On finite type 3-manifold invariants IV: comparison of definitions
 By STAVROS GAROUFALIDIS
 151 Thayer Street, Department of Mathematics, Brown University, P.O. Box 1917, Providence, RI, 02912-0001, U.S.A.
 e-mail: stavros@math.harvard.edu

and JEROME LEVINE
Department of Mathematics, Brandeis University, Waltham, MA, 02254-9110, U.S.A. E-mail address: levine@binah.cc.brandeis.edu
(Received 19 September 1995; revised 2 April 1996)
Abstract
The present paper is a continuation of [Ga], [GL1] and [GO]. Using a key lemma we compare two currently existing definitions of finite type invariants of oriented integral homology spheres and show that type $3 m$ invariants in the sense of Ohtsuki[Oh] are included in type m invariants in the sense of the first author [Ga]. This partially answers question 1 of $[\mathbf{G a}]$. We show that type $3 m$ invariants of integral homology spheres in the sense of Ohtsuki map to type $2 m$ invariants of knots in S^{3}, thus answering question 2 from $[\mathbf{G a}]$.

1. Introduction

Definitions. We begin by recalling some definitions from [Ga], [GO] and [GL1] and establishing some notation that will be followed in the present paper.

All 3-manifolds considered are oriented integral homology spheres. A link L in an integral homology sphere is called algebraically split (denoted $A S$) if the linking numbers between its components vanish. A link L is called boundary if each component bounds a Seifert surface, and the Seifert surfaces are disjoint from each other. A (integral) framing f for a link L in an integral homology sphere M is a sequence of integers indicating the linking numbers of longitudes of L with the corresponding components. This requires a choice of orientation, but if one gives the longitudes the parallel orientation then the framing number is independent of the choice of orientation. A link is called unit-framed if the framing on each component is ± 1. A framed link (L, f) is called $A S$-admissible (resp. B-admissible) if it is $A S$ (resp. boundary) and unit-framed. Let \mathscr{M} denote the \mathbb{Q}-vector space generated by the diffeomorphism classes of oriented integral homology 3 -spheres. Let

$$
\begin{equation*}
[M, L, f]=\sum_{L^{\prime} \subseteq L}(-1)^{\left|L^{\prime}\right|} M_{L^{\prime}, f^{\prime}} \tag{1}
\end{equation*}
$$

where f denotes a framing of L, f^{\prime} the restriction of f to L^{\prime} and $M_{L, f}$ Dehn surgery on the framed (unoriented) link L in $M .|L|$ denotes the number of components. Let $\mathscr{F}_{n}^{a s} \mathscr{M}$ (resp. $\mathscr{F}_{n}^{b} \mathscr{M}$) be the subspace of \mathscr{M} spanned by all $[M, L, f]$ for $A S$ -
admissible (resp. B-admissible) links L of n components in integral homology spheres M. Obviously $\mathscr{F}_{*}^{a s} \mathscr{M}, \mathscr{F}_{*}^{b} \mathscr{M}$ are decreasing filtrations on \mathscr{M}.

We call a map $v: \mathscr{M} \rightarrow \mathbb{Q}$ a type m invariant of integral homology spheres if $v\left(\mathscr{F}_{m+1}^{a s} \mathscr{M}\right)=0$, see [Oh]. Similarly, we call v a b-type m invariant of integral homology spheres if $v\left(\mathscr{F}_{m+1}^{b} \mathscr{M}\right)=0$, see [Ga]. We denote the space of type m invariants of integral homology spheres by $\mathscr{F}_{m} \mathcal{O}$.

Statement of the results
Theorem 1. For every non-negative integer n we have

$$
\begin{equation*}
\mathscr{F}_{n}^{b} \mathscr{M} \subseteq \mathscr{F}_{3}{ }_{3}^{a s} \mathscr{M} . \tag{2}
\end{equation*}
$$

Corollary 1-1. Type 3 m invariants of integral homology spheres are included in b-type m invariants of integral homology spheres.

Corollary 1•2. Let λ be a type $3 m$ invariant of integral homology spheres and $K a$ $k n o t$ in an integral homology sphere M. Then the map $n \rightarrow \lambda\left(M_{K, 1 / n}\right)$ (defined for every non-zero integer n) is a polynomial in n of degree m.

