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RESURGENCE OF THE KONTSEVICH-ZAGIER
SERIES

by Ovidiu COSTIN & Stavros GAROUFALIDIS (*)

Abstract. — The paper is concerned with the resurgence of the Kontsevich-
Zagier series

f(q) =
∞∑

n=0

(1 − q) . . . (1 − qn)

We give an explicit formula for the Borel transform of the power series when
q = e1/x from which its analytic continuation, its singularities (all on the positive
real axis) and the local monodromy can be manifestly determined. We also give
two formulas (one involving the Dedekind eta function, and another involving the
complex error function) for the right, left and median summation of the Borel
transform. We also prove that the limiting values of the median sum at rational
multiples of 1/(2πi) coincide with the values of f(q) at the corresponding complex
roots of unity. Our resurgence theorem extends more generally to the power series
of torus knots and Seifert fibered 3-manifolds associated by Quantum Topology.
Résumé. — L’article porte sur la série de Kontsevich-Zagier

f(q) =
∞∑

n=0

(1 − q) . . . (1 − qn)

Nous donnons une formule explicite pour sa transformée de Borel lorsque q =
e1/x, d’où son prolongement analytique, ses singularités (toutes sur l’axe des réels
positifs) et la monodromie locale peuvent être déterminés. Nous donnons également
deux formules (l’une impliquant la fonction éta de Dedekind, et l’autre impliquant
la fonction d’erreur complexe) pour la sommation à droite, à gauche et médiane
de la transformée de Borel. Nous démontrons aussi que les valeurs limites de la
somme médiane, aux multiples rationnels de 1/(2iπ), coïncident avec les valeurs de
f(q) aux racines complexes de l’unité. Notre théorème s’étend plus généralement à
la série entière des noeuds du tore et les 3-variétés fibrées de Seifert associées par
la topologie quantique.

Keywords: resurgence, analytic continuation, Borel summability, analyzability, asymp-
totic expansions, transseries, Zagier-Kontsevich power series, strange identity, trefoil,
Poincare homology sphere, Habiro ring, Laplace transform, Borel transform, knots, 3-
manifolds, quantum topology, TQFT, perturbative quantum field theory, Gevrey series,
resummation.
Math. classification: 57M27, 40D99.
(*) The authors were supported in part by NSF.
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1. Quantum invariants of knotted objects and their
puzzles

1.1. Introduction

The paper is concerned with the Kontsevich-Zagier formal power series

(1.1) f(q) =
∞∑
n=0

(1− q) . . . (1− qn)

and its analytic properties. To begin with, we give an explicit formula
for the Borel transform of the associated formal power series F (x) =
e−1/(24x)f(e−1/x) from which its analytic continuation, its singularities and
their structure can be manifestly determined. This gives rise to right/left
and median summation of the original power series. These sums, which
are well-defined in the open right half-plane are expressed by an integral
formula involving the Dedekind eta function. The median sum can also
be expressed as a series involving complex error functions. Moreover, it is
shown using results of Zagier that the limiting values at −1/(2πiα) for ra-
tional numbers α coincide with F (−1/(2πiα)). One motivation for studying
the series f(q) is Quantum Topology, which assigns numerical invariants
to knotted 3-dimensional objects. Our results encourage us to formulate a
resurgence conjecture for the formal power series of knotted objects, which
we prove in the case of the trefoil knot and the Poincaré homology sphere,
and more generally for torus knots and Seifert fibered 3-manifolds. In a
subsequent publication we will study resurgence for a class of geometri-
cally interesting knotted 3-dimensional objects that include the simplest
hyperbolic 41 knot.

1.2. Numerical invariants of knotted 3-dimensional objects

Perturbative quantum field theory assigns numerical invariants (such as
formal power series invariants) to knotted objects. These formal power
series, although they are given by explicit formulas, are typically factorially
divergent, and somehow they are linked to numerical invariants of knotted
objects, such as the Witten-Reshetikhin-Turaev invariants of 3-manifolds
and the Kashaev invariants of knots.

These numerical invariants have poor analytic behavior, satisfy no known
differential equations (linear or not) and the existence of asymptotic expan-
sions is a difficult and interesting analytic problem.

ANNALES DE L’INSTITUT FOURIER



RESURGENCE OF THE KONTSEVICH-ZAGIER SERIES 1227

In our paper, we formulate a resurgence conjecture for the formal power
series invariants, and show how resurgence solves the numerous analytic
problems, and implies the existence of asymptotic expansions, and even
the presence of exponentially small corrections.

The bulk of our paper consists of a proof of our resurgence conjecture
for the case of the simplest non-trivial knot, the trefoil (31), and one of
the simplest closed 3-manifolds, the Poincaré homology sphere. Our results
extend without change to torus knots and Seifert fibered integer homology
spheres.
En route, we explain the important notion of resurgence, due to Écalle,

in a self-contained manner.
In a subsequent publication, we will show resurgence of power series

associated to a class of geometrically interesting knoted objects, such as
the simplest hyperbolic 41 knot; see [5, 4]. For a detailed discussion of
conjectures, see also [11].

1.3. TQFT invariants of knotted objects

Let us begin by recalling some of the numerical invariants of knotted ob-
jects. The reader who wishes to focus on the results, may skip this section,
and go directly to Theorem 1.5 and Section 2.3.

Topological Quantum Field Theory (TQFT in short) assigns numeri-
cal invariants to knotted 3-dimensional objects. The invariants of knots/3-
manifolds depend on some additional data, such as a complex root of unity
ω. We will denote the numerical invariants by φK(ω) where K denotes a
knotted object, that is, a knotK in 3-space or an integer homology 3-sphere
M . In other words, we have a map:

(1.2) φ : Knotted objects −→ CΩ

where Ω denotes the set of complex roots of unity. The invariant φM is
the Witten-Reshetikhin-Turaev invariant of the closed 3-manifold M ; see
[32, 33, 34, 35]. The invariant φK(e2πi/N ) is the Kashaev invariant of a
knot K in 3-space; see [20]. Murakami-Murakami showed that φK(e2πi/N )
is also equal to the value 〈K〉N of the N -th colored Jones polynomial of K
(normalized to be 1 at the unknot), evaluated at the N -th complex root of
unity e2πi/N ; see [28].

The following problem was formulated by Witten (for closed 3-manifolds)
and by Kashaev (for knots).

TOME 61 (2011), FASCICULE 3



1228 Ovidiu COSTIN & Stavros GAROUFALIDIS

Problem 1.1. — Show the existence of asymptotic expansions of the
sequence (φK(e2πi/N )), and identify the leading terms with known geomet-
ric invariants; see [35, 20].

Unfortunately, the complex-valued function φK, defined on the set of
complex roots of unity, does not seem to extend to a continuous function
on the unit circle. Moreover, its asymptotic expansion around a complex
root of unity is unknown, and seems to be a difficult analytic problem.

1.4. Perturbative TQFT invariants of knotted objects

There is an additional formal power series invariant of knotted objects:

(1.3) F : Knotted objects −→ Q[[1/x]]

which is usually thought of as a perturbative expansion of the quantum
invariants φK. For a homology sphere M , FM (x) is the well-known Le-
Murakami-Ohtsuki invariant (composed with the sl2 weight system); see
for example [23] and [22]. For a knotK, FK(x) is the Taylor series expansion
at q = e−1/x of a reformulation of the Kashaev invariant due to Huynh-Le,
[18]. In other words, we may write:

(1.4) FK(x) =
∞∑
n=0

aK,n
1
xn
∈ Q[[1/x]].

