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1. Introduct ion 

1.1. History 

The present paper is a continuation of  [Oh] and [Ga], devoted to the study of 
finite type invariants of  oriented integral homology 3-spheres (ZHS for short). 
Our purpose is, among other things, to relate the seemingly unrelated notions of 
surgical equivalence of links in S 3 ([Lel]) and the notion of finite type invariants 
of  oriented integral homology 3-spheres, due to T. Ohtsuki [Oh]. Finite type 
invariants of  ZHS were originally introduced by Ohtsuki [Oh] in his seminal 
paper (for a precise definition, see Definition 3.2). There are at least two sources 
of  motivation/analogy/inspiration: the finite type knot invariants (see [B-N1], 
[BL], [Va]) and Chern-Simons theory in 3 dimensions (see [Wi2], [Rzl],  [Rz2]). 

Recall that a type m (otherwise called Vassiliev) invariant of knots in S 3 
(for a precise definition see the references above) satisfies a difference formula 
with respect to cutting along m + 1 spheres, twisting and gluing back. Vassiliev 
invariants of  knots in S 3 form a unifying way of  thinking about the Alexander, 
Jones, HOMFLY, Kauffman (and others) polynomials of knots. 

Similarly, a type m invariant of  ZHS satisfies a "difference formula" with re- 
spect to cutting m + l  solid torii from a ZHS, twisting them, and gluing them back. 
For a precise statement, see Definition 3.2. It is hoped that finite type invariants 
of  2~HS will provide a unifying way of  dealing with 3-manifold invariants and 
with Chern-Simons theory in a way analogous to the case of Vassiliev invariants. 

In either of  the above sources of  inspiration, we can think of  type m invariants 
of ZHS as "polynomials of degree m" on the infinite dimensional vector space 
~//g. Here and in the rest of  this paper ~//g is the vector space (over Q) with basis 
the set of ZHS. It is an important question to ask whether finite type invariants 
of ZHS separate points in ~/g. 

The authors were partially supported by NSF grants DMS-95-05106 and DMS-93-03489. 
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1.2. Statement of results; plan of the proof 

This paper consists of two parts. In the first part, which consists of Sect. 2 we 
classify pure braids and string links modulo the relation of surgical equivalence. 
In Sect. 2.1 we recall some definitions of string links and pure braids. In Sect. 2.2 
we study a subgroup A(F4(n)) of the automorphism group of the nilpotent quo- 
tient Fa(n) of a free group and show in Theorem 1 how to express A(Fa(n)) 
as a semidirect product of A(F4(n - 1)) together with a nilpotent quotient of a 
free group. In Sect. 2.3 we prove that the group of surgical equivalence classes of 
pure braids is isomorphic to the corresponding group of string links (Theorem 2). 
We also provide two descriptions of the above mentioned group PSZ(n) of sur- 
gical equivalence classes of n strand pure braids: one as a semidirect product 
of PSZ(n - 1) together with an explicit quotient of the free group and another 
description (Theorem 3) as a group of automorphisrns of a nilpotent quotient of 
a free group. 

In the second part which consists of Sect. 3 we apply our results on surgery 
equivalence to study the finite type invariants of "~HS, originally introduced by 
Ohtsuki [Oh] and partially answer questions 1 and 2 from [Ga]. In Sect. 3.2 
we reprove Ohtsuki's fundamental result which states that the space of type m 
invariants of ZHS is finite dimensional for every m. Our proof allows us to show 
a vanishing theorem (Corollary 3.8), namely that the graded space of degree m 
invariants of ZHS is zero dimensional unless m is divisible by 3. This partially 
answers question 1 of [Ga]. In Sect. 3.4 we study the map from knots (in S 3) 
to ZHS defined by mapping a knot K in S 3 to the ZHS S 3 obtained by +1 K,+I 
surgery on K (see [Ro], and Sect. 3.1). We show (proposition 3.12) that type 
5m + 1 invariants of ZHS map to type 4m invariants of knots, thus making 
progress towards answering question 2 of [Ga]. We conclude in Sect. 4 with a 
philosophical comment about the appearance of trivalent graphs in this paper. 
It turns out that both the notion of surgical equivalence of links in S 3 and the 
notion of finite type invariants of integral homology 3- spheres are ultimately 
related to invariants of vertex oriented trivalent graphs. 

After the present work was completed we received a copy of [GrLi] in which 
they prove a very special case of Corollary 3.8 as well as a weak form of 
proposition 3.12. 

Acknowledgement. We wish to thank D. Bar-Natan for for many useful conversations. Especially 
we wish to thank T. Ohtsuki for enlightening electronic e-mail conversations and helpful comments, 
and the I n Z e r n e t  for providing the support for the relevant communications. 

2. Surgical equivalence of string links and pure braids 

In this section we give two different classification theorems of the group of 
surgical equivalence classes of string links and pure braids. As in the case of 
string link homotopy (see [HL]) these groups are isomorphic. These classification 
theorems are entirely analogous to the classical theorems of Artin [Ar] on isotopy 
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classification of  braids and the more recent results of  Habegger-Lin [HL] on 
homotopy classification of string links. The first theorem is a recursive description 
of the n strand pure braid group in terms of the n - 1 strand group and a certain 
nilpotent quotient of a free group. The second theorem gives an isomorphism 
with a certain group of  automorphisms of  another nilpotent quotient of  a free 
group. 

The proof of the first theorem is similar to that of  [HL] while the second is 
rather different (warning: Lemma 1.9 of [HL] is not correct as stated and the 
proof of  Theorem 1.7 of that paper seems to require some modification). 

2.1. Preliminaries on surgical equivalence 

We begin by recalling some definitions. 

Definition 2.1. (1) Let n be a positive integer, I be the unit interval [0, 1] and 
D 2 be the unit disc in the plane. An n-component  str ing link is a disjoint union 
of  n (smooth) arcs crl , . . . , ~7n in the solid cylinder I • D 2 so that the boundary 
o f  the i-th arc is Ol • Pi, where {Pi } are n distinct points in D 2. 

(2) An n-s t rand  pure  bra id  is an n-component string link with the extra 
property that the tangent vector at any point o f  any cr i is never horizontal (see 
Fig. 1). 

(3) A surgery on a string link ~r produces another string link cr p as follows. 
Let ~/ be an unknotted closed curve in I x D 2 - cr whose linking number with 
each component o f  cr is zero. I f  we remove a tubular neighborhood o f " /and  sew it 
back in so that the new meridian is identified with a former longitude which links 
~f once, then 1 x D 2 is converted into a new manifold A which is diffeomorphic 
to 1 • D 2 again. We define (I • D 2, cr ~) = ( , 4  cr). A more concrete description o f  
~r ~ is given by removing a tubular neighborhood o f  a disk bounded by "y and then 
reinserting it with a single clockwise or counterclockwise twist. We say two string 
links or pure braids are surgically equivalent i f  one can be obtained from the 
other by a sequence of  surgeries. It is clear that homotopic string links or braids 
(i.e., string links for  which there is a homotopy ht such that distinct components 
remain disjoint for  all t E [0, 1] (see also [Mil], [Mi2], [HL] and Fig. 4) are 
surgically equivalent. I f  ~r, ~r t are two string links, then the product string link ~rcr' 
is obtained by stacking cr on top of  or ~. lf-Y is the reflection o f  ~r about ~ • D 2, 
then ~r-~ and - ~  are homotopic and, therefore, surgically equivalent to the trivial 
string link (see [HL]). Thus we obtain groups PSZ(n) (respectively, SL~Z(n)) o f  
surgical equivalence classes o f  n-strand pure braids (repectively, n-component 
string links). There is an obvious homomorphism P ~ ( n  ) --* SL~Z(n). 