Theorem 2. We have the following equality of filtrations:

$$
\begin{equation*}
\mathscr{F}_{3 n}^{a s} \mathscr{M}=\bigcap_{k \geqslant 0}\left(\mathscr{F}_{n}^{b} \mathscr{M}+\mathscr{F}_{k}^{a s} \mathscr{M}\right) . \tag{3}
\end{equation*}
$$

Assuming that for every $n \geqslant 0$ there is a $k \geqslant 0$ such that $\mathscr{F}_{k}^{\text {as }} \mathscr{M} \subseteq \mathscr{F}_{n}^{b}{ }^{b} \mathscr{M}$, we obtain $\mathscr{F}_{3 n}^{a s} \mathscr{M}=\mathscr{F}_{n}{ }_{n}^{b} \mathscr{M}$.

Conjecture 1. For every $n \geqslant 0$ there is a $k \geqslant 0$ such that $\mathscr{F}_{k}^{a s} \mathscr{M} \subseteq \mathscr{F}_{n}^{b} \mathscr{M}$.
Recall from $[\mathbf{G a}]$ that there is a well-defined $\operatorname{map} \Phi: \mathscr{F}_{n} \mathcal{O} \rightarrow \mathscr{F}_{n-1} \mathscr{V}$, where $\mathscr{F}_{n-1} \mathscr{V}$ denotes the space of type $n-1$ invariants of knots in S^{3}. In [Ga] asked the question whether Φ descends to a map $\mathscr{F}_{3 n} \mathcal{O} \rightarrow \mathscr{F}_{2 n} \mathscr{V}$. In [GrLi] it was shown that Φ descends to a map $\mathscr{F}_{n} \mathcal{O} \rightarrow \mathscr{F}_{n-2} \mathscr{V}$ if $n \geqslant 4$. In [GL1] we showed that Φ descends to a map $\mathscr{F}_{5 n+1} \mathcal{O} \rightarrow \mathscr{F}_{4 n} \mathscr{V}$. Recently N. Habegger [Ha] gave a positive answer to the question. We will give a different proof along the lines of our argument in [GL1]. We shall first show :

Theorem 3. If L is an AS-admissible link containing a $2 m+1$-component trivial sublink, then $\left[S^{3}, L, f\right] \in \mathscr{F}_{3 m}^{\text {as }} \mathscr{M}$.

As in [GL1], Theorem 3 implies:
Theorem $4[\mathbf{H a}]$. The map Φ above factors through a map:

$$
\begin{equation*}
\mathscr{F}_{3 m} \mathcal{O} \rightarrow \mathscr{F}_{2 m} \mathscr{V} . \tag{4}
\end{equation*}
$$

Question 1. Can every integral homology sphere be obtained by Dehn surgery on a unit-framed boundary link in S^{3} ?

Remark $1 \cdot 3$. It was recently shown by [Au] and [GoLu] that there are integral homology spheres that cannot be obtained by surgery on a knot. A positive answer to Question 1 will be given in forthcoming work of the authors [GL3].

In Section 2 we prove a key Lemma $2 \cdot 1$. In Section $3 \cdot 1$ we give a proof of Theorem 1 and Corollaries $1 \cdot 1$ and $1 \cdot 2$. In Section $3 \cdot 2$ we give a proof of Theorem 2. In Section 4 we give a proof of Theorems 3 and 4.

2. A key lemma

This section is devoted to the proof of the following lemma, which is the key to the proof of Theorems 1 and 3. Note that all links considered in the rest of the paper are unit-framed.

Lemma 2.1. Let L be an AS-admissible link containing a sublink with two components k_{1}, k_{2} which bound discs D_{1}, D_{2} in U so that $D_{1} \cap D_{2}$ is a single arc α in the interior of D_{1} (a ribbon intersection). Suppose U is a ball containing $D_{1} \cap D_{2}$ whose intersection with L is as pictured in Fig. 1. Let L_{α} be the link obtained from K by replacing k_{1} with k_{1}^{\prime}, a small circle in D_{1} about α. See Fig. 2. Then

$$
\begin{equation*}
\left[S^{3}, L, f\right]=\left[S^{3}, L_{\alpha}, f\right]+\text { a linear combination of }\left[S^{3}, L(\nu), f(\nu)\right], \tag{5}
\end{equation*}
$$

where each link $L(\nu)$ contains L as a proper sublink such that $L(\nu)-L \subseteq U$ (we will say such links are subordinate to L).
Proof. Let $L_{\text {twist }}$ be the link obtained from L by replacing $L \cap U$ with Fig. 3. We first show:

