational number and a square root of τ .

To identify the two cocycles (A.4) and (A.5), we use a “factorization” property of state
integrals at positive rational points (i.e., a bilinear expression of a vector of functions of τ ∈ Q
and −1/τ) of the first author and Kashaev [26], similar to the “factorization” of state integrals
when τ ∈ C \ R of the first author and Kashaev [27]. These two factorization properties of
the state-integral are related, but we not know how to deduce one from the other. Note also
that Theorem 1.1 of [26] proves the needed factorization for all 1-dimensional state integrals at
positive rational numbers, and this covers the case of all three knots (namely, the 41, 52 and
(−2, 3, 7) pretzel knots) and all of their descendant state-integrals of interest to us.

We need to show that for all positive rational numbers α, we have

WS(α) = WHab
S (−α). (A.6)

We will focus on the equality of the (σ2, σ1) entries in the above equality, in which case

WS(α)
·
= Z41(α), where

·
= means equality up to elementary factors. The proof also matches
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those elementary factors, and moreover works for the remaining three entries of the above
equation, since they are all given by descendant state-integrals.

We write α = M/N with M and N fixed coprime positive integers, and let C = V/(2π),
where V = 2.02 . . . is the volume of the 41 knot. In [26, Theorem 1.1], it was shown that

Z41(M/N) = ζ
5−6N+3(M+N+1)2

24MN

(
e−

C
MN ζ−1

MNPM/N

(
z+, θ

+
N , θ+M

)
GM,N

(
θ+N , θ+M

)
− e

C
MN ζMNPM/N

(
z−, θ

−
N , θ−M

)
GM,N

(
θ−N , θ−M

))
, (A.7)

where

z+ = e(1/6), θ+N = e(1/(6N)), θ+M = e(1/(6M)),

z− = e(5/6), θ−N = e(5/(6N)), θ−M = e(5/(6M)),

Dζ(x) =
∏c−1

k=1

(
1− ζkx

)k/c
where ζ is a c-th root of unity, ζN = e(1/N),

PM/N

(
z+, θ

+
N , θ+M

)
=

1√
−3

(1− z+)
2+1/M+1/N+1/(2MN)(

1− θ+N
)2(

1− θ+M
)2
DζMN

(
θ+N
)2
DζNM

(
θ+M
)2

and

GM,N

(
θ+N , θ+M

)
=

1√
MN

MN−1∑
k=0

1(
ζMN θ+N ; ζMN

)
Pk

(
ζ−M
N (θ+N )−1; ζ−M

N

)
Pk

× 1(
ζNMθ+M ; ζNM

)
Qk

(
ζ−N
M

(
θ+M
)−1

; ζ−N
M

)
Qk

and P and Q are integers with MP +NQ = 1 (GM,N is independent of the choice of P and Q).
Likewise, we can define PM/N

(
z+, θ

+
N , θ+M

)
and GM,N

(
θ−N , θ−M

)
. Define

Sσ1(α) =
1√

N
√
−3

1

|Dζα

(
θ+N
)
|2

N−1∑
k=1

1

|
(
ζαθ

+
N ; ζα

)
|2
,

Sσ2(α) =
1√

N
√
−3

1

|Dζα

(
θ−N
)
|2

N−1∑
k=1

1

|
(
ζαθ

−
N ; ζα

)
|2
,

whereN is the denominator of α and λ(x) is the tweaking function from [32, Section 3.1]. Moving
the quantum factorials from the denominator to the numerator and using equation (A.3), it
follows that

Sσ1(α) = eλ(α)CJ1,1(α), Sσ2(α) = e−λ(α)CJ2,1(α).

Lemma A.1. Up to a prefactor, for every α ∈ Q with α > 0, we have

Z41(α) = e−C/(MN)J1,1(−1/α)J2,1(α)− eC/(MN)J1,1(α)J2,1
(
−α−1

)
. (A.8)

Proof. Let α = M/N with M , N coprime positive integers as before. As was observed in [26],
when M = 1 we can choose P = 1 and Q = 0 and then P1/N and G1,N are independent of θ+M
and given by

P1/N

(
z+, θ

+
N

)
=

1√
−3

(1− z+)
1+3/(2N)(

1− θ+N
)2
DζN

(
θ+N
)2
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and

G1,N

(
θ+N
)
=

1√
N

N−1∑
k=0

1(
ζNθ+N ; ζN

)
k

(
ζ−1
N

(
θ+N
)−1

; ζ−1
N

)
k

.