For every knotted object K, the series FK(x) is known to be Gevrey-1 (see
[12]) and in general it is expected to be divergent.

Problem 1.2. — Show the existence of asymptotic expansions of the
sequence (aK,n), and identify the leading terms with known geometric in-
variants.

Thus, we have two types of invariants of a knotted object K:
(a) the function φK : Ω −→ C, and
(b) the power series FK(x).

Using suitable arithmetic completions, in [14, 15] Habiro proves that either
one of the following invariants: FK(x), φK, the sequence (φK(e2πi/n)), the
sequence (aK,n), determines the other. We should point out that Habiro’s
proof is in a sense transcendental, of arithmetic nature. For example, finitely
many terms of the sequence (aK,n) cannot determine φK(e2πi/3).

Problem 1.3. — Give an analytic proof of Habiro’s result.

ANNALES DE L’INSTITUT FOURIER
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Summarizing, we have the following problems:
Knotted Objects

ledomcirtemoeGledomlamroF

Asympt.Expansions

F φ

?

? ?

1.5. A resurgence conjecture

Despite the apparent analytic difficulties of the series (1.1) when q is
inside or outside the unit circle, and the apparent factorial divergencies,
there seems to be sufficient order and regularity. Our starting point is the
formal power series FK(x). Let us state the conjecture here, and explain
the terms a little later. For further discussion, see also [11].

Conjecture 1.4. — For every knotted object K,
(a) the series FK(x) has resurgent Borel transform,
(b) the median sum Smed

K of FK(x) is an analytic function defined on
the right half-plane <(x) > 0, with radial limits at the points 1

2πiQ
of its natural boundary.

(c) Moreover, for α ∈ 1
2πiQ, α 6= 0, we have:

(1.5) Smed
K

(
− 1
α

)
= φK(α).

Our next result shows how resurgence answers the three problems men-
tioned above. To state it, recall some standard notation from asymptotic
analysis. For a function f(x) defined a right-hand plane <(x) > 0, the
notation

(1.6) f(x) = O

(
1
xN

)
means that there exist positive constants C andM so that |f(x)| < C/|x|N
for all x with <(x) > 0, |x| > M . Furthermore, we say that f(x) is asymp-
totic in the sense of Poincaré to a formal power series f̂(x) =

∑∞
k=0 ck/x

k

(and write f(x) ∼ f̂(x)) iff for every N ∈ N we have:

(1.7) f(x)−
N−1∑
k=0

ck
xk

= O

(
1
xN

)
.

TOME 61 (2011), FASCICULE 3



1230 Ovidiu COSTIN & Stavros GAROUFALIDIS

Theorem 1.5. — Assuming Conjecture 1.4, it follows that
(a) In the interior <(x) > 0,

(1.8) Smed
K (x) ∼ FK(x)

for large x.
(b) There exist transseries expansions for the sequence (aK,n) and for

the sequence Smed
K (n/(2πi)).

(c) FK(x) determines φK and vice-versa.

For a definition of a transseries and a proof, see Section 7. Schematically,
Conjecture 1.4 implies the following:

ledomcirtemoeGledomlamroF

Convolutive model

Transseries Expansions

Asympt.Expansions

Borel transform Laplace transform

Thus, our Resurgence Conjecture 1.4 solves at once Problems 1.1, 1.2
and 1.3 from Sections 1.3 and 1.4.

As a step towards Conjecture 1.4, in [12] Le and the first author show
that FK(x) is a Gevrey power series.

Aside from the applications in Quantum Topology, the conjectured resur-
gent series in Conjecture 1.4 seem to have a different origin than differen-
tial equations. Getting a little ahead of us, the resurgent function (2.8)
below does not satisfy any linear or nonlinear differential equation with
polynomial coefficients, as follows from the structure of its singularities.
Resurgence seems to come from the knotted objects themselves, their com-
binatorial encodings and the exact quantum field theory invariants. This
will be investigated further in a subsequent publication.

2. Testing Conjecture 1.4

2.1. The Zagier-Kontsevich power series

In the present paper we will verify the conjecture for the simplest non-
trivial knot: the trefoil 31 (and also for the Poincaré Homology sphere;

ANNALES DE L’INSTITUT FOURIER



RESURGENCE OF THE KONTSEVICH-ZAGIER SERIES 1231

see A). Consider the Kontsevich-Zagier formal power series

(2.1) f(q) =
∞∑
n=0

(q)n,

where the q-factorial (q)n is defined by

(q)n = (1− q) . . . (1− qn)

for n > 0 with (q)0 = 1. Although f(q) is not an analytic function of q
inside or outside the unit circle, it has a Taylor series for q = 1, as well as
evaluations at complex roots of unity. With the notation of Section 1.4, we
have:

F31(x) = e−1/xf(e−1/x).
with f(q) given in (2.1). The power series f(q) appears in the beautiful
paper of Zagier (see [36]), and was also considered by Kontsevich in a talk
at the Max-Planck-Institut für Mathematik in October 1997. Our basic
object of study will be a modified version of F31(x), namely,

(2.2) F (x) = e−1/(24x)f(e−1/x) ∈ Q[[1/x]]

with f(q) given in (2.1).

2.2. Three models of resurgence in a nutshell

Before we proceed, we need to explain resurgence, the key aspect of Con-
jecture 1.4. Resurgence was introduced and studied by Écalle, see [9]. The
input of resurgence are formal power series and the ouptut are constructible
analytic functions in suitable domains, which are asymptotic to the original
formal power series. For an extended introduction to resurgence, the reader
may also consult [8, 7].

The idea of resurgence is summarized in the following diagram:
F (x) ∈ C[[1�x]] Lm(x)

(BF )(p)↪ p = o(1) (BF )(p) multivalued (mBF )(p) distribution inR+

S

B

anal. cont. averaging

L

and its shorthand version:

ledomcirtemoeGledomlamroF

Convolutive model

S

B L

TOME 61 (2011), FASCICULE 3



1232 Ovidiu COSTIN & Stavros GAROUFALIDIS

Let us explain the terminology here.
• The input is a Gevrey-1 formal power series F (x) =

∑∞
n=0 anx

−n.
That is, a formal power series such that there exist constants C,C ′ >
0 so that

|an| 6 C ′Cnn!(2.3)

for all n ∈ N.
• The Borel transform B is defined by

(2.4) B : C[[ 1
x

]] −→ C[[p]], B

( ∞∑
n=0

an
1
xn

)
=
∞∑
n=0

an+1
pn

n!

In other words,

B(x−n−1) = pn

n!
If the series F (x) is Gevrey-1, it follows that (BF )(p) is an analytic
function in a neighborhood of p = 0.

• The two horizontal arrows endlessly analytically continue (BF )(p)
in the complex plane, minus a discrete set N of singularities, as a
multivalued function. In case the set N of singularities of (BF )(p)
is a subset of the real line, one obtains a distribution (mBF )(p)
on the positive real axis R+ by means of an averaging m. This is
explained in detail in Section 4.2.