Claim 2•2.

$$
\begin{equation*}
\left[S^{3}, L_{\text {twist }}, f\right]=-\left[S^{3}, L, f\right]+2\left[S^{3}, L_{\alpha}, f\right]+\text { a linear combination of }\left[S^{3}, L(\nu), f(\nu)\right], \tag{6}
\end{equation*}
$$

where the $\{L(\nu)\}$ are subordinate to L.
Now apply theorem 5 from [GL1] to the disc D_{1}, where we use three bands. The last two are the ones seen penetrating D_{1} in Fig. 4 and the first one contains all the other strands of $L_{\text {untwist }}$ penetrating D_{1}. Then theorem 5 implies that $\left[S^{3}, L_{\text {untwist }}, f\right]$ is a sum of six terms in which D_{1} is replaced by smaller subdises and others in which D_{1} is replaced by more than one subdisc. These last terms are all subordinate to L. Three of the first six terms are just $\left[S^{3}, L, f\right],\left[S^{3}, L_{\text {twist }}, f\right]$ and $\left[S^{3}, L_{\text {notwist }}, f\right]$, where $L_{\text {notwist }}$ is obtained from $L_{\text {untwist }}$ by replacing D_{1} with a subdisc which only encloses the two penetrations of the third band β. But $\left[S^{3}, L_{\text {untwist }}, f\right]=\left[S^{3}, L_{\text {notwist }}, f\right]=0$ because we can obviously isotop β to miss D_{1} and then k_{2} bounds a disc in the complement of the rest of the link. Two of the remaining three terms are $-\left[S^{3}, L_{\alpha}, f\right]$ and the last term is given by a link obtained from L by replacing D_{1} with a subdisc disjoint from β but intersected by all the other strands of L which intersect D_{1}. As above this term vanishes, since k_{2} bounds a disc in the complement of the rest of the link.

Claim 2•3. $\left[S^{3}, L_{\text {twist }}, f\right]=\left[S^{3}, L, f\right]+$ a linear combination of $\left[S^{3}, L(\nu), f(\nu)\right]$, where the $\{L(\nu)\}$ are all subordinate to L.

Proof of claim 2.3. After an isotopy, $L_{\text {twist }} \cap U$ appears as in Fig. 5. Three crossing changes, from Fig. 5, will convert this into $L \cap U$. These crossing changes are effected by surgeries along three circles. In Fig. 6 we see $L \cap U$ with the three circles added. Thus we conclude that

$$
\begin{equation*}
\left[S^{3}, L_{\text {twist }}, f\right]=\left[S^{3}, L, f\right]+\text { a linear combination of }\left[S^{3}, L(\nu), f(\nu)\right], \tag{7}
\end{equation*}
$$

where the $L(\nu)$ consist of L together with one or more of the extra circles in Fig. 6.
Obviously Lemma $2 \cdot 1$ follows from Claims $2 \cdot 2$ and $2 \cdot 3$.

Fig. 1. Shown here is the intersection of L with U. Note that $k_{i}=\partial D_{i}$ for $i=1,2$ and that the discs D_{1} and D_{2} intersect in a ribbon arc α.

Fig. 2. Shown here is the intersection of U with the link L_{α} obtained by changing k_{1} to k_{1}^{\prime}. Note that $L_{\alpha}-L \subseteq U$.

Fig. 3. Shown here is the intersection of U with the link $L_{\text {twist. }}$. Note that $L_{\text {twist }}-L \subseteq U$.

Fig. 4. Shown here is the intersection of U with the link $L_{\text {untwist. }}$. Note that $L_{\text {untwist }}-L \subseteq U$.

Fig. 5. Shown here is the result of an isotopy fixing the boundary of the intersection of U with the link $L_{\text {twist }}$. Note that $L_{\text {twist }}-L \subseteq U$. Also circled are 3 crossings to be changed.

Fig. 6. Yet another intersection of U with a link.