Now, the proof of [26, Lemma 2.2] implies the following factorization: of GM,N

GM,N

(
θ+N , θ+M

)
= G1,N

(
θ+N
)
GM,1

(
θ+M
)
,

which was unfortunately not stated explicitly in [26]. The key observation, using the notation
of [26, Lemma 2.2], is that in the context of [26, Theorem 1.1], we have g+N (x; q+) = g−N (y; q−) =
(−x)A(1 − x)B = 1, which implies that g+k+N (x+; q+) = g+k (x+; q+) and g−k+N (x−; q−) =

g−k (x−; q−). This, together with equation (A.7) and the fact that the tweaking function λ satis-
fies λ(x)−λ(−1/x) = 1/(den(x)num(x)) (where num(x) and den(x) > 0 denotes the numerator
and denominator of a rational number) concludes the proof of the lemma. ■

On the other hand, equation (A.4) implies that

WHab
S (α)σ2,σ1 = e−C/(MN)J1,1(−1/α)J2,1(α)− eC/(MN)J1,1(α)J2,1

(
−α−1

)
. (A.9)

This and the previous lemma completes the proof of the (σ2, σ1)-entry of (A.6). ■
We may say that equations (A.9) and (A.8) syntactically agree.
More generally, in [26] the evaluation of the 1-dimensional state integrals

ZA,B(τ) =

∫
R+iϵ

Φb(x)
Be−Aπix2

dx, τ = b2 ∈ C′

at rational points was given, where A and B are integers with B > A > 0. Following the
notation of [26, Section 1.3], fix a pair of coprime positive integers M and N and define

b =
√

M/N, s =
√
MN

and

g(z) = (−z)A(1− z)−B ∈ Q
[
z±1
]

and

S =
{
w | g

(
e2πsw

)
= 1, 0 < s Im(w)− λ < 1

}
,

where λ is a generic real number such that

−(M +N)/2 < λ < 0.

Note that if w ∈ S, then e2πsw is an algebraic number with a fixed choice of N and M -th roots.
For α = M/N and w ∈ S, define

Sw(α) =
(1− z)

B
2N

+λ(α)B
4√

Nzg′(z)

e−
λ(α)B
2πi

R(z)

Dζα(θ
+)B

∑
k mod N

(
−θ+

)Ak ζ
A
2
k(k+1)

α

(ζαθ+; ζa)Bk
,

where R(z) is the Rogers dilogarithm, and let S(α) = (Sw(α))w∈S and Sop(α) = (Sw(α))w∈S .
Then, using the factorization (A.3) and [26, Theorem 1.1], takes the form

ZA,B(α) = pαS
op(−α)tS

(
α−1

)
= pα

∑
w∈S

Sw(−α)Sw

(
α−1

)
,

where pα = e
(
(B + 3A(M +N + 1)2 − 6MN

)
/(24MN)).
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A.4 The six q-series for the 52 knot

The six q-series of the 52 knot are given by q-hypergeometric sums and their ε-deformations
(see (3.11)), and this allows for an efficient recursive computation of their coefficients similar to
the one for the 41 knot given in (2.12). Explicitly, the six q-series are given by

H+
j (q) =

∞∑
m=0

tm(q)p(j)m (q), H−
j (q) =

∞∑
m=0

Tm(q)P (j)
m (q), j = 0, 1, 2 (A.10)

with

tm(q) =
qm(m+1)

(q; q)3m
, Tm(q) =

(−1)mqm(m+1)/2

(q; q)3m
, (A.11)

and

p(0)m (q) = 1, p(1)m (q) =
1 + 3E1(q)

4
+

m∑
j=1

2 + qj

1− qj
,

p(2)m (q) = p(1)m (q)2 − 3 + E2(q)
24

+
m∑
j=1

3qj

(1− qj)2
,

P (0)
m (q) = 1, P (1)

m (q) =
3E1(q)− 1

4
+

m∑
j=1

1 + 2qj

1− qj
,

P (2)
m (q) = P (1)

m (q)2 − E2(q)− 3

24
+

m∑
j=1

3qj

(1− qj)2
.