Let F ( m )  denote the free group on generators {x l , . . - ,xm}.  Recall the ho- 
momorphism ~- : F(n - 1) ~ P~(n) defined by inserting the n th strand into a 
trivial (n - 1)-strand braid. Here P~(n) stands for the group of  isotopy classes of 
pure braids in n strands. For any group G let Gq denote the subgroup generated 
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Fig. 1. A string link of 2 components (on the left) and a braid of 3 strands on the right 

by all commutators of order q, with the convention that G1 is equal to G and 
G2 = [G, G]. Let G q denote the quotient group G/Gq.  

Claim 2.2. For an), w E F(n - 1) the surgical equivalence class o f t ( w )  depends 
only on the image of  w in F3(n - 1). 

This follows directly from [Lel]. 
Thus we have a homomorphism 7- : F3(n - 1) --+ PSr'(n). We also recall 

the obvious split epirnorphisms PSZ(n ) ---+ P ~ ( n  - 1) and SL~r'(n ) --+ SL~Z(n - 
1) defined by deleting the n th strand. Let 7-' : F3(n - 1) --+ SLS~(n) be the 
composition F3(n - !) r ~ p~r,(n ) ~ SLaVe(n)" 

2.2. The study o f  A(F4(n)) 

In this section we study a subgroup A(F4(n)) of the group of  automorphisms of 
F4(n) and prove Theorem 1, the key ingredient in determining the structure of  
the groups P~r'(n) and SLSZ'(n) in the next section. 

First consider all automorphisms a of  Fq(n) (for q > 2) which send each xi 
to a conjugate of  itself. In fact, for any sequence of  elements gl," --,  g, of  F(n),  
there is an automorphism a of  Fq(n)  such that a(xi) = 9ixig~ -1 �9 These equations 
only define endomorphisms of F(n),  in general, but always define automorphisms 
of  Fq(n) for any q > 2. It is easy to see that a depends only on the class of the 
{gi } in Fq-l(n). If  we demand that gi is i-reduced, i.e. the exponent sum of xi 
in 9i is zero, then the gi G F q - l ( n )  are determined by a.  We define A(Fq(n)) to 
be the subgroup of  all such a satisfying the additional property: 

(1) a(x~ . . . x , )  = x~ . . . x ,  

The following lemma will be useful in our study of the group A(F4(n)). 

L e m m a  2.3. (a) If  .~ ~ F4(n) A {Xn), then there exist unique elements hi E 
F3(n) n (xn) such that 

(2) [xl ,  Al l  -. �9 Ix , ,  A , ]  = A 

where {x.) denotes the normal closure Of Xn in F~(n) = F2(n)/F4(n). 
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(b) Suppose A i , . . . ,  An C F3(n - 1) satisfy 

(3) - ~ I X l / ~ 1 1 ' ' "  ) ~ n - - l X n - 1 ) ~ n l l  = X l  ""  " X n - - 1  in Fa(n - 1) 

Then there exists unique A 1 , ' " ,  A. E F3(n) such that 
Ai = Ai modtxn), A. is n-reduced and 

(4) XlxiX~ l . .. A .x .X~ l = xl . . .xn  in F4(n) 

Remark 2.4. This lemma is false if we replace F4(n) and F3(n) by Fq(n) and 
Fq- l (n )  if q > 4. Also, note that, in (b), Ai is /-reduced if and only if Ai is 
i-reduced. 

Proof To prove part (a) recall the notion of a Hall basis (see [MKS]). In par- 
ticular, any element of F4(n) can be uniquely written in the following form: 

(5) 4' ...x:o II[x;,xj3 e,, 1-Itxk, tx,, xj 
i < j  ' <J 

k <_j 

Thus we may uniquely write: 

(6) A = H[xi ,Xn] ~' H [ x j ,  [xi,x.]] ~~ 
i ,n  ~<~ 

I<n 

Therefore, equation 2 has a solution as follows: 

(7) Aj  = x e~ H [ x i , x . ]  ~'j 

i < n  

We have set en = 0. Since any allowable solution ).j has such a representation, 
uniqueness follows also. 

In order to show part (b), we observe that any acceptable solution {Ai} 
of equation 4 can be written in the form Ai = )~ i~  ' for some o~i E F3(n), 
with en = 0. Substituting this into equation 4 with a little bit of commutator 
manipulation and using the fact that F34(n) is the center of Fa(n), we obtain the 
following formula in Fa(n): 

n - ]  n n n 

(8> II , 
i=l  i=1 i=l i=l 

Reducing to F3(n) we obtain the much simpler formula: 

n - I  n n 

(9) ( I I  [x,,,xije`) H ,~;xi~-' -- I-[xi  
i=1 i=1 i=1 

Substituting from equation 3 this becomes: 
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n - I  

(10) 1-I Ix,, x,l*' = [x,, A,] 
i=1 

and so A, determines the {e,). Now that the {ei} are known, equation 8 can 
n 

be written as  Hi=l[OLi,xi] = T, where ~- is a specified element of F 4 ( n ) A  (xn). 
It follows from (a) that there is a unique solution for c~i in F3(n) N (xn). The 
uniqueness implies that ai E F~(n) since, as can be easily checked, 7- E F~(n). 

[] 

We can now use part (b) of  Lemma 2.3 to define a homomorphism ~ : F~(n - 
1) ~ A(F4(n)) as follows. ~(w) is the unique element ~ E A(F4(n)) satisfying 
og(xi) =- Xi mod{xn) for i < n and a(x~) = ~)Xn ~'-1 for some @ -- w mod(x,) .  

Combining this with the restriction A(F4(n)) --+ A(F4(n - 1)) we have the 
following result 

Theorem 1. The following sequence is split exact: 

1 ~ F3(n 1) - ~ A(F4(n)) ~ A ( F 4 ( n -  1)) ~ 1 

Remark 2.5. This theorem is false if we replace F4(n), F4(n - l) and F3(n - l) by 
Fq(n), Fq(n - 1) and F q - l ( n  -- I), respectively, if q > 4. For example consider 
the automorpbism c~ of F5(2) defined by: 

( l l )  a(xl)  = Ix2, Ix1, x2]lXl Ix2, [xl, x21] - 1 

(12)  a ( x 2 )  = [Xl, [x2,xl]]x2[xl, [ x 2 , x i ] ]  - 1  

Proof o f  Theorem 1. This is an immediate consequence of part (b) of Lemma 
2.3. [] 

Our next goal is to define a homomorphism SL~Z(n) --+ A(F4(n)).  First recall 
the definition of the ~-invariants of  string links as formulated, for example, in 
[Le2]. Let Or be an n-string link; we define certain canonical meridian elements 
o f  I r (O)  = 71"1(1 • O 2 - or). Let m i be a small circle in 0 • D 2 with 0 • Pi as 
center. Let si be a straight line from a base point p in 0 x (D 2 - {Pi }) to mi. Now 
let #i be the element of z-(or) represented by s i m i s F  1. L e t  # : F(n)  ~ 7r(or) be 
defined by ,u(xi) = #i. It follows from a theorem of Stallings [Sta] that # induces 
an isomorphism Fq(n)  --+ 7rq(cr) for each q > 3. We can also define canonical 
longitude elements of  7r(~r). Let l i be a curve on the boundary of a tubular 
neighborhood of o i which runs parallel from a point on m i to the corresponding 
point on m[, where m[ is the projection of mi into 1 • D e. Let s/r be the projection 
of si into 1 • D 2 and let u = I x p oriented from 1 to 0. Define Ai E 7r to be 
represented by s i l i ( s t ) - l U  (see Fig. 2). Requiring that Ai have linking number 
0 with Ori determines li and, hence, A~.. We now define Ai(~7) E Fq(or) to be 
the element (which is /-reduced) corresponding to Ai under the isomorphism 
induced by #. These elements are invariants of  the concordance class of ~r. For 
a reference on concordance class of string links see [Li] and references therein. 
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Fig. 2. On the left are shown the elements mi, si (for i = l, 2) and on the right is shown the element 
A~ of a string link of two components 

P r o p o s i t i o n  2.6. The surgical equivalence class o f  or determines the set  ( /~i(o-))  C 
FS(n).  