3. Proof of Theorems 1 and 2

This section is devoted to the proof of Theorems 1 and 2.
3•1. Proof of Theorem 1. We divide the proof of Theorem 1 into 6 steps. We begin

Fig. 7. A relation in \mathscr{M}. Here an unknot circles the same component of a link, with linking number zero.

Fig. 8. A surface of genus 2 (and 4 bands) whose boundary is an unknot.
with some definitions. A pair of links $\left(L, L_{b}\right)$ is called n-boundary if L_{b} is a sublink of $L \subseteq S^{3}$ and L_{b} is a boundary n component link in the complement of $L-L_{b}$. The goodness $k\left(L, L_{b}\right)$ of an n-boundary pair is the number of components of $L-L_{b}$. The genus $g\left(L, L_{b}\right)$ of an n-boundary pair $\left(L, L_{b}\right)$ is the minimal total genus of disjoint Seifert surfaces of L_{b} in the complement of $L-L_{b}$.
Step 1. $\mathscr{F}_{n}^{b} \mathscr{M}$ is generated by elements of the form $\left[S^{3}, L, f\right]$ for all n-boundary pairs $\left(L, L_{b}\right)$.
Proof. Let $\overline{\mathscr{F} b}{ }_{n}^{b} \mathscr{M}$ denote the subspace spanned by all $\left[S^{3}, L, f\right]$ for all n-boundary pairs $\left(L, L_{b}\right)$. We first show $\mathscr{F}_{n}^{b} \mathscr{M} \subseteq \mathscr{\mathscr { F }}_{n}^{b} \mathscr{M}$. Let L be an n-component boundary link in an integral homology sphere M. Write $M=S_{L, \delta}^{3}$ for an algebraically split unitframed link L^{\prime} in S^{3}. Since L is an n-component boundary link in M, we can assume that L bounds Seifert surfaces Σ such that $\Sigma \cap L^{\prime}$ is empty (here we mean by L^{\prime} the corresponding tubes of M). Thus $L \cup L^{\prime}$ becomes a link in S^{3} and $\left(L \cup L^{\prime}, L\right)$ is an n boundary pair. We now proceed by upward induction on the number of components $\left|L^{\prime}\right|$ of L^{\prime}. If L^{\prime} is empty, we are done by definition. Otherwise, using (1) we get

$$
\begin{equation*}
\left[S^{3}, L \cup L^{\prime}, f \cup \delta\right]= \pm[M, L, f]+\sum_{L^{\prime \prime} \neq L^{\prime}} \pm\left[S_{L^{\prime}, \delta^{\prime}}^{3}, L, f\right] \tag{8}
\end{equation*}
$$

By induction, all the terms in the summation on the right-hand belong to $\overline{\mathscr{F}_{n}^{b} \mathscr{M}}$ and so we conclude that $[M, L, f]$ does also.
The fact that $\overline{\mathscr{F}}{ }_{n}^{b} \mathscr{M} \subseteq \mathscr{F}_{n}^{b} \mathscr{M}$ is an immediate consequence of (8). I
Let $\left(L, L_{b}\right)$ be an n-boundary pair. We want to show that $\left[S^{3}, L, f\right] \in \mathscr{F}_{3 n}^{a s} \mathscr{M}$. We proceed by primary downward induction on the goodness $k\left(L, L_{b}\right)$, and secondary upward induction on the genus $g\left(L, L_{b}\right)$. If $k\left(L, L_{b}\right) \geqslant 2 n$ we are done by definition. If $g\left(L, L_{b}\right)=0$ we are also done, since $\left[S^{3}, L, f\right]=0$.
Step 2. We may assume that the components of $L-L_{b}$ are all unknotted.
Proof. This can be achieved by crossing changes in $L-L_{b}$ and, since this is the result of $a \pm 1$-surgery along a small circle C enclosing the crossing, the change to [S^{3}, L, f] is given by an element [$S^{3}, L \cup C, f \cup \pm 1$]; see Fig. 7. Since $\left(L \cup C, L_{b}\right)$ remains an n-boundary pair, whose goodness is one more than the goodness of $\left(L, L_{b}\right)$, it follows by the primary inductive hypothesis that $\left[S^{3}, L \cup C, f \cup \pm 1\right] \in \mathscr{F}_{3 n}^{a s} \mathscr{M}$. I
Step 3. Suppose that $L_{b}=\partial \Sigma_{b}$, where Σ_{b} is a union of Seifert surfaces in the complement of $L-L_{b}$. We may assume that Σ_{b} is embedded in a standard, almost planar (except for the necessary band crossings) way; see Fig. 8.