Here E1(q) and E2(q) are the weight 1 and weight 2 Eisenstein series defined by (2.10) and

E2(q) = 1 − 24
∑

n≥1
qn

(1−qn)2
, respectively. Since each of tm, Tm, p

(j)
m and P

(j)
m can be obtained

from its predecessor in just O(1) operations, we can use the formulas (A.10) to compute a several
thousand coefficients of H±

j efficiently.

Remark A.2. Our notation
(
p
(0)
m , p

(1)
m , p

(2)
m

)
,
(
P

(0)
m , P

(1)
m , P

(2)
m

)
,
(
H+

0 , H+
1 , H+

2

)
, (H−

0 , H−
1 , H−

2 )
coincide with the quantities denoted (p3,m, p2,m, p1,m),

(
P1,m, 12P2,m,−P3,m

)
,
(
g3, g2, g1+

1
6E2g3

)
,(

G1,
1
2G2,−G3− 1

6E2G1

)
in [27, Section 1.4]. Our formula (3.9) matches with [27, Corollary 1.8]

using the above translation of notation combined with the quasi-modularity property

E2(τ̃) = τ2E2(τ)−
6iτ

π

of E2(τ) := E2
(
e2πiτ

)
(see [7, Proposition 6]). Note also that if we define the functions E1(q)

and E2(q) for |q| > 1 by Ek(q) = −Ek
(
q−1
)
(k = 1, 2), then Tm(q) = tm

(
q−1
)
and P

(j)
m (q) =

(−1)jp
(j)
m

(
q−1
)
. It follows that both of the above q-hypergeometric formulas are convergent for

|q| ≠ 1 and that they are related by

H−
j (q) = (−1)jH+

j

(
q−1
)
, j = 0, 1, 2.

A.5 ε-deformation and the factorization of the state integral

In this section, we comment further between a connection of the factorization proof of state
integrals taken from [27] and the ε-deformations of difference/differential equations. Whereas
only finitely many q-series appear in the factorization of a state integral (via the residue theorem),
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their ε-deformation leads to a sequence of q-series that contains further information, as Wheeler
has recently found out [51]. Consider the one-dimensional state integral

Ψ
A,A+Ã

(τ) =

∫
R+iε

Φ√
τ (x)

A+Ãe−Aπix2
dx, z ∈ C′

from [27] (which was denoted I
A,A+Ã

(
√
z) in ibid) for positive integers A, Ã > 0. Let us briefly

recall its factorization following [27] and their notation. Since A, Ã > 0, it follows that the
integral is absolutely convergent. The idea

(
when τ = b1/2 is in the upper half-plane

)
is to move

the contour of integration upwards, and collect the residues from the poles of the integrand.
The quantum dilogarithm is a meromorphic function of x with poles given by

xm,n = cb + ibm+ ib−1n = ib

(
m+

1

2

)
+ ib−1

(
n+

1

2

)
, m, n ∈ N.

The quasi-periodicity of Φb(x)

Φb(x+ cb + ib)

Φb(x+ cb)
=

1

1− qe2πbx
,

Φb

(
x+ cb + ib−1

)
Φb(x+ cb)

=
1

1− q̃−1e2πb−1x
= − q̃e−2πb−1x

1− q̃e−2πb−1x

implies that

Φb(x+ xm,n) = Φb(x+ cb)
1

i(qe2πbx; qi)m

(−1)nq̃
n(n+1)

2 e−2πb−1xn

i(q̃e−2πb−1x; q̃i)n

= Φb(x+ cb)
1

(qeε; q)m

(−1)nq̃
n(n+1)