Proo f  This is essent ia l ly  proved  in [Le l ]  but for comple teness  we give a more  
direct  argument  here. Let  ~r be an n-s t rand str ing l ink and "y a s imple  c losed 
curve in the complement  of  ~r. We assume that the l inking numbers  of any two  
componen t s  of cr and any componen t  of cr with "y is zero. Let  (I •  2, 0") = ( A ,  or) 

denote  the surgical ly equivalent  l ink obta ined  by Dehn surgery a long 7 as in 
Defini t ion 2.1. Let  X = (I  • D 2) - ~r - "~ and let 

~r = 7rl (X), ~r(~r) = 7rl ((I  • D 2) - ~z), 7r(e')  = 7rl (,4 - or) = 7rt ((I  x D 2) - or') 

If  m is a mer idian e lement  and l a longi tude e lement  for  7 in zr, then we have:  

~v(cr) ~ rc/(m) and ~(o-') ~ rc/(rnl e:l) 

We define homomorph i sms :  

F(n  + 1) ;"--* 7r, F (n  + 1) a2 ~ 7r, F ( n )  m , 7r(tr), 

F ( n ) u:..._~ rc( ~r') 

all o f  which send xi to a mer id ian  of  cr, crr , for i _< n, and, in addition,/21 (Xn+l) = 
m, f~2(xn+l) = ml a:~ �9 We have the fo l lowing  commuta t ive  diagram: 

/22 t21 
rc < F (n  + 1) ~ ~r 

7r(~r') ~ m F ( n )  "' , 7r(~r) 

Here F(n  + 1) ~ F ( n )  is the obvious  reduct ion defined by sending  x,+l to 1. 

Using  results of  Mi lnor  [ M i l l ,  [Mi2] and Stal l ings [Sta] we see that  # l  and #2 

induce i somorphisms  #~ : F 3 ( n )  -~ ~ 7r3(a) and #3 : F3 (n )  -~ ~ 7r3(a,), 
respect ive ly ,  while/21 and/22 are ep imorphisms .  Fur thermore ,  there are e lements  
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A and A' in F3(n + 1) such that the kernels of/21 and ~2 (in F3(n + 1)) are 
normally generated, respectively, by [xn+~, A] and [x~+l, M]. In particular, since 
A,A~E F2(n+ l ) ,  #l and #2 induce i somorph i smsF3(n )  ~- , 7r3. IfAi,A~ E 
F3(n) are chosen to map to the longitude of o" i and ~r[ in 7r3(cr) and 7r3(~/), 
respectively, then they reduce in F3(n) to Ai(cr) and Ai(cr~). 

Since Ai, A~ E F3(n), we only need prove that/~1 and t22 agree on F~(n + 1). 
But this will follow if/22 -:  t~l mod~r 3, which is clear since 1 E 7rz. 

Now, we can introduce the following definition: 

Definition 2.7. Let ~ : SLSZ(n) ~ A(F4(n))  be the homomorphism defined by 

(13) ~J5 n ( O ' ) ( X i )  : ~k i (O ' )X  i )~i ((7")-- 1 

To see that this is a homomorphism we give another interpretation Of ~n. Let X = 
I x ODzU 1 x (D 2 - {pi}) C I • D 2. Then we have the following homomorphisms 
induced by inclusion maps: 

_ t zl 7r1(0 x (D z {pi})) u , 7rl((I • D 2) - o ' )  , 7rl(X ) 

We identify the first and last groups with F(n)  equating xi with the homotopy 
class o f  si mi s Z l and u - 1 s[m[(s[)- i u, respectively. Now Stallings Theorem tells 
us that the maps in equation 2.7 become isomorphisms when we pass to an 3, 
lower central series quotient. Thus the composition o f  the maps in 2.7 define an 
automorphism o f  F3(n ); we leave it as an exercise for  the reader to show that this 
is O,(a).  From this formulation, it is clear that ~ ,  is a homomorphism. 

2.3. Determining the groups PSZ(n) and SLaZ(n) 

In this section we determine the groups Pat'(n) and SLUrp(n). 

Theorem 2. (a) Par(n)  ~ SLaZ(n) is an isomorphism. 

(b) The diagram: 

1 , F3(n - 1) r , Par~(n) , Pa~(n - 1) , 1 

1 1 
t 

1 ) F 3 ( n - 1 )  " , SLS~(n) �9 , S L S r ' ( n - 1 )  , 1 

is commutative and the rows are split short exact. 

The exactness and commutativity in (b) is clear except for the injectivity e f  
~- and 7 -~. This will be proved in Theorem 3 below. Clearly (a) will follow from 
(b). 

Theorem 3. ~,, is an isomorphism. 
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Proof of  Theorems 2 and 3. We can combine the statements of  Theorems 1, 2 
and 3 into a single commutative diagram: 

1 ~ F 3 ( n - 1 )  r ~ p~Z(n) ~ P ~ Z ( n -  1) ~ 1 

1 1 
1 , F3(n 1) r '  - , S L ~ ( n )  , SLSZ(n - l) , 1 

1 1 
1 , F 3 ( n -  1) ~ > A(Fg(n)) , A(F4(n)) , 1 

The cemmutativity of this diagram is clear. To establish that the first two 
rows are exact we need only confirm the injectivity of "r and ~-'. But this now 
follows from the injectivity of  ~. This concludes the proofs of Theorems 2 and 
3. [3 

We can now deduce the following corollary to Theorem 3: 

Corollary 2.8. P ~ ( n  ) is a nilpotent group of  class two, i.e., with the notation of  
Sect. 2.1 we have that P83r'(n) = 1. Furthermore, P~Z(n)/P~Z(n) is a free abelian 

group in ( 2 ) generators and PSzZ(n) is a free abelian group in ( n3 ) generators. 

In fact, P~r"(n ) is a free abelian group on generators al  for  I C In := {(i , j ,  k)[ 1 _< 
i , j , k  < n} (where all i , j , k  are distinct) with identifications ctl = s9n(~r)c~(t ), 
where ~ is any permutation of  I. The element ar can be represented, if i < j < k, 
by the braid Bt in Fig. 3. 

Remark 2.9. The relation of surgical equivalence on string links and pure braids 
is generated by the local moves of Figs. 4 and 5. This is proved in [Lel] for 
closed links but the proof is the same for string links. 