• The vertical arrow is the Laplace transform defined by

LmBF : {x <(x) > c} −→ C, (LmBF )(x) =
∫ ∞

0
e−xp(mBF )(p)dp

under suitable hypothesis on the growth-rate of (mBF )(p) for large
p.

• The final horizontal arrow is the generalized Borel transform which
remembers the constant term of F (x) and is defined by

(2.5) Sm(F )(x) = a0 + (LmB)(F ).

The result is an analytic function defined in a right half-plane.

Definition 2.1. — When the above process can be completed, we say
that

• the formal power series F (x) ∈ Q[[1/x]] is generalized Borel sum-
mable, (and belongs to the formal model)

• its Borel transform G(p) is resurgent, (and belogs to the convolutive
model)

ANNALES DE L’INSTITUT FOURIER
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• the resulting function Sm(F )(x) is analyzable (and belongs to the
geometric model).

In what follows, given a generalized Borel summable series F (x), we will
denote by G(p) its Borel transform, and by Sm its summation with respect
to m.

Why is this a reasonable definition? An answer is given in the following
proposition. For a proof, see [9] and also the exposition in [8, 7, 1, 2, 25, 31].

Proposition 2.2. — (a) Generalized Borel summation Sm(x) coincides
with F (x) in case F (x) is analytic in a neighborhood of x =∞:

F (x) = Sm(x)

This follows from the following computation

x−n−1 =
∫ ∞

0
e−px

pn

n! dp,

(valid for x ∈ C with <(x) > 0, and n ∈ N) and the fact that if F (x)
is analytic in a neighborhood of x = ∞, then its Borel transform G(p) is
an entire function of exponential growth, thus the analytic continuation
and the averaging steps do not change G(p), and the Laplace transform
reproduces F (x).
(b) If F (x) ∈ C[[1/x]] is generalized Borel summable with m-summation
Sm(x), then for large <(x) we have an asymptotic expansion:

Sm(x) ∼ F (x).

(c) The set of generalized Borel summable is an algebra, closed under dif-
ferentiation with respect to x. In particular, if F (x) is a formal solution of
a differential or difference (linear or not) equation, then Sm(x) is an actual
solution of the equation asymptotic to F (x).
(d) Generalized Borel summability is a constructive approach, which has
applications to the numerical approximation of analyzable functions which
are asymptotic to divergent formal power series. See for example, the
method of truncation to least term of factorially divergent series in [6].

In other words, in analysis we have the following diagram:
ODE/PDE

ledomcirtemoeGledomlamroF

Convolutive model

TOME 61 (2011), FASCICULE 3
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2.3. Statement of the results

Let us postpone the remaining definitions to Section 4. Our main theorem
is the following.

Theorem 2.3. — (a) The formal power series F (x) of (2.2) has resur-
gent Borel transform.
(b) The median summation Smed defined on {x ∈ C|<(x) > 0} extends to
the points 1

2πiQ of its natural boundary and for all α ∈ Q, α 6= 0, we have:

(2.6) Smed
(
− 1

2πiα

)
= eπiα/12f(e2πiα).

The reader may compare Equation (2.2) that defines the formal power se-
ries F (x) with Equation (2.6) that evaluates the median summation Sm(x)
of F (x).
A side bonus is the following precise description of the Borel and Laplace

transforms of F (x). Among other things, it explains why we are using the
median Laplace transform, and identifies the Laplace transforms in our
paper with several functions considered by Zagier in [36].
Let G(p) denote the formal Borel transform of the power series F (x) of

(2.2). Recall the definition of the Dedekind eta function η and the modified
eta function η̃ from Section 6. Let χ(·) be the unique primitive character
of conductor 12. In other words, we have:

(2.7) χ(n) =


1 if n ≡ 1, 11 mod 12
−1 if n ≡ 5, 7 mod 12
0 otherwise.

Theorem 2.4. — (a) The Borel transform G(p) of F (x) is given by:

(2.8) G(p) = 3π
2
√

2

∞∑
n=1

χ(n)n
(−p+ n2π2/6)5/2 .

G(p) is an analytic double-valued function on C−N , with singularities in
the set N ⊂ R+:

(2.9) N = π2

6

{
n2 | n ∈ N, n ≡ 1, 5, 7, 11 mod 12

}
.

ANNALES DE L’INSTITUT FOURIER
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(b) The left and right summations Smul and Smur are given by:

Smul : {arg(x) ∈ (−5π/2, π/2)} Smul(x) =
√

3x3/2
∫
γε+arg(x)

η(2πiz)
(x− z)3/2 dz − 1

(2.10)

Smur : {arg(x) ∈ (−π/2, 5π/2)}, Smur(x) =
√

3x3/2
∫
γε−arg(x)

η(2πiz)
(x− z)3/2 dz − 1

(2.11)

where γθ denotes the ray {reiθ|r > 0} in the complex plane from 0 to
infinity.
(c) For every reality-preserving average m (defined in Section 4.2), the
summation Sm is independent of m, agrees with the median summation
and is given by:

Smed : {x ∈ C| <(x) > 0} −→ C

Smed(x) = 1
2
(
Smur(x) + Smul(x)

)
=
√

3x3/2

2

(∫
γε+arg(x)

η(2πiz)
(x− z)3/2 dz +

∫
γε−arg(x)

η(2πiz)
(x− z)3/2 dz

)
− 1.

Moreover,
Smed(x) = Smed(x).

(d) The associated Dirichlet series, defined by

(2.12) δ : {<(x) > 0} −→ C, δ(x) = 1
2
(
Smur(x)− Smul(x)

)
equals to:

(2.13) δ(x) = i
√

2(πx)3/2η̃(2πix)

where η̃ is given in (6.3). δ is a lacunary series, with natural boundary
<(x) = 0 and with well-defined radial limits at 1

2πiQ.

The above theorem gives a formula for the median Laplace transform
of G(p) in terms of the modified η-function η̃. Our last theorem is an
alternative formula for the median Laplace transform Smed in terms of the
complex error function:

(2.14) Erfi(x) = 2√
π

∫ x

0
et

2
dt

The complex error function is related to the better known error function

Erf(x) = 2√
π

∫ x

0
e−t

2
dt

TOME 61 (2011), FASCICULE 3



1236 Ovidiu COSTIN & Stavros GAROUFALIDIS

by
Erfi(x) = Erf(ix)

i
.

Erfi is an entire odd function of x, with asymptotic expansion for large x
with arg(x) ∈ (0, π) of the form:

Erfi(x) ∼ −i+ ex
2

x
√
π

∞∑
k=0

(2k − 1)!!
(2x2)k

where (2k − 1)!! = 1.3 . . . (2k − 1) and (−1)!! = 1. See for example, [30,
Sec.2.2] or [24, Sec.2]. Consider the modified error function

(2.15) E(x) = e−x
2
x3Erfi(x)− x2

√
π
.

Notice that

(2.16) E(x) = o(1)

for large x with arg(x) ∈ (−π/4, π/4).

Theorem 2.5. — The median Laplace transform of the series G(p) of
Equation (3.1) is given by:

Smed(x) = 12
√

3
π3/2

∞∑
n=1

χ(n)
n2 E

(
nπ

√
x

6

)
− 1.(2.17)

Notice that Equation (2.16) implies that the series (2.17) is uniformly
convergent in the open right half-plane.