2 eε̃n(
q̃eε̃; q̃

)
n

, (A.12)

where q = e2πib
2
, q̃ = e−2πib−2

, ε = 2πbx and ε̃ = −2πb−1x. Moreover, the formula Φb(x) =(
e2πb(x+cb); q

)
∞/
(
e2πb

−1(x−cb); q̃
)
∞ implies that

Φb(x+ cb) =
1

1− e2πb−1x

(
qe2πbx; q

)
∞(

q̃e2πb−1x; q̃
)
∞

=
1

1− e−ε̃

(qeε; q)∞
(q̃e−ε̃; q̃)∞

. (A.13)

Combining, we find a product that decouples

Φb(x+ xm,n) =
(qeε; q)∞
(q̃e−ε̃; q̃)∞

1

eε̃/2 − e−ε̃/2

(−1)nq̃
n(n+1)

2 e(n+
1
2
)ε̃

(qeε; q)m(q̃eε̃; q̃)n
(A.14)

and an exponential that also decouples

e−πi(x+xm,n)2 = e
πi
2

(
q

q̃

) 1
8

q
m(m+1)

2 q̃−
n(n+1)

2 (−1)m+nei
εε̃
4π

+ε(m+ 1
2
)−ε̃(n+ 1

2
). (A.15)

A similar computation works when Im(τ) < 0, and the result is the following.

Theorem A.3 ([27]). For τ ∈ C \ R, we have

Ψ
A,A+Ã

(τ) = 2πie
πiA
2

(
q

q̃

)A
8
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× Resx=0

(
F
A,Ã

(q, ε)F
Ã,A

(q̃, ε̃)eiA
εε̃
4π

(qeε; q)A+Ã
∞

(q̃e−ε̃; q̃)A+Ã
∞

1

(eε̃/2 − e−ε̃/2)A+Ã

)
,

where

F
A,Ã

(q, ε) =

∞∑
m=0

(−1)Am qA
m(m+1)

2 eAε(m+ 1
2
)

(qeε; q)A+Ã
m

.

We can think of F
A,Ã

(q, ε) as a function of a Jacobi variable ε, or as a power series in ε

with coefficients rational functions in q that can be computed by expanding (qeε; q)m as a power

series in ε. To do so, recall the q-series E(m)
ℓ (q) [27, equation (29)]

E(m)
ℓ (q) =

∞∑
s=1

sℓ−1 q
s(m+1)

1− qs
=

∑
s≥1,n>m

sℓ−1qsn =
∑
s≥1

σ
(m)
ℓ−1q

s, σ
(m)
ℓ−1 =

∑
d|s,s/d>m

dℓ−1. (A.16)

The next lemma is contained in [27, Proposition 2.2]. For completeness, we state it and prove
it here.

Lemma A.4. We have

1

(qeε; q)m
=

1

(q; q)m
· (q; q)∞
(qeε; q)∞

· exp

(
−

∞∑
ℓ=1

E(m)
ℓ (q)

εℓ

ℓ!

)
.

Proof. Using (qx; q)∞ = (qx; q)∞/
(
qm+1x; q

)
∞, it follows that

1

(qeε; q)m
=

1

(q; q)m

(q; q)m
(qeε; q)m

=
1

(q; q)m
· (q; q)∞
(qeε; q)∞

·
(
qm+1eε; q

)
∞

(qeε; q)∞
.

Finally,(
qm+1eε; q

)
∞

(qeε; q)∞
=
∏
n>m

1− qneε

1− qn

which implies that

log

((
qm+1eε; q

)
∞

(qeε; q)∞

)
=
∑
n>m

∑
j≥1

1

j
qnj
(
1− ejε

)
= −

∞∑
ℓ=1

εℓ

ℓ!

∑
j>0

jℓ−1
∑
n>m

qnj .

The result follows by summing the geometric series in n > m. ■

Using the above method, we can sketch a proof of Proposition 3.8 which expresses the state
integral of the (−2, 3, 7) pretzel knot as a sum of products of q-series and q̃-series.