3. Relations with finite type invariants of ZHS 

3.1. Preliminaries on finite type 3-manifold invariants 

As a motivation to the notion of finite type 3-manifold invariants, let us recall 
the definition of  type m Vassiliev invariants of  (oriented) knots in (oriented) S 3 
(after [B-NI],  [BL], [Va]): V is a type m invariant of  knots if for every knot K 
in S 3 and every choice BI , . . . ,B , ,+ I  of  embedded 3-balls that intersect the knot 
as in Fig. 6 (the balls appear in the form of solid cylinders) we have that 

04) 
m+l 

Z 1-I ..... --0 ( -  1)~' V(K~ ~m§ 
e,E~0,1} i=1 
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_f 

i l j k 

Fig. 3. A 4 strand braid Bi,j,k = B t tO B2 representing ctid,k. Here Bl consists of the 3 strands i , j ,  k 
and B2 consists of all the rest strands (here only one). Note that the strands of B2 are on top of the 
i , j , k  strands, and that the closure of the 3 strand braid B2 is a Borromean link of 3 components 
and that the link represented by the closure of the i , j  strands is trivial. Furthermore, the longitude lk 
of the k t~ strand represents the element [#i, laj] in the fundamental group of the complement of the 
link consisting of the i , j  strands, where {#j ) are the canonical free generators of the fundamental 
group of the complement of the i , j  strands 

i i i i 

Fig. 4. A local move that generates the equivalence relation of string link homotopy. Here arcs labeled 
by the same letter (i in this figure and i , j  in the next figure) belong to the same link component 

i i  j j  i i  j j  

Fig. 5. A local move that is implied by the relation of surgical equivalence of string links 
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Fig. 6. An embedded 3-ball in S 3 intersecting a knot as in the left part of the figure. On the right is 
the result of reinserting the ball with a full counterclockwise twist about the vertical axis 

where K,~....,,,,+~ is the knot obtained by removing B1, �9 �9 �9 Bin+! from S 3 , twisting 
every Bi ~i times as in Fig. 6 and gluing back. 

Let . ~  T be the space of type m knot invariants, and let - ~ , ~ "  := 
tO,, >0~m • be the space of  finite type knot invariants. It is easy to show that 
~, ,7/"  is a filtered commutative algebra (with pointwise multiplication). Let 
q~,~" denote the associated graded algebra (and more generally, let ~,(obj)  
denote the associated graded object of the filtered object ~,(obj) )  and let ~---~ 
denote the space of  weight systems of  degree m (i.e. linear functionals on the 
space of chord diagrams with m chords modulo 4T relations and framing inde- 
pendence relation, see references above). Then it is easy to show that there is 
a map ~m ~ ~ 7//m~ with kernel ~ _ 1 ~ 7 / ' .  Since 7 4  is a priori finite dimen- 
sional, so is ~ ~.~. 

Before we talk about 3-manifold invariants, let us establish some useful no- 
tation: Let ~//~ denote the vector space (over Q) on the set of  oriented integral 
homology 3-spheres (ZHS for short). A link L C_ M in a ZHS is called al- 
gebraically sprit if the linking numbers between any two components vanish. 
A framing f = (fx, . . .  ,fn) for an n component link is a sequence of integers 
associated to each component. 

Remark 3.1. A framing for a link L corresponds to a choice of  longitudes for 
each component. If  Ni is a tubular neighborhood of the component Li, then the 
associated longitude "7/ o n  aN i is required to be homologous to Li in Ni and 
to have linking number fi with L i. To make sense of  this we must impose an 
orientation on Li, but then it is easy to see that "yf is independent of this choice. 
Note that linking numbers make sense in any ZHS. 

A framed link (L, f) in a EHS M is called unimodular if f,. = -4-1 for all 
i. A framed link (L, f) is called AS-admissible if it is algebraically split and 
unimodular. For every framed link (L, f) in M we denote by MLr the result of  
doing Dehn surgery on (L, f )  in M [Ro], i.e. remove a tubular neighborhood Ni 
of each Li and sew it back in so that '~'i now bounds a disk in Ni. For a framed 
link (L, f) in M we denote 
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(15) [M,L,f] := ~ (--I)IL'IMc,~IL, E ,//g 
L'C_L 

Recall that ~//g is the Q vector space on the set of ZHS, and that if (L,f)  is a 
framed link in a ZHS M, then (L,f)  is AS- admissible if and only if ML'.JIL, is 
a ZHS for every sublink L / of L. 

In case L is an AS-admissible link in S 3 with framing +1 on each component, 
we will denote 

(16) [L] = [S 3 , L , { + l , . . . , + l } ]  

Let us define a decreasing filtration . ~ o h  on the vector space ,//g as follows: 
~oh//f~, is the subspace spanned by [M, L, f] for all AS-admissible m component 
links in any ZHS M. 

It is an immediate consequence of equation 15 that ~//g- is the vector space 
generated by all triples [M, L,f] subject to the fundamental relation: 

(17) IM, L,f] = [M, U, f lUI  - [M(t.ylr), L',flL'I 

where U is any sublink of  L obtained by removing a component l. I f  I bounds a 
disk D in M,  then M(IdTt) ~ M and we may construct the link in M corresponding 
to L in M(l 0qr) from L by just giving the bundle of strands of L which pass through 
D a full clockwise twist i f f  = +1 or counterclockwise twist i f f  = - 1 .  

We can now recall the following definition from [Oh]: 

Definition 3.2. ,~ is a type m invariant of EHS (with values in Q) if ,k(?~mmO~///~) = 
0 i.e., iffor ever?, AS-admissible link L ofm + 1 components in a ZHS M we have 
that 

(18) Z (--1)IL'IA(ML, j k , )  = 0 
L' C_L 

Let ~ 6  denote the vector space of type m invariants of ZHS, and let ~ 6  
denote the union Um_>o,C~m6. It is easy to see that ~ is a filtered commutative 
algebra with pointwise multiplication. 

3.2. Surgical equivalence and 3-manifold invariants 

In this section we link the results from Sect. 2 with the notion of finite type 
invariants of  integral homology 3- spheres. In particular, we reprove Ohtsuki's 
fundamental result (Theorem 5) which states that the space of type m invariants 
of ZHS is finite dimensional for every m. 

We begin by observing that every c~ C P~(n) can be closed to a link 6- of n 
components in S 3. Furthermore, with the notation of  Corollary 2.8 we have that 
cr E P~(n) if and only if ~ is an algebraically split link. Let us now consider the 
map P~(n) --* J ~  defined as ~r ~ [8] with the notation of  equation 16. We claim 
that this map descends to a well defined map ( not a group homomorphism) 
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(19) ~ P2 (n) , ,~,oh~/~ 

Indeed, it follows from the definition of SE equivalence of pure braids. This 
extends to a linear map from the rational group ring Q[P~Z(n)] --~ .~oh//~. 
By Corollary 2.8 we can regard P~Z(n) as a free abelian group on generators 
C~T for I ~ In := {(i,j,k)ll <_ i , j , k  < n} (where all i , j ,k  are distinct) with 
identifications ~1 --- sgn(a)c~=U}, where cr is any permutation of I .  Therefore, 
Q[P~X(n)] is the Laurent polynomial ring in the commuting variables c~I. 

Remark 3.2. Using the fundamental relation 17 and the notation of  equation 16, 
we see that if an n-component  AS-admissible  link L'  is obtained by twisting, 
along an admissible unknot '7, an AS-admissible n component link L, then we 
have that 

(20) [L t3 71 = [L] - [L'] 

Therefore, surgical equivalence relates n component AS- admissible links in S 3 
modulo n + 1 component AS-admissible ones. Since PSZ(n) is not a finite group 
(instead, it is a finitely generated free abelian group) at this point it is not clear 
why ~ o h / / / ~  is a finite dimensional Q vector space. 