Proof. This can be achieved by band crossing changes, which are the result of a ± 1-surgery along a circle enclosing the band crossing. This surgery will introduce

Fig. 9. A few more identities in \mathscr{M}.

Fig. 10. A band of a surface penetrating two pieces of discs.

Fig. 11. An intersection of a dise with the surface Σ_{b}.
some extra twists into the bands, but further surgery along circles enclosing these twists will remove them; see Fig. 9. As in step 2, the changes to $\left[S^{3}, L, f\right]$ are linear combinations of $\left[S^{3}, L^{\prime}, f^{\prime}\right]$ for n-boundary pairs (L^{\prime}, L_{b}) with strictly higher goodness than that of $\left(L, L_{b}\right)$. By appealing to the primary inductive hypothesis, the changes to $\left[S^{3}, L, f\right]$ lie in $\mathscr{F}_{3 n}^{a s} \mathscr{M}$. I

Let $\left\{K_{i}\right\}$ denote the components of $L-L_{b}$. Since by step 2 they are unknotted, we may choose embedded dises D_{i} so that $K_{i}=\partial D_{i}$. Furthermore, since Σ_{b} is just a thickening of a wedge of circles, we may choose the D_{i} so that their intersections with Σ_{b} consist of a number of transverse penetrations of the interiors of the D_{i} by the bands of Σ_{b}; see Fig. 10. We will be interested in counting the number of 'band penetrations'.

Step 4. We may assume that every band of Σ_{b} penetrates at least one D_{i}.
Proof. Suppose that a band β from one of the components Σ of Σ_{b} penetrates no D_{i}. We will show how to replace Σ by a surface of lower genus and then appeal to the secondary inductive hypothesis. This will also involve a number of changes to L, but using the primary inductive hypothesis each of these changes will only be by an element of $\mathscr{F}_{3}{ }_{3}^{a s}, \mathscr{M}$.

Let C be the circle in Σ which goes once around the band β. C bounds an obvious disc in the plane containing Σ. We push this dise slightly off the plane (except on C) to obtain a disc D such that $D \cap \Sigma=\varnothing$ and $\partial D=C$. Now, since $C \cap \cup_{i} D_{i}=\varnothing$, $D \cap \cup_{i} D_{i}$ consists of circles and interior arcs; see Fig. 11. If $D \cap \cup_{i} D_{i}=\varnothing$, then we can perform a surgery on σ along D to obtain the desired surface of lower genus. Thus we only have to see how to remove these intersections. We claim that we can first remove the arc intersections and then (by using an innermost circle argument) remove the circle intersections. In fact we only have to remove the arcs since it is only necessary that $D \cap\left(L-L_{b}\right)=\varnothing$. Suppose α is an arc and a component of $D_{j} \cap D$. We

Fig. 12. In the left side of this picture is shown a band β that does not penetrate any of the discs D_{i} its associated circle C. The disc which the circle C bounds intersects the union $U_{i} D_{i}$ as shown in the lower part of the left-hand side. After a band change move, shown on the right-hand side, we can arrange so that the new disc of the new circle has one less band intersection with the union of the dises $U_{i} D_{i}$.
can perform an isotopy of D_{j} to move α adjacent to the boundary C of D. This may require α to cross some circle components of $D \cap \cup D_{i}$ which means that D_{j} may cut through some D_{i} during the isotopy. If $i=j$ the result will be that D_{j} is now only immersed, but this will not be important. We have only a regular homotopy of D_{j} but still an isotopy of K_{j}. Now a neighbourhood of α in D_{j} is a band which is adjacent to the band β. If we change this band crossing, the result will be to eliminate α. As above, this crossing change can be produced by a ± 1-surgery on a small circle enclosing the two bands and so the change in $\left[S^{3}, L, f\right]$ is, by primary induction, an element of $\mathscr{F}_{3 n}^{\text {as }} \mathscr{M}$. Note that we have not changed Σ. See Fig. 12.