2.4. Plan of the proof

Our goal is to motivate, introduce and use resurgence in a relatively self-
contained fashion. In Section 3 we compute explicitly the Borel transform
of the series (2.2) using as input the generating function of the Glaisher’s
numbers, studied by Zagier. The trigonometric form of this generating func-
tion quickly leads, via a residue computation, to formula (2.8) for the Borel
transform G(p) of Theorem 2.4. This formula is an example of what we call
a “square root branched function”. In particular, this implies the existence
of the analytic continuation of G(p) and locates its singularities.
In Section 4 we discuss at length the notion of averaging, following the

work of Écalle, and give several examples of averages. Averaging leads to a
Laplace transform, which in general depends on the averaging itself. Our
key Proposition 4.2 shows that if G(p) is square root branched, then all

ANNALES DE L’INSTITUT FOURIER
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reality-preserving averages coincide with the median average. Since our
singularities are placed at the positive real numbers, and G(p) is square root
branched, the difference between the left and right averages is a Dirichlet
series, as we show in Proposition 4.2. We end this section by giving explicit
formulas for the median Laplace transform in terms of the Dedekind η-
function and in terms of the complex error function, proving Theorem 2.5
and part of Theorem 2.4.
In Section 5 we study the associated Dirichlet series of our problem,

which turns out to be a modified Dedekind η̃-function. Zagier’s identity
and modularity imply the existence of radial limits of our Dirichlet series.
This concludes the proof of Theorems 2.3 and 2.4.
In Section 7 we explain how resurgence implies the existence of asymp-

totic (and more generally, transseries) expansions of sequences. In particu-
lar, we give a proof of Theorem 1.5.

Finally, in Section 2.5, we point out that our results apply without change
to the power series FK(x) ∈ Q[[1/x]] where K is a (2, 2p) torus link or a
Seifert fibered rational homology sphere.

2.5. Extensions

For simplicity, we state Theorems 2.3 and 2.4 for the power series F (x)
of (2.2).
The proof of Theorem 2.3 works without change for the formal power

series of FK(x) where K is a torus link (2, 2p) or a Seifert-fibered homology
sphere. In all those cases,

• the Borel transform is square root branched,
• the singularities of G(p) are a finite union of sets of the form

N = π2

β

{
n2 | n ∈ N, χ(n) 6= 0

}
for some quadratic character χ.

• the associated Dirichlet series is nearly modular of weight 1/2,
• radial limits of the Dirichlet series exist, and Zagier’s identity and
modularity holds.

For an example of the Poincaré homology sphere, see the Appendix. In
forthcoming work [4] we will prove Conjecture 1.4 for a class of geometri-
cally interesting knotted objects K that include the simplest hyperbolic 41
knot.

TOME 61 (2011), FASCICULE 3



1238 Ovidiu COSTIN & Stavros GAROUFALIDIS

2.6. Acknowledgment

An early version of this paper was presented by the second author in a
conference in Columbia University, around the Volume Conjecture, in the
fall of 2005 and spring of 2006. The second author wishes to thank the
organizers of the conference for their wonderful hospitality.

3. The Borel transform G(p) of F (x)

In this section we compute the formal Borel transform G(p) of the power
series F (x) of (2.2).

Theorem 3.1. — We have:

(3.1) G(p) = 3π
2
√

2

∞∑
n=1

χ(n)n
(−p+ n2π2/6)5/2 .

Consequently, G(p) is resurgent, and its analytic continuation is double-
valued in C−N with singularities in N , defined as in Equation (2.9).
Proof. — Let us define a sequence (an) by:

(3.2) F (x) = e−1/(24x)f(e−1/x) =
∞∑
n=0

an
24n

1
xn
.

Our sequence (an) coincides with Zagier’s (Tn/n!) from [36, Eqn.4], where
(Tn) are the Glaisher’s T -numbers. In [36], Zagier proves that the Glaisher’s
T -numbers are given by the generating series

(3.3)
∞∑
n=0

ann!
(2n+ 1)!p

2n+1 = sin 2p
2 cos 3p = sin p

1− 4 sin2 p

In the following calculations, it will be convenient to let H(p) denote the
formal Borel transform of

F (x/24) = e−1/xf(e−24/x)

=
∞∑
n=0

an
xn
.

It is easy to check that

G(p) = 1
24H

( p
24

)
.

Thus, it suffices to show that

(3.4) H(p) = 1296
√

3π
∞∑
n=1

χ(n)n
(−144p+ n2π2)5/2 .
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By the definition of H(p), we have:

H(p) = B

(
1 +

∞∑
n=0

an+1
1

xn+1

)

=
∞∑
n=0

an+1

n! pn

On the other hand, Equation (3.3) implies that

p+
∞∑
n=0

an+1(n+ 1)!
(2n+ 3)! p2n+3 = sin p

1− 4 sin2 p

thus
∞∑
n=0

an+1

n!
n!(n+ 1)!
(2n+ 3)! p

2n = 1
p3

(
sin p

1− 4 sin2 p
− p
)
.

Since
∞∑
n=0

(2n+ 3)!
n!(n+ 1)!p

n = 2
∞∑
n=0

(2n+ 3)(2n+ 1)
(

2n
n

)
pn = 6

(1− 4p)5/2

it follows that
H(p) = (f1 ~ f2)(p)

where

f1(p) = 1
p3/2

(
sin(p1/2)

1− 4 sin2(p1/2)
− p1/2

)
f2(p) = 6

(1− 4p)5/2

and ~ denotes the Hadamard product of two formal power series at p = 0.
The latter is the component-wise product defined by:( ∞∑

n=0
anp

n

)
~

( ∞∑
n=0

bnp
n

)
=
∞∑
n=0

anbnp
n.

It is easy to give a contour integral formula for the Hadamard product:

H(p) = 1
2πi

∫
γ

f1(s)f2

(p
s

) ds
s

where γ is a small circle around 0. This will give an analytic continuation
of the Hadamard product.
Observe that the set N1 of singularities of f1(p) is

(3.5)

N1 =
{(

2k + 1
6

)2
π2,

(
2k + 5

6

)2
π2,

(
2k + 7

6

)2
π2,

(
2k + 11

6

)2
π2
∣∣∣ k ∈ N

}
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Now, we enlarge the radius r of the circle γ := γr, and subtract the residues
of the integrand at the singular points, applying Cauchy’s theorem.
The integrand has single poles at the points η ∈ N1. By a straightforward

calculation we get that the residue ψη(p) of the integrand at η ∈ N1 is given
by
(3.6)

ψη(p) = 1296
√

3π



− 1 + 12k
(−144p+ (1 + 12k)2π2)5/2 if η = (1 + 12k)2π2/6

+ 5 + 12k
(−144p+ (5 + 12k)2π2)5/2 if η = (5 + 12k)2π2/6

+ 7 + 12k
(−144p+ (7 + 12k)2π2)5/2 if η = (7 + 12k)2π2/6

− 11 + 12k
(−144p+ (11 + 12k)2π2)5/2 if η = (11 + 12k)2π2/6

for k > 0. The asymptotic behavior of ψη(p) for large η is O(1/η2), and
thus the sum

∑
η∈N1

ψη(p) converges.
ψη(p) is double-valued with only one singularity η/4 of the form:

ψη(p) = cη(η/4− p)−5/2.