A.6 The twelve q-series for the (−2, 3, 7) pretzel knot

In this whole section, let

f(x) = Φb(x)
2Φb(2x− cb)e

−πi(2x−cb)
2

denote the integrand of (3.16), which is a meromorphic function with poles at xm/2,n/2 for
natural numbers m,n ∈ N. These poles are of third order when m and n are even and of first
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order otherwise. First, we compute the contribution from the third order poles xm,n. Using
2xm,n − cb = x2m,2n, (A.14), (A.15) and the modularity transformation of the eta function

(q; q)∞
(q̃; q̃)∞

= e
πi
4

(
q̃

q

) 1
24

b−1,

it follows that

f(x+ xm,n) = e−πi(2x+x2m,2n)2Φb(x+ xm,n)
2Φb(2x+ x2m,2n)

= e
5πi
4

ei
εε̃
π

b3(1− e−ε̃)2
(
1− e−2ε̃

)F (q, ε)F̃ (q̃, ε̃)

and

F (q, ε) =
(qeε; q)2∞

(
qe2ε; q

)
∞

(q; q)3∞

∞∑
m=0

qm(2m+1)eε(4m+1)

(qeε; q)2m
(
qe2ε; q

)
2m

,

F̃ (q, ε) =
(q; q)3∞

(qe−ε; q)2∞
(
qe−2ε; q

)
∞

∞∑
n=0

qn(n+1)eε(2n−1)

(qeε; q)2n
(
qe2ε; q

)
2n

.

It follows that the third order poles contribute

2πie
5πi
4 Resx=0

(
ei

εε̃
π

b3(1− e−ε̃)2
(
1− e−2ε̃

)F (q, ε)F̃ (q̃, ε̃)

)
to the state integral. Expanding out, it follows that the contribution to the state integral is
given by

e
−πi
4

(
∗τH+

0 (q)H−
2 (q̃) + ∗H+

1 (q)H−
1 (q̃) +

∗
τ
H+

2 (q)H−
0 (q̃) +

∗
2πi

H+
0 (q)H−

0 (q̃)

)
,

where ∗ are easily computable rational numbers.
Next, we compute the contribution from the first order poles. Recall that

f(x+ xm/2,n/2) = e−πi(2x+xm,n)2Φb(x+ xm/2,n/2)
2Φb(2x+ xm,n).

When (m,n) are not both even, e−πi(2x+xm,n)2Φb(x+xm/2,n/2)
2 is regular at x = 0 and Φb(2x+

xm,n) has a first order pole at x = 0. Note that x(2m+m′)/2,(2n+n′)/2 = xm,n + im′b/2 + in′b−1/2
for (m′, n′) = (1, 0), (0, 1) and (1, 1). Equations (A.12) and (A.13) together with the replacement
of x by im′b/2 + in′b−1/2 imply that when (m′, n′) = (1, 0), we have

e−πi(x(2m+1)/2,2n/2)
2
Φb

(
x(2m+m′)/2,(2n+n′)/2

)2
= −e

πi
2

(
q

q̃

) 1
8

q(2m+1)(m+1)

(
q3/2; q

)2
∞(

q3/2; q
)2
m

q̃−n2

(−1; q̃)2∞(−q̃; q̃)2n

and

Resx=0Φb(2x+ x2m+1,2n) = ∗e
3πi
4

(
q̃

q

) 1
24 q̃n(2n+1)

(q; q)2m+1(q̃; q̃)2n
,

where ∗ is a constant independent of b. Likewise, we can treat the case of (m′, n′) = (0, 1)
and (1, 1). With the definition of the six q-series (inside and outside the unit circle) given below,
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and whose first few terms are given in (3.17), the above computation concludes the proof of
Proposition 3.8.