Our next task is to introduce a finite dimensional quotient of  Q[P~n:(n)] that 
maps onto ,~n~ This will involve looking at n and n - 1 component AS- 
admissible links in S 3. 

We begin by translating equation 17 into a graphical form. In Fig. 7 we give 
the drawing conventions for pieces of AS-admissible links in S 3. 

It is easy to see that Figs. 8, 9 and 10 are special cases of the fundamental 
equation 17. 

- 1  +1 

Fig. 7. Some drawing conventions for bands. Shown here are ribbon parts of AS-admissible links 
that represent (linear combinations of) ZHS under the map 15. The numbers in the bottom of each 
band indicate the number of twists that we put in the band 

Let us now prepare some notation that will be used in Proposition 3.4 below. 
Let L be a (m - 1)-component link in S 3 and c~ be an element of  7r = 7r~ (S 3 _ L). 

Then we can consider the m-component  link L(c0 defined by adding to L a new 

component which represents ~. Note that L(c~) is well-defined up to homotopy 
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- l  

Fig. 8. A special case of equation 17 in a pictorial way 

I 1 
+I 

- 1  - l  

Fig. 9. Another special case of equation 17 in a pictorial way 

H,1 U 
- l  

Fig. 10. Yet another special case of equation 17 in a pictorial way 
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and, therefore, up to surgical equivalence. Note also that L(a)  is algebraically 
split if and only if L is algebraically split and a E 7r2, the commutator subgroup 
of ~r. 

Proposit ion 3.4. Suppose that L is an algebraically split (k - 1)- component link 
and a l , . . .  ,c~n E 7r2 and n > 3. Then, with the notation of  equation 16, we have 
the following identities in ~s //g: 

(21) [L(~I . . .  an)]  = ~ l < _ i < j < n [ L ( c e i o l j ) ]  - ( n  - -  2) ~ l < i < n  [L(cti)] 

(22) [L(a- l ) ]  = [L(c~)] 

Proof Equation 22 follows from the fact that surgery along a simple closed 
curve is independent of  the orientation of the curve. Equation 21 will follow 
from a more general relation in J//~ (Theorem 4) stated below. [] 

Before we state Theorem 4, we need to fix some notation: Suppose M is 
ZHS containing an AS-admissible link L with a +l-framing on each component. 
Let D be a 3-ball imbedded in M such that D AM consists of n parallel bundles 
of strands of  L, such that, among the strands of  any one component of  L in any 
of the bundles, there are an equal number going in each of  the two directions. 
For any sequence 1 < il _< i2 _< --- < ik < n, let xil...ik denote the circle 
in D, with a +l-framing, which encloses the i l . - "  i~ bundles and passes above 
the other bundles (see Fig. 11) A monomial xi~ ...ikxh '4, "" "Xn'r,  will denote the 
union of the circles given by the terms of the monomial placed in descending 
order as read from left to right (see Fig. 12). Note that this multiplication is 
not commutative in general but that xi commutes with any monomial. For any 
monomial m, L(m) will denote the link obtained by adjoining to L the circles 
denoted by m. L(m) will denote the link L C_ M m  but since Mm ~ M this can be 
alternatively described as the link in M obtained by giving a full clockwise twist 
to the bundles which pass through each of  the components of m (see Fig. 13). 

UUIIIt 
Fig. 11. A graphical representation of the monomial x235 

L e m m a  3.5. With the above notation we have the following identity in .~kOh~//g: 

L((xi "" "xn)n-2xl...n) = L( 1-I xo') 
l < i < j < n  

where the x 6 appear in lexicographic order from left to right, i.e. xij is to the left 

o f  xrs i f  i < r or i = r and j < s. 
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Fig. 12. A graphical representation of the product x12 ' X 2 3 4  �9 X45 

- 1  - 2  - 2  - 1  

Fig. 13. The bands have - 1 ,  - 2 ,  0, - 2 ,  - 1  twists 

P r o o f  T h e  proof is a refinement and generalization of Ohtsuki's idea of resolving 
a full twist of three bands into a sequence of twists of pairs and individual bands. 
We proceed by induction on n. The result is obvious for n = 2. The inductive 
step is the equation: 

(23) L ( x ~ - 2 x 2  " " " XnXl...n) = L(XI2 " " XlnX2...n) 

To prove this we observe that a full clockwise twist of L in D can be decomposed 
into a full twist of the first bundle followed by winding the first bundle around 
the other bundles once in a clockwise direction and finally by a full twist of 
the other bundles. This is illustrated in Fig. 14. By using the relation given in 
Fig. 15, we obtain a product of simple twists of two bundles which however 
force us to insert counterclockwise twists of each bundle to compensate. The 
result is pictured in Fig. 16. Premultiplying xb.n by x ~ - 2 x 2  . . . x n  eliminates 
the counterclockwise twists of the individual bundles and results in the desired 
element L(Xl2.. " XlnX2...n). [] 

We want to use Lemma 3.5 to "solve" for [ M ; L ,  Xl... n ]. We first need another 
lemma. 

Lemma 3.6. L e t  U tO L be an A S  l ink  in M .  Then:  

(24) [ML, L'] = Z ( -  1)lL"l [M, L" U L'] 
L " C L  
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- 1  - 1  

Fig. 14. A full clockwise twist on 4 bands 

Fig. 15. A full clockwise twist on 2 bands 

n - 2 - - 1  - !  --1 

Fig. 16. More twists. Note that the number of individual twists in the bands are n - 2, - 1 ,  - I ,  - 1  
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Proof This is essentially an inversion of equation 15. According to 15 

[ML,ff] = Z (--1)IXlMKuL 
K C_L' 

while the right hand side of  equation 24 is: 

Z (--1)IU'I+IKuK'IMKuK , 
Kr 

KC_L t 

Thus it suffices to show that, for any non-empty link ! C_ M,  ~-'~t,c_t(- 1) It'l = O. 

But, if Ill=p, then the left-hand side of  this equation is just ~i=o(P Pi ) ( -  1)p-i, 
which is zero by the binomial theorem. [] 

We now use the following notation. If m is any monomial, then let ~ = [M ; L, m]. 
Now it follows from Lemma 3.6 that: 

(25) [M, L(m)] = Z ( -  1)a0~')mr 
m' <_m 

where m '  ranges over all submonomials of  m, i.e. those obtained by deleting 
zero or more terms from m, and d(m r) is the number of  terms in m ~. I f  m = 
Yl "" "Yk, then the right side of  equation 25 is just (1 - Y i ) " ' "  (1 - ~ ) .  So when 
m = (xl .. "x~)~-Zxl...n the right side of 25 is: 

Pi 

1 - I ( 1  - m) -2(1 - 
i=1 

and when rn = i-II<_i<j<_n xo the right side is Ht_<i<j_<.(1 -~~2). Combining these 
observations with Lemma 3.5 proves: 

Theorem 4. 

1-Ii<_i<j<n(l -- X--~ij) 
(26) 1 --xl...n = n 1 

Hi=l(  - ~-/)n--2 

To correctly interpret this theorem recall that xi commutes with every monomial  
and then equation 26 should he viewed as an equation in the completion of  
or in d/~/,~kOh,A~ for any k. Note thai the denominator is invertible. 