The definition of χ and the above computation conclude the proof of The-
orem 3.1. �

Example 3.2. — As an numerical check, Theorem 3.1 implies that

G(p) = 54
√

3L(4, χ)
π4 +O(p)

where

(3.7) L(s, χ) =
∞∑
n=1

χ(n)
ns

.

Since
(3.8)

L(2n+ 2, χ) = π2n+2 (−4)n√
3(2n+ 1)!(n+ 1)

(
B2n+2

(
1
12

)
−B2n+2

(
5
12

))
(see [36, Eqn.(6)]) it follows that

(3.9) G(p) = 23
24 +O(p).

On the other hand,
(3.10)

F (x) = 1 + 23
24

1
x

+ 1681
1152

1
x2 + 257543

82944
1
x3 + 67637281

7962624
1
x4 +O

(
1
x5

)
,
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which confirms that the constant term of the Borel transform of F (x) is
given by 23/24, in accordance with (3.9).

Exercice 3.3. — Using Theorem 3.1 and the special values of the L-
series given in (3.8), show that

G(p) = 23
24 + 1681

1152p+ 257543
165888p

2 + 67637281
47775744p

3 +O(p4)

in confirmation with the Borel transform of (3.10).

4. The Laplace transform of G(p)

In this section we compute the Laplace transform L(x) of G(p).

4.1. Analytic continuation, averaging and Laplace transform

Given a resurgent function G(p) with singularities in N+ ⊂ R+, there
are three ways to average and take the Laplace transform.

• The first way is to use a uniformizing average m of Écalle in order to
get a single valued function mG on R+. Unfortunately, this function
is not integrable since

∫ 1
0 dp/(p − 1)−5/2 does not exist. So, Écalle

applies an acceleration operator to mG and then takes the usual
Laplace transform.

• Alternatively, Écalle applies a uniformizing average to the Laplace
transform of the analytic continuation of G(p) along paths that
avoid the singularities. The key property is that the set of such
paths form a Riemann surface.

• The first author converts G(p) to a step-distribution on R+ \ N+

and then applies an extended Borel transform Bα, followed by an
extended Laplace transform. See [3, Sec.1.3].

Now, we arrive at a subtle point: there are many well-behaved uniformiz-
ing averages. In fact for every probability distribution f ∈ L1(R) with∫∞

0 |f(x)|dx = 1. Écalle-Menous construct a uniformizing average mf ; see
[10].
On the other hand, the first author extended Borel transforms Bα are

parametrized by α ∈ 1/2 + iR. Of all those Borel transforms the most
useful one is the balanced one B1/2, which satisfies the key property of
approximation by summation to least term; see [6].
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In case a formal power series satisfies a generic differential equation (lin-
ear or not), all averages mf agree with the first author’s balanced B1/2,
as shown in [3]. This is also a consequence of Écalle’s bridge equation; see
[9, 8].
In our case, the series F (x) does not satisfy a differential equation. Nev-

ertheless, Proposition 4.2 shows a universality, i.e., independence of averag-
ing. Before we state the proposition, let us explain what averaging means.

4.2. What is an averaging?

Averages were introduced and studied extensively by Écalle. Following
Écalle-Menous (see [10]), let us consider a multivalued function G(p) de-
fined on C − N , with at most exponential growth at infinity, and with
singularities on a discrete set N = {ηk | k ∈ N} ⊂ R+, where ηk < ηl for
k < l.
Let us define the relative spacing ωk k ∈ N of the singularities by ωk =

ηk+1 − ηk. Thus, we have the picture:

η
1

η
2

η
3

η
4

η
5

ω
1

ω
2

ω
3

ω
4

With respect to the terminology of Écalle (cf. e.g. [10]) we have that
G ∈ Ramif(R+) with ramification points N . An averaging m is a linear
map

m : Ramif(R+) −→ Unif(R+)
that maps multivalued functions with singularities at N to single-valued
distributions on R+. Averaging maps depend on a set of averaging weights.
An averaging weight m$ is a collection

{m$ = m$1,...,$r | r ∈ N, $i =
(
εi
ωi

)
, εi = ±, ωi = ηj+1 − ηj}.

The tuple (ε1, . . . , εr) is called an address. We always assume that for all
r, we have:

(4.1) m$1,...,$r = m$1,...,$r,
(

+
ωr+1

)
+ m$1,...,$r,

(
−

ωr+1

)
Recall that G(p) is a multivalued function. For fixed r ∈ N and $1, . . . , $r,
we now define a multivalued function G$1,...,$r as follows. Let
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(4.2) G$1,...,$r : (ηr, ηr+1) −→ C

denote the analytic continuation of G along a path avoiding the singularity
at ηi from above if εi = + and from below otherwise. Then, mG is defined
by:

mG(p) =
∑

ε1=±,...,εr=±
m$1,...,$rG$1,...,$r (p), p ∈ (ηr, ηr+1).

There are several natural properties that are often required for averages
m. Three important properties are:
(P1) m preserves reality and has real-valued weights,
(P2) m preserves convolution,
(P3) m preserves lateral growth.
P1 is useful when the input is a power series with real coefficients and

the needed output is an analytic function on the right half-plane <(x) > 0
which takes real values for > 0.
P2 is needed for commutation of generalized Borel summability with

multiplication of power series.
P3 is necessary to be able to define Laplace transforms.
Let us give three rather trivial, but useful averages from [10, p.85]:

mur$1,...,$r =
{

1 if ε1 = ε2 = · · · = +
0 otherwise,

mul$1,...,$r =
{

1 if ε1 = ε2 = · · · = −
0 otherwise,

med$1,...,$r =


1/2 if ε1 = ε2 = · · · = +
−1/2 if ε1 = ε2 = · · · = −
0 otherwise,

mul,mul,med and B1/2 satisfy P3. B1/2 and med satisfies P1.

4.3. The Laplace transform of an averaged function

Recall that the Laplace transform of a function G(p) ∈ L1(R+, e−νxdx)
(for ν > 0) with at most exponential growth at infinity is defined by:

(4.3) LG : {x ∈ C|<(x) > 1/ν} −→ C, (LG)(x) =
∫ ∞

0
e−pxG(p)dp.
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If G(p) is defined in a sectorial neighborhood of 0 (i.e, in a set {p ∈
C| arg(p) ∈ (−ε, ε′)) and is of exponential growth at infinity, then by mov-
ing the integration contour it follows that L(x) is defined in an enlarged
neighborhood {x ∈ C||x| > 1/ν, arg(x) ∈ (−ε′ − π/2, ε+ π/2)}.
The definition of the Laplace transform makes sense in case G(p) is a

distribution (e.g. G(p) = 1/(p− 1)), as was discussed by the first author in
[3, Sec.2]. Likewise, we may define the Laplace transform of mG(p):

(4.4) (LmG)(x) =
∫ ∞

0
e−xpmG(p)dp

It turns out that (LmG)(x) is an average of line integrals of G(p) along
paths in C−N that start at 0 and end at∞. For example, it is easy to see
that

(LmurG)(x) =
∫
γr

e−pxG(p)dp

(LmulG)(x) =
∫
γl

e−pxG(p)dp

(LmedG)(x) = 1
2

(∫
γr

e−pxG(p)dp+
∫
γl

e−pxG(p)dp
)

where γr (resp. γl) is a path in C−N from 0 to ∞ that turns right (resp.
left) at each singularity in N :