Step 5. We may assume that each disc D_{i} has at most two band penetrations.
Proof. We want to apply theorem 5 of [GL1], to every disc D_{i}. The bands in theorem 5 are all but one the bands of Σ_{b} penetrating D_{i} and the remaining band consists of all the strands of $L-L_{b}$ penetrating D_{i}. Thus $\left[S^{3}, L, f\right]$ is a sum of elements in which D_{i} is replaced by one or more discs inside D_{i} containing no more than two bands of Σ_{b}. Thus $L-L_{b}$ is changed, but not Σ_{b} and so the change in $\left[S^{3}, L, f\right]$ comes from n-boundary pairs of higher goodness than $\left(L, L_{b}\right)$, and thus lie in $\mathscr{F}_{3 n}^{a s} \mathscr{M}$, by the primary inductive hypothesis.

Let $\left\{\Sigma_{j} \mid 1 \leqslant j \leqslant n\right\}$ denote the connected components of Σ_{b}.
Step 6. We may assume that if Σ_{j} has genus one and a band of Σ_{j} penetrates only one disc D_{i} then D_{i} is penetrated by no other band of Σ_{b}.

Proof. Suppose one of the bands β of \sum_{j} penetrates D_{i} once. Let L_{β} be defined from L by replacing k_{i} with a small meridian circle about β. Then Step 6 will be confirmed by:

Claim 3•1. We have:

$$
\begin{equation*}
\left[S^{3}, L, f\right]=\left[S^{3}, L_{\beta}, f\right] \bmod \mathscr{F}_{3 n}^{a s} \mathscr{M} \tag{9}
\end{equation*}
$$

Proof of Claim $3 \cdot 1$. This claim follows from Lemma $2 \cdot 1$ as follows. We can draw $L \cap U$, where U is a ball containing Σ_{j}, as in Fig. 13. If we expunge Σ_{j} from the picture we have exactly the situation in Figs. 1 and 2 of Lemma $2 \cdot 1$. If we put Σ_{j} back into any of the $L(\nu)$ of Lemma $2 \cdot 1$, we see that it may intersect the additional components

Fig. 13. An intersection of L with U. Shown also is the genus 1 surface Σ_{j}.
of $L(v)$. However, we can add tubes to Σ_{j} to eliminate these intersections and, since none of other Σ_{i} intersect U, we may conclude from Lemma $2 \cdot 1$ that

$$
\begin{equation*}
\left[S^{3}, L, f\right]=\left[S^{3}, L_{\beta}, f\right]+\text { a linear combination of }\left[S^{3}, L(\nu), f(\nu)\right] \tag{10}
\end{equation*}
$$

where each of the pairs $\left(L(v), L_{b}\right)$ are n-boundary with strictly higher goodness than that of $\left(L, L_{b}\right)$. By the primary inductive hypothesis, we conclude the proof of Claim $3 \cdot 1$.

We can now complete the proof of Theorem 1. We define:
$r_{2}=$ number of D_{i} penetrated by two bands,
$r_{1}=$ number of D_{i} penetrated by one band,
$m_{2}=$ number of \sum_{j} of genus >1,
$m_{1}=$ number of Σ_{j} of genus $=1$,
$p=$ number of bands of surfaces of genus one penetrating only one disc.
Obviously $k \geqslant r_{1}+r_{2}$ and $n=m_{1}+m_{2}$. By Step 5, the total number of band penetrations is $2 r_{2}+r_{1}$. From Step 4 we thus conclude $2 r_{2}+r_{1} \geqslant 4 m_{1}+4 m_{2}-p$ and, by Step 6 , we have $r_{1} \geqslant p$. Adding these two equations together gives $2 r_{1}+2 r_{2} \geqslant 4 m_{1}+4 m_{2}$ and so $k \geqslant r_{1}+r_{2} \geqslant 2 m_{1}+2 m_{2}=2 n$. This concludes the proof of Theorem 1 .

Proof of Corollary $1 \cdot 1$. If $v: \mathscr{M} \rightarrow \mathbb{Q}$ is of type $3 m$, then $v\left(\mathscr{F}_{3 m+1}^{a s} \mathscr{M}\right)=0$, and therefore, by Theorem $1, v\left(\mathscr{F}_{m+1}^{b} \mathscr{M}\right)=0$.