The proof of Theorem 4, and therefore of  Proposition 3.4, is now complete. 
Let us now come back to the problem (stated in the beginning of the present 

section) of showing that .7~~ is a finite dimensional Q vector space. Mo- 
tivated by Proposition3.4 and Theorem 4 we define, for each n a quotient 
Q[PS2Z(n)]/,~. Using the notation of Corollary 2.8 we define a monomial  
a = I-It~t,c~ (I) c P~zZ(n) to be i-trivial (for 1 _< i _< n) if a(l) # 0 im- 
plies i c I and to be i-disjoint if a(I) ~ 0 implies i ~ I .  (If  we look at the 
canonical braid representative of an /-trivial monomial, it has the property that 
removing the i-th strand leaves a trivial braid. If we look at the canonical braid 
representative of  an/-dis joint  monomial,  it has the property that the i-th strand 
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+ 

0 0 0 0 0 0 - 1 - 1  - 1  

0 0 0 0 0 --1 

_) 
0 0 --1 

11 
0 +1 +1 +1 +1 +1 +1 

11 
+1 +1 +1 +1 +1 +1 

cI$1~ 

+1 +1 +1 

+1 +1 +1 

uH 
+1 +1 +! +1 +1 +1 

Fig. 17. The proof of Theorem 4 if n = 3. The two equalities here follow from repeated applications 
of Figs. 7 and 9. The framings in all horizontal components is +1 
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o 1 

6 

It 

Fig. 18. The end of the proof of Theorem 4. The identity in the present figure follows from Fig. 10. 
The framings cf the horizontal components represented by unknots is +1 

separates from the remaining strands.) Now we define our set of relations to be 
all those obtained by taking linear combinations with rational coefficients of the 

following elementary relations: 

(27) a = 0 
(28) d ( a - 1 ) ( b - 1 ) ( c - 1 ) =  - d  

(29) 

d(a - a -1)  = 0 

if a i s / -d i s jo in t  for some i 
if a ,  b, c a r e / - t r i v i a l  and 
d is i -  disjoint for some i 
if a i s / - t r iv i a l  and 
d i s / -d i s jo in t  for some i 

We will denote by ~ n  the subspace of  Q [ P ~ ( n ) ]  generated by equations 

27, 28 and 29. 

Remark 3.3. A few comments are in order: recall that Proposition 3.4 and The- 
orem 4 are given in graphical notation, whereas our relations ~ are given 
in algebraic notation. For a precise comparison of  the relations J g ,  and the 
statements of  Proposition 3.4 and Theorem 4 see the proof  of Theorem 5. 

We record here some useful particular consequences of  our algebraic rela- 

tions: 

(30)  l = 0 

(31) da 2 = d(4a - 2) 

(32) d(ab - l  + a b ) =  d(2a + 2 b -  1) 

if  a is  i - t r i v i a l  

and d i s / - d i s j o in t  for some i 
if a ,  b are i- tr ivial  and 
d i s / - d i s j o i n t  for some i 

Indeed, setting a = 1 in 27 gives 30. Setting b = a ,  c = a - 1  in 28 and using 27 
gives 31. Setting c = b -1 in 28 and using 27 gives 32. [] 

The o r em  5. [Oh] The map Q [ P ~ ( n ) ]  - - ~  .~Oh,//g is onto. Furthermore, it fac- 
tors through a (necessarily onto) map Q[P~zZ(n)]/~n --~ .~~ 

Proof of Theorem 5. We first show ontoness. Recall that .~nOhJ/g is generated 
by triples [M, L,f]  where L is an AS-admissible link of  n components in a ZHS 
M .  Every 3-manifold can be obtained from S 3 by surgery on a framed link 

and, if the manifold is a ZHS, this means that the matrix of  linking numbers 

of  the link is unimodular. By a sequence of  handle slides we can diagonalize 

the linking matrix and so we can assume that M is obtained by surgery on an 
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AS-admissible link in S 3. Using our fundamental relation 17 we can assume that 
M = S 3. Ontoness now follows once we can show that we can assume that the 
framing j5 is equal to +1, for all 1 < i < n. This follows by an argument due to 
Ohtsuki [Oh]. Let L be any AS-admissible n component link with two framings 
f and f~ so that, if L' is the sublink obtained by deleting the n-th component, 
then f lL '  = f ' lL '  and f~ = -f~.  Let (L,f) be obtained from (L , f )  by replacing 
L, by two parallel non-linking copies of L,, and with flL' = f lL ' ,  f,, = f,, and 
fn+l = -fn.  Then we have [M, L, f]  = [M , L, f]  - [M - ,  L , f ]  where M '  = M(t~,eyo). 
So it suffices to show that I M - , L , f ]  = - [M,L , f r ] .  But we have [M,L , f ' ]  = 
[M, L ' , f '  [L'] - [M - ,  L ' , f '  IU] and [M - ,  L,f]  = [M - ,  L',f 'IL'] - [M -+, L ' , f '  [L']. 
Since M -+ = M and f l u  =fr lU,  we are done. The same proof is represented 
in Fig. 10. 

To prove that the map Q[P2~:(n)] ~ .~ ,~  factors through a map 
Q[p~2Z(n)]/sgi,,~n ~ . ~ o h j g  we recast the relations in ~.~, in terms of links. 

To prove equation 27, we map a to (S 3, L , f )  where the i-th component l of 
L bounds a disk disjoint from the remaining components U. Since surgery on l 
does not change U this relation follows from the fundamental relation 17. 

To prove equation 28, after closing up the braid abcd to a link L, the i- 
th component l represents the element ctt3"7 in the fundamental group of the 
complement of the remaining components L' and the surgical equivalence class 
of L only depends on this element. Furthermore we can assume that I is unknotted 
since this can be achieved by crossing changes which do not change the surgical 
equivalence class of L. In this way, with the notation preceding Proposition 
3,4, we have that dabc ~-s U(c~[37), dab ~-s L'(c~fl), da ~-s U(cO, where ~s 
denotes surgically equivalent links. Therefore, 28 and 29 follow (and in fact are 
equivalent) by Proposition 3.4. This completes the proof of Theorem 5. t3 

3.3. A vanishing theorem for finite type invariants of ZHS 

In this section we prove a vanishing theorem (Theorem 6 and Corollary 3.8) for 
the graded vector space of finite type invariants of Zt tS .  The proof will exploit 
the algebraic form of the relations ~o'~n. Thus, for the results in the present 
section we do not need to draw any links, bands or braids. With the notation 
of the introduction (see Sections 1.1, 1.2), recall that . / /g is the vector space 
(over Q) on the set of oriented EHS, and elements in . ~  are thought of as 
polynomial functions of degree m on ./r 

Consider the following three properties of a graph G: 

(a) Every edge has two distinct vertices. 
(b) Every vertex is either trivalent and oriented (i.e., one of the two possible 

cyclic orders for the edges emanating from it has been chosen), or univalent. 
(c) Every component of G is either a Y-graph (i.e., has exactly one trivatent 

vertex, three univalent vertices and three edges) or has every vertex trivalent. 

(d) G contains no O component, i.e. a trivalent graph with 3 edges and 2 vertices. 
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We will say G is a UT graph if it satisfies (a) and (b), and a Chinese manifold 
character (or Ohtsuki graph) if  it also satisfies (c) and (d). The degree of G is 
the number of  edges. It is easy to see that any Chinese manifold character has 
degree a multiple of  3. 

We can now state the following theorem: 1 

T heo r em 6. For every n >_ O, the vector space Q[P~2r:(n)]/~n has a basis in 
one-one correspondence with the set of (unoriented) Ohtsuki graphs of order n. 

