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Abstract: The asymptotic expansion of quantum knot invariants in complex Chern–
Simons theory gives rise to factorially divergent formal power series. We conjecture that
these series are resurgent functions whose Stokes automorphism is given by a pair of
matrices of q-series with integer coefficients, which are determined explicitly by the
fundamental solutions of a pair of linear q-difference equations. We further conjecture
that for a hyperbolic knot, a distinguished entry of those matrices equals to the Dimofte–
Gaiotto–Gukov 3D-index, and thus is given by a counting of BPS states. We illustrate
our conjectures explicitly by matching theoretically and numerically computed integers
for the cases of the 41 and the 52 knots.
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1. Introduction

1.1. Asymptotic expansions in perturbative quantum field theory. Perturbative expan-
sions in quantum field theories are often mathematically defined but typically lead to
factorially divergent formal power series. Important examples are the perturbative expan-
sions of the partition function of 3-dimensional manifolds (with, or without boundary) in
complex Chern–Simons theory with arbitrary gauge group. For instance, in [GLMn08] it
was shown that the LMO invariant of a 3-manifold (which is the perturbative expansion
of the Witten–Reshetikhin–Turaev invariant at the trivial flat collection and arbitrary
gauge group), is a Gevrey-1 formal power series, that is a formal power series whose nth
coefficient is bounded by n!Cn for some positive constant C . Said differently, these per-
turbative expansions have Borel transforms which are germs of holomorphic functions
at the origin.

In [Gar08] it was conjectured that the perturbative expansions in complex Chern–
Simons theory are resurgent functions, and more precisely that they have analytic con-
tinuation as multivalued functions in the complex planeminus a discrete and computable
set of points, placed in finitely many vertical lines in the complex plane. These verti-
cal lines are formed by an infinite towers of singularities, with a 2π i periodicity. The
position of these singularities is dictated by the values of the complex Chern–Simons
function (a C/2π iZ-valued function) on the set of flat connections.

1.2. Resurgence in complex Chern–Simons theory. In what follows, we will identify the
partition function of complex Chern–Simons theory with the state integral of Andersen-
Kashaev in [AK14], following the ideas of Hikami, Dimofte et al [Hik07,DGLZ09].
Although this identification has not been derived from first principles, it turns out to have
a number of startling consequences. We will focus on manifolds of the form M = S

3\K,
where K is a hyperbolic knot.

Our goal is to give an explicit description of the resurgent structure of the formal
power series of perturbative Chern–Simons theory in terms of a fundamental solution
of a pair of linear q-difference equation and a matrix of integers. We will describe the
general story first, and illustrate it with concrete examples later.

We will denote by P the set of critical points of the complex Chern–Simons action
and by σ a typical critical point. Given our identification of Chern–Simons theory with
state integrals, it turns out that the set P coincides with the set of critical points of the
integrand of the state integral, an effectively computable set of algebraic numbers. The
critical values of the complex Chern–Simons function are labeled by σ and an integer
μ (often called “multicovering”):

CS(σ ;μ) = V (σ )

2π
− 2π iμ, μ ∈ Z. (1)

We conjecture that the corresponding transseries �σ,μ satisfy the translation invariance
property

�σ,μ(τ) = q̃μ �σ (τ), q̃ = e−2π i/τ , (2)
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where �σ (τ) is the conventional asymptotic expansion of the state integral around the
saddle point σ . It has the form

�σ (τ) = exp

(
V (σ )

2πτ

)
ϕσ (τ), ϕσ (τ ) ∈ C[[τ ]]. (3)

As a consequence, all the Stokes automorphisms acting on �σ,μ are packaged in two
Stokes automorphismmatricesS+(q),S−(q−1), which arematrices of q- and q−1-series
respectively, and each of which encodes Stokes automorphism across a half-plane. Their
detailed definition is given in Sect. 5.1.

An important feature of state integrals is that they depend on additional parameters
and this leads to a system of a pair of linear q-difference equations, one in the upper
half-plane and another in the lower half-plane [GK17]. In our examples, these linear
q-difference equations have explicit sets of fundamental solutions. We conjecture that

Conjecture 1. (a) S±(q) are bilinear functions of two fundamental solutions of the pair
of linear q-difference equations.