γ l

γr
0 1 2 3 4 5

Another useful average is B1/2 of the first author; see [3, Eqn(1.20)].
In case the multivalued function G(p) is the Borel transform of a formal

power series solution F (x) of a generic differential (or difference) equation,
then it is known that the Laplace transforms Lm(x) for all averages that
satisfy P1, P2, P3 agree. In our case, F (x) is not expected to satisfy a
differential equation (linear or not) with polynomial coefficients, because
the position of singularities (which is an analytic invariant) is qualitatively
different from solutions to differential equations with polynomial coeffi-
cients. What is a natural average to consider? The next lemma states that
for the singularities of G(p) in Equation (3.1), the Laplace transform is
independent of the averaging.
To state the lemma, we need some notation. Motivated by Equation

(3.1), let us introduce the following definition.
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Definition 4.1. — We will call a multivalued functionG(p) square root
branched if it is given by a (Mittag-Leffleg like) absolutely convergent sum:

(4.5) G(p) =
∑
η∈N

Gη(p),

where N is a discrete subset of R+,

Gη(p) = cη(η − p)−kη/2,

and kη ∈ N+. Thus, the support of c, {η ∈ N |cη 6= 0} is the set of
singularities of G(p).
A square root branched function G(p) has weight k when kη = k ∈ N+.

Proposition 4.2. — (a) If G(p) is square root branched of odd weight
k and m is any Écalle average that preserves P1 (and may or may not
preserve P2 or P3), then

(4.6) mG(p) =
∑
η∈N

mGη(p)

where

(4.7) mGη(p) =
{
Gη(p) if p < η

0 if p > η
does not depend on m.
(b) For <(x) > 0, we have:

(4.8) (LmedG)(x) = 1
2
(
(LmurG)(x) + (LmulG)(x)

)
.

where (LmulG) and (LmurG) are defined for x ∈ C∗ with arg(x) ∈
(−5π/2, π/2) and arg(x) ∈ (−π/2, 5π/2) respectively.
(c) In their common domain arg(x) ∈ (−π/2, π/2), the associated Dirichlet
series, is defined by:

(4.9) δ(x) = 1
2
(
(LmurG)(x)− (LmulG)(x)

)
(d) Consequently, we have:

(LmedG)(x) = (LmulG)(x) + δ(x)(4.10)
= (LmurG)(x)− δ(x)(4.11)

(e) If cη ∈ R for all η, then

(LmulG)(x) = (LmurG)(x), (LmurG)(x) = (LmulG)(x),

(LmedG)(x) = (LmedG)(x).
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(f) When k is odd, the Dirichlet series is given by:

(4.12) δ(x) = i
2(k−1)/2√πxk/2−1

(k − 2)!!
∑
η∈N

cηe
−ηx

where for a natural number n ∈ N we denote (2n+1)!! = 1.3.5. . . . (2n+1).

Proof. — It suffices to consider the case

G(p) = cη(η − p)−kη/2

where kη is positive integer. Let us fix an average m of [10] which is sym-
metric (i.e., satisfies P2 of Section 4.2) and let us suppose that η = ηr for
some r ∈ N. Observe that G(p) is not singular for p ∈ [0, ηr). Equation
(4.1) implies that

G$1,...,$s(p) = G(p), p ∈ (ηs, ηs+1)

for s < r. On the other hand, for p ∈ (ηr, ηr+1), the two analytic continu-
ations of the square root differ only in sign; thus,

G
$1,...,$r,

(
+

ωr+1

)
(p) = −G$1,...,$r,

(
−

ωr+1

)
(p),

which together with the symmetry condition P2 imply that mG(p) = 0 for
p ∈ (ηr, ηr+1), and in fact for p > ηr = η. This proves (a).
Part (b) follows from Section 4.3.
Parts (d), (e) follow from (b) and (c).
The definition of the Dirichlet series implies that

δ(x) = cη

∫
Cη

(η − p)−kη/2e−pxdp

where Cη is a loop (Hankel contour) from +∞, arg(p) = 0 to +∞, arg(p) =
2π which goes once around η, oriented counterclockwise. A residue calcu-
lation implies (f). �

4.4. A formula for the Laplace transform of G(p)

In this section we will prove of part (c) of Theorem 2.4 and Theorem
2.5. We will use the Dedekind η function as in (6.2). Recall the contours γθ
from Theorem 2.4. Recall also that Smul(x) denotes the Laplace transform
of mulG(p).

Theorem 4.3. — For x ∈ C, x 6= 0, arg(x) ∈ (−5π/2, π/2), we have:

(4.13) Smul(x) =
√

3x3/2
∫
γε+arg(x)

η(2πiz) dz

(x− z)3/2 − 1.
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This proves Equation (2.10) of Theorem 2.4. (2.11) is completely analo-
gous.

Proof. — We have:

Smul(x) =
∫
γl

e−pxG(p)dp

= 3π
2
√

2

∞∑
n=1

χ(n)n
∫
γl

e−px

(−p+ n2π2/6)5/2 dp by Thm 3.1

= 3π
2
√

2

∞∑
n=1

χ(n)n
(∫

γl

2x
3

e−px

(−p+ n2π2/6)3/2 dp−
2 · 63/2

3n3π3

)
by integration by parts

=
√

3x
∞∑
n=1

χ(n)
∫
γl

e−n
2π2qx/6

(−q + 1)3/2 dq + C

by a change of variables 6p = n2π2q

where

C =: −6
√

3 1
π2

∞∑
n=1

χ(n)
n2 = −6

√
3 1
π2L(2, χ) = −1

where the last Equality follows from Equation (3.8). Since
√

3x
∞∑
n=1

χ(n)
∫
γl

e−n
2π2qx/6

(−q + 1)3/2 dq=
√

3
∞∑
n=1

χ(n)
∫
γε+arg(x)

e−n
2π2z/6

(−z/x+ 1)3/2 dz

by a change of variables z = qx

=
√

3x3/2
∫
γε+arg(x)

η(2πiz) dz

(x− z)3/2 by (6.2)

the result follows. �

We now give a proof of Theorem 2.5.
Proof. — (of Theorem 2.5) Recall the complex error function Erfi(x)

and its modification E(x) from Equations (2.14) and (2.15). The median
Laplace transform is the average of the left and right Laplace transform.
Moreover, a calculation shows that for x > 0 we have:

(4.14)∫
γl

e−xp

(1− p)5/2 dp = −2
3 −

4x
3 −

4
3 i
√
πe−xx3/2 + 4

3
√
πe−xx3/2Erfi(

√
x).

Replacing γl by γr has the effect of replacing i by −i in the above equation.
Thus, the median integral, which also coincides with the principal value
integral, is given by:
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(4.15)∫
γm

e−xp

(1− p)5/2 dp = −2
3 −

4x
3 + 4

3
√
πe−xx3/2Erfi(

√
x) = −2

3 + 4
3
√
πE(
√
x)

where γm = 1/2(γl + γr). On the other hand, the proof of Theorem 4.3
implies that

Smed(x) =
√

3x
∞∑
n=1

χ(n)
∫
γm

e−n
2π2qx/6

(1− q)3/2 dq − 1.