Proof of Corollary 1•2. It follows by Exercise $4 \cdot 2$ of [Ga], using the remark that the j-fold parallel (with zero framing) ${ }^{1}$ of a knot K in a integral homology sphere M is a boundary link of j components.
3.2. Proof of Theorem 2. The proof will use the $A S$ and $I H X$ relations on \mathscr{M} proved in [GO]. We recall the notation and terminology from [GO]. A Chinese manifold character is a trivalent graph with vertex orientation. The degree of a Chinese manifold character is the number of edges of it. Let $\mathscr{C} \mathscr{M}$ denote the vector space on the set of Chinese manifold characters and let $\mathscr{B} \mathscr{M}$ be the quotient space $\mathscr{C} \mathscr{M} /\{A S$, $I H X\}$, where we quotient by the $A S$ and the $I H X$ relations of [GO]. Note that $\mathscr{B} \mathscr{M}$ is a graded (and therefore a filtered) space. In general, for a filtered space \mathscr{F}_{*} space, we denote the associated graded space by \mathscr{G}_{*} space. Examples of filtered spaces that we will consider here are $\mathscr{B} \mathscr{M}$ and $\mathscr{F}_{*}^{\text {as }} \mathscr{M}$. With this notation and terminology, we recall the following theorem from [GO]:

Theorem 5 [GO]. There is an onto $\operatorname{map} O_{m}^{*}: \mathscr{G}_{m} \mathscr{B} \mathscr{M} \rightarrow \mathscr{G}_{m}^{a s} \mathscr{M}$.
${ }^{1}$ We thank the referee for suggesting to us the term 'parallel'.

We need:
Lemma 3.2. Let $\Gamma \in \mathscr{G}_{3 m} \mathscr{B} \mathscr{M}$ be a Chinese manifold character of $3 m$ edges. Then $O_{3 m}^{*}(\Gamma) \in \mathscr{G}_{3 m}^{a s} \mathscr{M}$ actually lies in $\mathscr{F}_{m}^{b} \mathscr{M}$.

Proof. Choose a circuit in Γ (that is a sequence of edges, the beginning of which is the end of the previous, such that the end of the last is the beginning of the first, and such that the edges in the sequence are distinct). Colour the edges of the circuit red. Thinking of the red coloured edges of Γ as the external circle, and using repeatedly the IHX relation of $[\mathbf{G O}]$, we can write $O_{m}^{*}(\Gamma)$ as a linear combination of values (under O_{m}^{*}) of chord diagrams based on the red circle. By counting degrees, we see that each of the above-mentioned chord diagrams have m chords. Now using Lemma $3 \cdot 4$ from $[\mathrm{Ga}]$ we see that the pair (O_{m}^{*} (chord diagram), O_{m}^{*} (m-chords)) is an m boundary pair, from which our conclusion follows.

Proof of Theorem 2. We can now finish the proof of Theorem 2 as follows. Theorem 5 and Lemma $3 \cdot 2$ show that $\mathscr{F}_{3 n}^{a s} \mathscr{M}=\mathscr{F}_{n}^{b} \mathscr{M}+\mathscr{F}_{3 n+1}^{a s} \mathscr{M}$. Iterating this equation we obtain (3), as required.

4. Proof of Theorem 3

Let (L, f) be an $A S$-admissible link containing a trivial sublink $L_{\text {trivial }}$ of $2 m+1$ components. We will use downward induction on the number r of components of $L-L_{\text {trivial }}$ to show first that $\left[S^{3}, L, f\right] \in \mathscr{F}_{3 m+2}^{a s} \mathscr{M}$. Obviously if $r \geqslant m+1$ we are done. We refer the reader to the proof of theorem 7 in [GL1] for the first part of the argument. Let us denote the components of $L_{\text {trivial }}$ by $\left\{L_{i}\right\}_{i=1}^{2 m}$. Then $L_{i}=\partial D_{i}$, where the $\left\{D_{i}\right\}$ are disjoint dises. We showed in [GL1] that we may assume that $L-L_{\text {trivial }}$ consists of components $\left\{l_{k}\right\}$ such that each l_{k} is either of the form $\sigma_{i j}, i \neq j$ (where $\sigma_{i j}$ is pictured in Fig. 15 of [GL1]) or a band sum of two $\sigma_{i j}$. We will refer to l_{k} as simple in the former and composite in the latter case. Note that $\sigma_{i j}$ intersects the discs D_{i} and D_{j}, but no others. We will say that L_{i} is k-special if the only component l_{s} of $L_{\text {trivial }}$ intersecting D_{i} is l_{k}, and if $l_{k}=\sigma_{i j} \# \sigma_{r s}$ then $i \neq r, s$.