Proof of Theorem 6. First, we define a correspondence between Ohtsuki graphs 
of  order n and a set of  elements that generates (over (~) the vector space 

Q[P~Z(n)]/~.~n. For a monomial  a = I-I1EI~ OL~ (1) and for 1 < i < n we de- 
fine the i-order of a, oi(a), to be Y']i~l ]a(/)] and the total order of a to be 
E I  [a(/)l .  We show that Q[P~2Z(n)]/,~, is generated by those a which satisfy: 
oi(a) < 2 for every i, and aft) = +1 for every I -  we call such a admissible. 

s s I foi(a) > 2 then we may write a = ~11~j2bc, for some i c 11 N12, where b 
i s / - t r iv ia l  and c i s / -d i s jo in t .  By equation 28 we see that a can be written as a 
linear combination of  monomials with strictly smal le r / -o rder  and no larger total 
order. So we can assume oi(a) _< 2 for every i.  Now suppose a(I) = + 2  for some 
I .  Then a = c~(1)b where b is /-disjoint and i E I .  We can apply equation 30 
and 31 to express a as a linear combination of  monomials with strictly smaller 
i -order  and no larger total order. 

We can, following Ohtsuki, associate to any admissible monomial  a a graph 
G(a) as follows. For  every i = 1 , . . . , n  we associate an edge e(i) with two 

distinct vertices. For  every 1 with a(l) ~ 0 we define a trivalent vertex v(1) 
incident to each e(i) with i E I .  We can also give each trivalent vertex v(I) an 
orientation, i.e. a cyclic ordering to its incident edges, by choosing the ordering 
given by those I for which a(1) = +1. It is easy to see that G(a) is a UT 
graph with no 69 components.  Furthermore, G(a) determines a .  We can use this 
graphical interpretation to describe further reductions to the generating set of  

monomials.  We will say an edge is interior i f  both its vertices are trivalent and 
exterior otherwise. 

We make the following observations: 

(a) If G(a) has an edge with both vertices univalent, which will be true if the 
order of  a is small enough, then a = 0; this follows from 27. 

(b) Suppose e is any edge in G(a). Define a r so that G(a) = G(a') except that 

the trivalent vertices of e have orientations reversed. Then 29 implies a = a ' .  

(c) If e is an interior edge and we define a "  by changing the orientation of 
only one of the vertices, then 32 says that a + a "  is a linear combination of  

monomials with smaller total order. 

Suppose now that G(a) has two edges, one interior and the other exterior, which 

share a common vertex. Then (b) and (c) imply that 2a is a linear combination 
of  monomials with smaller total order. But i f  G(a) contains no such edges it is 

t A more refined version of Theorem 6 will appear in [GO]. 
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easy to see that it must be an Ohtsuki graph. Thus the set of all such graphs with 
oriented vertices form a generating set. To complete the proof we choose some 
preferred orientation for each Ohtsuki graph and show that, if  a is any monomial  
corresponding to this graph with another orientation then it is equal to -t- the 
preferred one plus monomials of lower total order. To see this let G(a) be the 
associated graph and let G(a') be produced by changing the orientation of one of 
the trivalent vertices v. Then a r = -t-a + monomials of  lower total order. In fact, 
if v lies in a Y component then, by (a), a = a r while if v lies in a completely 
trivalent component then, by (b), a '  = - a  + monomials  of lower total order. 

Second, we prove the linear independence of the set of admissible monomials  
{G(a)}  where G lies in the set of  Ohtsuki graphs of  order n. To prove linear 
independence we reinterpret Q[P~2r~(n)]/,~Jg~n as the quotient of the vector space 
spanned by unreduced but commuting monomials  in the {a l  }, i.e. a t  and a ]  -1 
can both occur in a monomial,  by the relations defining ~J'~n and the cancellation 
relation: 

(33) a a - l b d  = d if a ,  b a re / - t r iv ia l  and 

d i s / -d i s jo in t  for some i 

We write an unrednced monomial uniquely in the form a = c~i �9 - �9 al,e", where 

each Ir = ijk with i < j < k and er = :t:1. Then we define the multiplicity 
mi = ~iE1,  let[, for each i = 1 , . . . , n .  We say i is multiple if mi ~> 1 and 
singular if mi = 1. We now define a canonical reduction of  c~ in five steps. 

Step 1. Write: 

OZ . . . .  ZOlle'; OZl,~e'k -- Z C il'"ik Olel,'i 1 ' '"  O!e'kl,t 

where the first summation is over all subsequences of 11, . . . ,  In such 
that the multiplicities m[ of c~e'~ "'1,1 ' c~%t,, satisfy m[ = (m,min,2} and the 

second sum is over all remaining subsequences such that m[ = m i if 

mi <_ 1, m[ = 2 if mi = 2 and m[ = 1 or 2 if  mi ~> 2. The coefficients 
are defined by the formula: cil...it = I"[r(mi, -- 2),  where the product is 
over all r such that mir > 2 and m. ~ = 1. Note that there must be at tr 
least one such r. 

Step 2. After Step 1 we can assume every mi _< 2. NOW we replace every 
occurrence of  c ~  2 by 4c~/~1 and any occurrence of  c~za/1 by 1. 

Step 3. After Step 2 we can assume, in addition, that Ii = lj if and only if 
i = j .  At this point any such monomial  is determined by its corre- 
sponding UT graph. We describe the next two reductions in terms of  
these graphs and linear combinations of  them. First we describe a pre- 

liminary modification. A connected UT graph G will be called even if  
every cycle has an even number of edges. In this case the vertices of 
G can be divided into two classes: any two vertices in the same class 
are connected by a path with an even number of  edges. If  we choose 

one of these classes and remove each trivalent vertex in the class from 

the graph, replacing it by three univalent vertices, we obtain a new 
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Step 4. 

Step 5. 

graph which is a union of Y graphs and isolated edges. We carry over 
the orientations of G to the new graph. Now define G t to be the sum 
G! + G2 of these new graphs, if G is even, and 0 otherwise. We can 
now describe Step 3 by replacing every component G with at least one 
univalent vertex, in a UT graph, by G ~. 
After Step 3 we have a linear combination of Chinese manifold char- 
acters (with, perhaps, some additional isolated edges). This step will 
reduce it to a linear combination of chinese manifold characters. For 
example, we can always prefer the orientation given by i , j ,  k where 
i < j < k. We describe Step 4 as follows. Suppose G is a component 
all of whose vertices are trivalent and k of its vertices have the wrong 
orientation. Then we replace G by ( -1)kG +2kG r, where G = G except 
that the orientations are now all the preferred ones. If  G is a Y graph, 
then we replace G by G. 
The final step is to eliminate any graph which has an isolated edge. 

We leave as a straightforward, if, perhaps, lengthy exercise to show that these 
five steps can be achieved by using the relations given by equations 27-32 and 
33. The important thing is to show that the result of this reduction depends only 
on the class of the monomial in Q[P~r'(n)l/J,~,.  But this can be achieved by 
checking that, for each of the equations 27-29 and 33, reducing both sides of the 
equation gives the same result. [] 

Corollary 3.8. , ~  ~- is a finite dimensional vector space and is nonzero only i f  
m is a multiple o f  3. 

Remark 3.9. This partially answers question 1 of [Ga]. 

Remark 3.10. In [GO] the notion of manifold weight systems for finite type 
invariants of ZHS will be introduced. 