Using Equation (4.15), the result follows. �

5. A Dirichlet series δ(x) associated to F (x)

5.1. A formula for a Dirichlet series δ(x) associated to F (x)

In this section we identify the associated Dirichlet series δ(x) of the gen-
eralized Borel summable power series F (x) of (2.2) with the Eichler integral
η̃ of the Dedekind η-function given by (6.3). In particular, using Zagier’s
identity (see (6.4)) and a modular property of one of Zagier’s functions (see
(6.8)), allows us to prove the existence of radial limits at complex roots of
unity and to finish the proof of Theorems 2.3 and 2.4.

Proposition 5.1. — (a) The Dirichlet series associated to F (x) is given
by:

(5.1) δ : {x ∈ C|<(x) > 0} −→ C, δ(x) = i
√

2(πx)3/2η̃(2πix)

(b) δ is a lacunary series with natural boundary the line <(x) = 0.
(c) δ has radial limits at 1

2πiQ given by:

(5.2) δ

(
− 1

2πiα

)
= ζ3

24α
−3/2φ(−1/α)

for all α ∈ Q, α 6= 0, where φ is a function of Zagier from (6.1) and
ζk = e2πi/k.

Proof. — Theorem 3.1 gives that

G(p) = 3π
2
√

2

∞∑
n=1

χ(n)n
(−p+ n2π2/6)5/2 .
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Part (f) of Proposition 4.2 implies that the associated Dirichlet series is
given by:

δ(x) = i
√

2(πx)3/2
∞∑
n=1

χ(n)ne−π
2n2x/6

= i
√

2(πx)3/2η̃(2πix)

where the last equality follows from the definition of η̃ in (6.3). This proves
(a).
(b) follows from [26]. In other words, δ(x) cannot be analytically contin-

ued beyond the line <(x) = 0. In general, lacunary series need not have
radial limits at points of their natural boundary. Our series, however, has
radial limits at rational multiples of 1/(2πi).
(c) follows from Equation (5.1) and Zagier’s identity (6.4) below. �

5.2. Proof of of Theorem 2.3

We are finally in a position to finish the proof of Theorem 2.3.

Theorem 5.2. — With the notation as in Theorem 2.3, for all α ∈ Q,
α 6= 0, we have:

Smed
(
− 1

2πiα

)
= φ (α) .

Proof. — Equations (2.10), (2.11) and the definition of Zagier’s
g-function of Equation (6.5) imply that for α ∈ Q− {0} we have:

(5.3) g(α) =
{
Smul(−1/(2πiα)) if α > 0
Smur(−1/(2πiα)) if α < 0.

Let us assume α ∈ Q, α > 0 (the other case is analogous). We have:

Smed
(
− 1

2πiα

)
= Smul

(
− 1

2πiα

)
+ δ

(
− 1

2πiα

)
by (4.11)

= Smul
(
− 1

2πiα

)
+ ζ3

24α
−3/2φ

(
− 1
α

)
by Prop. 5.1 (c)

= g(α)− (iα)−3/2φ(−1/α) by (5.3)
= φ(α) by (6.8)

�
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6. Identities from Zagier’s paper

In this section we collect several definitions, notations and results from
Zagier’s paper [36], for the convenience of the reader. Zagier defines a func-
tion

(6.1) φ : Q −→ C, φ(α) = eπiα/12f(e2πiα)

which evaluates at complex roots of unity the series f(q) of (2.1). Zagier
considers the following formal power series in Z[[q]]:

(q)∞ =
∞∏
n=1

(1− qn)

=
∞∑

n=−∞
(−1)nqn(3n+1)/2

=
∞∑
n=1

χ(n)q(n2−1)/24

H(q) =
∞∑
n=1

χ(n)nq(n2−1)/24

as well as the corresponding analytic functions for q = e2πiz, =(z) > 0:

η(z) = eπiz/12
∞∏
n=1

(1− e2πinz) =
∞∑
n=1

χ(n)eπin
2z/12(6.2)

η̃(z) =
∞∑
n=1

χ(n)neπin
2z/12(6.3)

η(z) is the famous Dedekind η function, a modular form of weight 1/2,
and η̃(z) is an Eichler integral of the Dedekind η function. Although η̃ is
not a modular form, Zagier proves that η̃ has radial limits to the rational
points z ∈ Q ⊂ R of its natural boundary.
Zagier’s identity (coined “the strange identity” by Zagier himself) [36,

Eqn.7] identifies the radial limits of η̃ with φ for α ∈ Q:

(6.4) φ(α) = −1
2 η̃(α).

At the last two pages of his seminal paper, Zagier introduces a C∞

function

(6.5) g : R −→ C, g(x) =
∫ ∞

0
(z − x)−3/2η(z)dz,
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where η(z) is the Dedekind η function defined by (6.2). Zagier states that
g(x) is real analytic everywhere except at x = 0 and whose derivatives at
0 are given by

g(n)(0) = (−πi/12)nn!an,

where

(6.6) F (x) = e−1/(24x)f(e−1/x) =
∞∑
n=0

an
24n

1
xn
.

Moreover, for α ∈ Q, we have:

g(α) = (iα)−3/2g(−1/α)(6.7)
φ(α) + (iα)−3/2φ(−1/α) = g(α) for a ∈ Q(6.8)

In other words, for h→ 0 we have:

g(h) ∼
∞∑
n=0

g(n)(0)
n! hn

=
∞∑
n=0

(
−πi12

)n
anh

n

= e2πih/24f(e2πih)(6.9)

where the last equality follows from Equation (3.2). In [36, Eqn.6] Zagier
gives a closed formula for the Taylor coefficients (an/24n) of F (x):

an
24n = 6 (−6)n

(n+ 1)!

(
B2n+2

(
1
12

)
−B2n+2

(
5
12

))
= 1

2
√

3(π/6)2(2π2/3)n
(2n+ 1)!

n! L(2n+ 2, χ)

where

(6.10) L(s, χ) =
∞∑
n=1

χ(n)
ns

.

Consider now the Borel transform

G(p) =
∞∑
n=0

an+1

24n+1n!p
n

of F (x). To simplify notation, let us write

(6.11) G(p) =
∞∑
n=0

bnp
n
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instead. Then, we have:

bn = 6 (−6)n+1

(n+ 2)!n!

(
B2n+4

(
1
12

)
−B2n+4

(
5
12

))
(6.12)

= 4π2
√

3(2π2/3)n
(2n+ 3)!
(n+ 1)!n!L(2n+ 4, χ)(6.13)

Since
(2n+ 3)!
(n+ 1)!n! ∼ 4nn3/2

(
γ0 + γ1

n
+ γ2

n2 + . . .
)

for computable constants γj , and since L(2n+ 4) = 1 +O(5−2n) for every
M , it follows that the coefficients of the Borel transform have an asymptotic
expansion of the form:

(6.14) bn ∼
(

6
π2

)n
n3/2

(
c1,0 + c1,1

n
+ c1,2

n2 + . . .
)

for computable constants c1,l for l ∈ N+. Disassembling the L-series into its
monomial parts, Equations (6.13) reveals a transseries expression for the
coefficients of the Borel transform:

(6.15) bn ∼
(

6
π2

)n
n3/2

∞∑
l=0

∞∑
k=1

ck,l
nlkn

for a doubly indexed series of resurgence monomials (6/π2)nnlkn, and for
computable constants ck,l. Notice that the resurgence monomials form a
well-order set of order type ω2.