We now use Lemma $2 \cdot 1$ to make an important observation.
Claim $4 \cdot 1$. We may assume that if L_{i} is k-special then l_{k} is simple.
Proof. Suppose that l_{k} is composite. Then there is a ball U which intersects L as in Fig. 13. But we can redraw this so that it looks like Fig. 1 of Lemma 2•1, with the two component distinguished sublink $\left(l_{k}, L_{i}\right)$ of L (substituted for $\left(k_{1}, k_{2}\right)$ in Lemma $2 \cdot 1)$. For the subordinate links $L(\nu)$ of Lemma $2 \cdot 1$, we see that $\left[S^{3}, L(\nu), f(\nu)\right] \in \mathscr{F}_{3 m}^{o}, \mathscr{M}$ by induction. Thus, using Lemma $2 \cdot 1$, we can assume that each l_{k} is simple.

We now complete the proof of Theorem 3 by a counting argument. We define:

$$
\begin{aligned}
a & =\text { number of simple } l_{k}, \\
b & =\text { number of composite } l_{k}, \\
c & =\text { number of } k_{i} \text { which are } k \text {-special for some } k, \\
2 m & =\left|L_{\text {trivial }}\right|, \\
d & =2 m+1-c, \\
r & =\left|L-L_{\text {trivial }}\right| .
\end{aligned}
$$

Obviously $r=a+b$. As pointed out in [GL1], we may as well assume that every D_{i} is intersected by at least one l_{k} (or else $\left[S^{3}, L, f\right]=0$). Counting intersections of the $\left\{l_{k}\right\}$ with the $\left\{D_{i}\right\}$, we have $2 a+4 b \geqslant c+2 d$. From Claim $4 \cdot 1$ we obtain the inequality $2 a \geqslant c$. Adding these last two inequalities we get $4 a+4 b \geqslant 2 c+2 d$ or $2 r \geqslant 2 m+1$ or else $r \geqslant m+1$.

This concludes the proof that $\left[S^{3}, L, f\right] \in \mathscr{F}_{3 m+2}^{a s} \mathscr{M}$. Using corollary $3 \cdot 5$ of [GL1] (see also corollary $1 \cdot 6$ of $[\mathbf{G O}]$) we deduce that $\mathscr{F}_{3 m+2}^{a s} \mathscr{M}=\mathscr{F}_{3 m}^{a s} \mathscr{M}$, which concludes the proof of Theorem 3.

Proof of Theorem 4. This follows verbatim as in proposition $3 \cdot 9$ of [GL1], using Theorem 3 of the present paper.

Acknowledgements. We wish to thank D. Bar-Natan for many useful conversations.

REFERENCES

[Au] D. Auckly. An irreducible homology sphere which is not Dehn surgery on a knot, preprint.
[B-N1] D. Bar-Natan. On the Vassiliev knot invariants. Topology 34 (1995), 423-472.
[Ga] S. Garoufalidis. On finite type 3-manifold invariants I, to appear in J. Knot Theory and its Ramifications.
[GL1] S. Garoufalidis and J. Levine. On finite type 3-manifold invariants II, to appear in Math. Annalen.
[GL3] S. Garoufalidis and J. Levine. Finite type 3-manifold invariants, the Torelli group and blinks, preprint.
[GO] S. Garoufalidis and T. Ohtsuki. On finite type 3-manifold invariants III: manifold weight systems, preprint.
[GoLu] C. Gordon and J. Luecke. Knots are determined by their complement. Journal A.M.S. 22 (1989), 371-415.
[GrLi] M. Greenwood and X.-S. Lin. On Vassiliev knot invariants induced from finite type 3 -manifold invariants, preprint.
[Ha] N. Habegger. Finite type 3 -manifold invariants: a proof of a conjecture by S. Garoufalidis, preprint.
[Oh] T. Ohtsuki. Finite type invariants of integral homology 3-spheres. J. Knot Theory and its Ramifications. 5 (1996), 101-115.