3.4. From knots to 3-manifolds 

In this section we prove a vanishing theorem (Theorem 7) for type 5m + 1 
invariants of ZHS.  The proof exploits the graphical, as well as the algebraic 
notation from the previous chapters. As a corollary, in Proposition 3.12 we make 
some progress on question 2 of [Ga]. 

With the notation of 16, we can state the following theorem: 

Theorem 7. I f  L is an AS-admissible link in S 3 with a (4m + 1)-component trivial 
sublink, then [L] E o~'m+2~/Id. 

Proof If  L has 4m + 1 + r components, we proceed by downward induction 
on r. Obviously if r > m, there is nothing to prove. We record the following 
consequence of the defining relations in J /g .  
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Lemrna 3.11. I f  L is obtained from L by changing a crossing of two bands, then 
[L] - [L] is a linear combination of [Li], where each L i contains L as a proper 
sublink. 

A band means a collection of parallel subarcs of components of L, and we 
assume, after choosing some oriention for the components of L and a direction for 
each band, that each component of L has an equal number of subarcs travelling 
in the positive direction in the two bands as in the negative direction. (Note that 
this condition is independent of the orientations chosen but does depend on the 
directions of the bands) (see Figs. 4 and 5). 

Proof This follows from Figs.4, 5 and equations (15) and (20). [] 

Suppose we write L = Lo u U ,  where Lo is the trivial sublink. If we perform a 
crossing change, as in Lemma 3.11 where at most one of the two bands contains 
arcs from Lo, then L and each Li also contains Lo as a sublink and so, by the 
inductive assumption, [L] c C,~m+2,//~ if and only if [L] E ~5m+2~/~. SO, for 
example, we are free to change any component of U within its homotopy class 
in the complement of  L0. Furthermore, if 7r = zq(S 3 - Lo) then we can change a 
component I by any element of zr3, by the argument in [Lel,  pages 58-9], using 
band crossings in which one band consists of arcs from Lo and the other consists 
of  arcs from I. 

As a consequence of these observations, we may assume that U consists of 
components tk so that each lk represents a product of commutators of  degree two 

I-Ii<j[xi,xj] e~. Now each commutator [xi,xj] can be represented by a curve crij 
which intersects only two of the disjoint disks Dj bounded by the components 
of  Lo (see Fig. 19). We may therefore assume that each lk is a band sum of a 
number of copies of the crij, slightly translated so that they are all disjoint. We 
now want to apply Theorem 4. This tells us that [L] is a linear combination of 
[Li], where L i coincides with L except that each lk has been replaced by either 
one of the aij or a band sum of two of the O'ij , o r  several of these. We can ignore 
any terms in which any lk has been replaced by more than one component, by 
the inductive assumption. In each of the Li that remain, each new lk intersects at 
most four of the Dy and so L~ intersects at most 4r of the Dj. Therefore if r < m, 
there will be at least one of  the Dj not intersected by any of the component of  
L. But it then follows from equation 27 that ILl = 0. 

As an application of Theorem 7, we study the map from knots to (linear 
combinations of) 3-manifolds defined by K --+ [S 3, K, +1] := $3~x,+1) - S  3. Dually 
this map induces a map from 3-manifold invariants to knot invariants. In [Ga] it 
was shown that this descends to a map 

(34) ~nnC ' 5~-1  ~"  

where ~'~ ~_~" is the space of type n knot invariants [B-N1], [BL], [Va]. In [Ga] 
it is conjectured that the above map actually descends to a map: 
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i j 

Fig. 19. A curve o- 0 that represents a commutW;or [xi, xj ] in the fundamental group of the complement 
of a trivial 2 component link Compare this to Fig. 3 

(35) .~3m6; , .~m ~"  

Propos i t ion  3.12. The above map descends to a map: 

(36) ~sm+t C~ ' ~44,, 

Proof Let A E ,~m+l ~" be a type 5m invariant of ZHS, and let ~;, be the 
associated knot invariant of  equation 34. Let K be an immersed knot in S 3 with 
4m + 1 double points. Let K tO L0 denote the AS-admissible link in S 3 of  4m + 2 
components obtained by replacing each double point with the left hand of  Fig. 20. 
Note that K ULo contains an unlink Lo of  4m + 1 components. Using the equality 
of  Fig. 20 and the definition of the associated knot invariant ~:~ we obtain the 
following equality 

(37) ~;~(K) = A([K U Lo]) 

Using Theorem 7 we have that [K ULo] E ~m+2~ /~  therefore A([K ULo]) = 0. 
This shows that @~ is a type 4m invariant of knots in S 3. [] 

X 
Fig. 20. Another special case of equation 17 in graphical notation 

4m 4 result, whereas question 2 of [Ga] Remark 3.13. Proposition 3.12 is a 5,~+1 -~ 
2 4 result. In a recent preprint M. Greenwood and Xiao-Song asks for a ~ < 3 

Lin [GrLi] have shown a ~-____g2 ___ 1 result, which is a weaker statement than 
n 

Proposition 3.12 i f  n > 6. 

Addendum 3.14. N. Habegger [Ha] has recently given a proof  of  the ~ result: 
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* If L is an AS-admissible link in S 3 with a (2m - 1)-component trivial sublink, 

then [L] E ,~3m,l//v. 

A corollary of this is that the map ~ C  ~ ~ - i  ~"  in Equation (30) descends 
to a map . ~ ' m ~  ~ ':~m ~ ' ,  as conjectured by Garoufalidis in [Ga]. We thank 
Habegger for sending us a copy of [Ha]. After reading Habegger 's  proof we saw 
how to refine our proof of  Theorem 7 to give another proof of  Theorem *. Our 
proof of Theorem * is rather different from Habegger 's  and will be included in 
a future work [GaLe]. 

4. A philosophical comment 

We feel that we owe a word on the appearance of  trivalent graphs. Trivalent 
graphs appear both in Sect. 2 and in Sect. 3. As mentioned in the introduction, a 
motivation for the notion of finite type invariants of  ZHS is Chern-Simons theory, 
exploited by Witten [Wi2]. Chern-Simons thoery is a topological quantum field 
theory with a topological Lagrangian containing a quadratic and a cubic term. 
The asymptotic expansion of the associated path integral (over the space of 
connections) as the coupling parameter goes to infinity can be approximated by 
a power series sum, each term of which is a finite sum over trivalent graphs 
(Feynman diagrams). This is the reason that trivalent graphs appear in Chern- 
Simons theory. 

In the theory of  finite type knot invariants, trivalent graphs appear either as 
triple point degenerations of knots, or as Feynman diagrams of an associated 
conformal field theory (governed by the KZ equation), see [Dr], [B-N1] and 
[Ko]. 

In the theory of  finite type invariants of ZHS trivalent graphs appear because 
of  the presence of  the Kirby moves, an intrinsic 3-dimensional property of space. 

Finally, in the notion of  surgical equivalence of links trivalent graphs ap- 
pear because of  the association of Fig. 5 with triple commutators [a, [b, c]] in 
fundamental groups. 

In motivic cohomology, trivalent graphs appear because of  the algebraic fun- 
a l 9 " ~ l  - -  {0, 1, OO}). damental group 7r I t~c  

The use of trivalent graphs, whether they come from the topology of 3- 
dimensional space, or the algebra (commutator groups, or cubic interaction terms 
in path integrals) is a unifying approach, and as such, it can be a source of 
inspiration, or confusion. We will let the reader decide which. 
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