7. Resurgence implies transseries expansions

Let us examine more carefully the asymptotic equations from the last
section. Although Equation (6.13) makes sense, the asymptotic series in
(6.14) is factorially divergent. In view of this, one cannot naively make
sense of Equation (6.15) since for example 1/2n is a monomial which is
(exponentially) smaller than any of the monomials 1/nl for all l. In order
to reach the monomial 1/2n we would have to subtract the infinite series of
all previous monomials 1/nl for l ∈ ω, and this series is factorially divergent.
What we need is a way to subtract the whole series at once. It is at this
point that resurgence is needed to make sense of the formal series in (2.8).
Recall that the singularities of G(p) are included in the set λN+ where

λ = π2/6.
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Fix a small positive angle θ and for every k ∈ N+ draw the rays Lk =
kλεiθR+ from kλ to infinity along the direction of θ. Assume that θ is
chosen so that the rays Lk are distinct:

λ 2 λ 3 λ

1L 2L 3L

The next proposition is a special case of a general result that will appear
in subsequent work of the authors.

Theorem 7.1. — (a)For every k ∈ N+, there exist analytic integable
functions Rk ∈ L1[0,∞) such that:

(7.1) bn = λ−nn3/2
∞∑
k=1

1
kn

∫ ∞
0

e−npRk(ep)dp

(b)Moreover, for every k ∈ N+, we have an asymptotic expansion

(7.2)
∫ ∞

0
e−npRk(p)dp ∼

∞∑
l=0

ck,l
nl
pl.

(c) Thus, G(p) determines the transseries (6.15). Conversely, G(p) is uni-
quely determined by its transseries.

The functions Rk are constructed from the jump (i.e., variation) of the
multivalued function G(p) at the rays Lk.
Proof. — The proof is a well-known application of Cauchy’s formula and

a deformation of the contour; see for example [19]. For the benefit of the
reader, we give the details. For a technical integrability reason we will work
with the following variation g(p) of G(p):

(7.3) g(p) =
∞∑
n=1

bn
n2 p

n

which of course satisfies(
p
d

dp

)2
g(p) = G(p)− b0.
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Of course g and G have the same singularities. Since g(p) is analytic in a
neighborhood of zero, Cauchy’s formula implies that

bn
n2 = 1

2πi

∫
γ

g(p)
pn

dp

p
.

Now, we will deform the contour γ in the following way. Choose (Hankel)
contours Ck along each ray Lk, and choose a truncation Crk of them for r
large. Join ∪rk=1C

r
1 together as shown in Figure 7.1 for r = 3, and create

a contour γr For every r, there is a deformation of γ to γr which does not

1L 2L 3L

2C1C 3C

Figure 7.1. On the left, Hankel contours Ck around each ray Lk, ori-
ented counterclockwise. On the right, a truncated contour.

pass through the singularities of g(p). It follows that

bn
n2 = 1

2πi

r∑
k=1

∫
Cr
k

g(p)
pn

dp

p
+ 1

2πi

∫
Γr

g(p)
pn

dp

p

where Γr = γr −∪rk=1C
r
1 is the part of the contour γr that is not included

in the truncated Hankel contours. Now, let r →∞. An estimate shows that

lim
r→∞

∫
Γr

g(p)
pn

dp

p
= 0.

Let Hk denote a Hankel contour around the ray Lk. For every k ∈ N+, we
have

(7.4) lim
r→∞

1
2πi

∫
Cr
k

g(p)
pn

dp

p
=
∫
Hk

g(p)
pn

dp

p
.

Recall that g(p) is analytic in C\∪k∈N+Lk. For p ∈ Lk, we define the jump
(i.e., the variation) gk(p) of g(p) by

(7.5) gk(x) = lim
ε→0+

g(p+ iε)− g(p− iε).

On the other hand, Theorem 2.4 implies that around p = kλ, g has an
expansion of the form

g(p) = Sk(p− kλ)
(p− kλ)1/2
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where Sk is analytic and integrable in [0,∞). It follows that for p ∈ Lk we
have

gk(p) = 2 Sk(p− kλ)
(p− kλ)1/2

Thus, for t ∈ R+ we can write

gk(kλet) = Tk(t)
t1/2

where Tk(t) is analytic and integrable at [0,∞). A change of variables
p = kλet+iθ in Equation (7.4) gives∫

Hk

g(p)
pn

dp

p
= (kλ)−n

∫ ∞
0

e−nt
Tk(t)
t1/2

dt.

Since ∫ ∞
0

e−nttcdt = Γ(c+ 1)
n1+c

for all c ∈ C with <(c) > −1/2, it follows that we can write∫ ∞
0

e−nt
Tk(t)
t1/2

dt = n−1/2
∫ ∞

0
e−ntRk(t)dt

for Rk analytic and integrable at [0,∞). This proves part (a).
Part (b) follows from Watson’s lemma; see [30].
Part (c) also follows from Watson’s lemma. �

Remark 7.2. — As is obvious from the statement and the proof, The-
orem 7.1 holds for a wide class of resurgent functions G(p), that includes
all square root branched functions with singularities in a finite set of rays
λ1N+ ∪ · · · ∪ λrN+.

Among other things, the above theorem makes clear the usefulness (and
the necessity) of transseries versus asymptotic expansions. The asymptotic
expansion (6.14) determines G(p) modulo exponentially small corrections.
These corrections, beyond all orders in 1/n, are precisely captured by the
transseries. Theorem 7.1 gives a synthesis of G(p) by its transseries. In
addition, Theorem 7.1 gives a proof of Theorem 1.5.
Proof. — (of Theorem 1.5) Part (a) is a general statement about Laplace

transforms, and follows from Watson’s lemma.
Part (b) follows from Theorem 7.1 above, and from Equation (1.5).
For part (c), FK(x) determines (via object synthesis), the analytic func-

tion Smed
K (x), and its radial limits via (1.5). Conversely, the sequence

(φK(e2πi/n)) determines its transseries, which in turn determines (via The-
orem 7.1) the function Smed

K (x), which finally determines FK(x) by (1.8).
This completes the proof of Theorem 1.5. �

TOME 61 (2011), FASCICULE 3



1256 Ovidiu COSTIN & Stavros GAROUFALIDIS

Appendix A. Resurgence of the power series of the
Poincaré homology sphere

In this section, let M denote the Poincaré homology sphere, a closed
3-manifold. In [21], Lawrence-Zagier compute that

(A.1) FM (x) =
∞∑
n=0

an
n!

1
(120x)n

where

(A.2)
∞∑
n=0

an
(2n)!p

2n = cos 5p cos 9p
cos 15p .

A computation analogous to the one in Section 3 shows that the Borel
transform GM (p) of FM (x) is given by:

(A.3) GM (p) = c1

∞∑
n=0

χ1(n)
(−30p+ n2π2)3/2 + c2

∞∑
n=0

χ2(n)
(−30p+ n2π2)3/2

where

(A.4) c1 =

√
6(5 +

√
5)

120 , c2 =

√
6(5−

√
5)

120 ,

and χ1, χ1 are periodic functions defined by the table:
n mod 60 7 13 17 23 37 43 47 53 other
χ1(n) −1 −1 −1 −1 1 1 1 1 0

and
n mod 60 1 11 19 29 31 41 49 59 other
χ2(n) −1 −1 −1 −1 1 1 1 1 0
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