The series H+
k (q) and H−

k (q) for |q| < 1 and k = 0, 1, 2 are defined, respectively, by

(qeε; q)2∞
(
qe2ε; q

)
∞

(q; q)3∞

∞∑
m=0

qm(2m+1)eε(4m+1)

(qeε; q)2m
(
qe2ε; q

)
2m

= H+
0 (q) + εH+

1 (q) +
ε2

2

(
H+

2 (q) +
1

3
E2(q)H+

0 (q)

)
+O(ε)3,

(q; q)3∞
(qe−ε; q)2∞

(
qe−2ε; q

)
∞

∞∑
n=0

qn(n+1)eε(2n+1)

(qeε; q)2n
(
qe2ε; q

)
2n

= H−
0 (q) + εH−

1 (q) +
ε2

2

(
H−

2 (q) +

(
1

2
− 1

3
E2(q)

)
H−

0 (q)

)
+O(ε)3,

where

H+
j (q) =

∞∑
m=0

tm(q)p(j)m (q), H−
j (q) =

∞∑
m=0

Tm(q)P (j)
m (q), j = 0, 1, 2

with

tm(q) =
qm(2m+1)

(q; q)2m(q; q)2m
, Tn(q) =

qn(n+1)

(q; q)2n(q; q)2n
,

(not to be confused with (A.11)) and

p(0)m (q) = 1, p(1)m (q) = 4m+ 1− 2E
(m)
1 (q)− 2E(2m)

1 (q),

p(2)m (q) = p(1)m (q)2 − 2E(m)
2 (q)− 4E(2m)

2 (q)− 1

3
E2(q),

P (0)
n (q) = 1, P (1)

n (q) = 2n+ 1− 2E(n)
1 (q)− 2E(2n)

1 (q),

P (2)
n (q) = P (1)

n (q)2 + 12E(0)
2 − 1

2
− 2E(n)

2 (q)− 4E(2n)
2 (q) +

1

3
E2(q).

The remaining series H+
k (q) and H−

k (q) for |q| < 1 and k = 4, 5, 6 are defined, respectively, by

H+
3 (q) =

(
q3/2; q

)2
∞

(q; q)2∞

∞∑
m=0

q(2m+1)(m+1)(
q3/2; q

)2
m
(q; q)2m+1

,

H−
3 (q) =

(q; q)2∞(
q−1/2; q

)2
∞

∞∑
n=0

qn(n+2)(
q3/2; q

)2
n
(q; q)2n+1

,

H+
4 (q) =

(−q; q)2∞
(q; q)2∞

∞∑
m=0

q(2m+1)m

(−q; q)2m(q; q)2m
,

H−
4 (q) =

(q; q)2∞
(−1; q)2∞

∞∑
n=0

qn(n+1)

(−q; q)2n(q; q)2n
,

H+
5 (q) =

(
−q3/2; q

)2
∞

(q; q)2∞

∞∑
m=0

q(2m+1)(m+1)(
−q3/2; q

)2
m
(q; q)2m+1

,

H−
5 (q) =

(q; q)2∞(
−q−1/2; q

)2
∞

∞∑
n=0

qn(n+2)(
−q3/2; q

)2
n
(q; q)2n+1

.
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Note that the above q-hypergeometric series are convergent for |q| ≠ 1 and satisfy the sym-
metries

H+
0

(
q−1
)
= H−

0 (q), H+
1

(
q−1
)
= −H−

1 (q), H+
2

(
q−1
)
= H−

2 (q),

H+
3

(
q−1
)
= −H−

4 (q), H+
4

(
q−1
)
= H−

4 (q), H+
5

(
q−1
)
= −H−

5 (q).

Remark A.5. Despite appearances, H+
0 (q)(q; q)2∞

(
as well as H−

0 (q)(q; q)2∞ as the other 10
q-series

)
is a rank 3 Nahm sum. Indeed, use

(q; q)2∞Tm(q) =
qm(2m+1)

(q; q)m

(
qm+1; q

)
∞
(
q2m+1; q

)
∞

together with the identity

(qx; q)∞ =

∞∑
k=0

(−1)k
q

k(k+1)
2 xk

(q; q)k
(A.17)

to obtain that

(q; q)2∞H+
0 (q) =

∑
k,l,m

(−1)k+l q
1
2
(k2+l2+4m2+2km+4lm)+ 1

2
(k+l+2m)

(q; q)k(q; q)l(q; q)m
.
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