(b) S±(q) satisfy the inversion relation

S+(q)TS−(q) = 1 . (4)

(c) S±(q) are uniquely determined by S+(0), S−(0) and a pair of fundamental solutions
to the pair of linear q-difference equations.

The above matrices S± uniquely determine the collection of transseries �σ,μ(τ) for
all (σ, μ) via an abstract Riemann-Hilbert correspondence first pointed out in [Vor83]
and developed recently in [GMN10,IMnS19,KS20]. Note that this transcendental corre-
spondence converts the difficult problemof computing coefficients of�σ,μ(τ) (typically,
one can not compute more than a couple of hundred coefficients) into the much easier
problem of computing fundamental solutions of linear q-difference equations, up to a
matrix of unknown integers.

Given a hyperbolic knot K there is a distinguished critical point σ1 (the geometric
representation, corresponding to the complete hyperbolic structure), and in that case we
conjecture a precise relation between the entry S+

σ1,σ1
(q) of the matrix S+(q) and the

(rotated) 3D-index of Dimofte–Gaiotto–Gukov [DGG14,DGG13].

Conjecture 2. We have:

S+
σ1σ1

(q) = IndrotK (q) . (5)

We recall that the 3D-index IK(m, e)(q) associated to a knot K is labeled by two
integers (m, e). It counts BPS states in a three-dimensional, N = 2 supersymmetric
theory TM which can be associated to the manifold M = S

3\K [DGG14]. The rotated
index is then given by

IndrotK (q) =
∑
e∈Z

IK(0, e)(q). (6)

The relation in (5) between the resurgent structure of complex Chern–Simons theory and
a counting of BPS states in the corresponding supersymmetric theory was anticipated
in [Mn19,GGMn20b].
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We emphasize that although the state integrals and their perturbation theory are well-
defined, the above picture is largely conjectural. However, it fits well with the work of
Kontsevich–Soibelman [KS11], as well as with a lecture of Kontsevich on June 30, 2020
[Kon20], and it paves the way for a deeper understanding of the topological/physical
meaning of the integers appearing in S±.

We should point out that the above theory in fact has little to do with knots and
3-manifolds and complex Chern–Simons theory, and little to do with the Bloch group,
but appears to be part of a larger combinatorial structure. This is apparent in the data
needed to define the formal power series of [DG13,DG18] as well as the data needed to
define q-hypergeometric Nahm sums (and thus their asymptotic expansion at roots of
unity [GZa]) and the data needed to define state integrals [GK17]. This combinatorial
structure is sometimes called a K2-Lagrangian, or an extended symplectic group.

We will illustrate the above conjectures concretely for the invariants of the two sim-
plest hyperbolic knots, the 41 and the 52 knots. Some aspects of the resurgent structure
of complex Chern–Simons theory for the 41 knot were studied in [GMnP,GH18], but
they focused on the “classical" transseries �σ (τ) (i.e. they didn’t address the resurgent
structure of the tower of singularities). The resurgent problem in the case of compact
SU(2) Chern–Simons theory was addressed in [CG11,GMnP], where complete towers
of Stokes constants were explicitly computed for some Seifert three-manifolds.

This paper is, in a sense, a sequel to [GZc] and [GZb] which the reader can consult for
further information,motivation, historical presentation, aswell as for the connectionwith
the asymptotics of the Kashaev invariant and with the quantum modularity conjecture.

Note that our notation ϕσ (τ) from Equation (3) corresponds to the notation
�

(σ)
0 (2π ix) of [GZc]. In particular, the coefficient of τ n in ϕσ (τ) is (up to multipli-

cation by an eighth root of unity and the square root of an nonzero element of Fσ ) in
(2π i)n Fσ , where Fσ is the trace field of σ .

2. The Equation (1 − x)(1 − x−1) = 1 and the 41 Knot

The state integral of the 41 knot is given by Eq. (39) below with (A, B) = (1, 2) and
μ = λ = 0. The critical points of the integrand are solutions of the algebraic equation

(1 − x)(1 − x−1) = 1. (7)

The latter has two solutions ξ1 = e2π i/6 and ξ2 = e−2π i/6 which lie in the number field
Q(

√−3), the trace field of the 41 knot. The corresponding series�σ j (τ ) satisfy the rela-
tion �σ2(τ ) = i�σ1(−τ) and the first few terms of ϕσ1(τ/(2π i)) ∈ 3−1/4Q(

√−3)[[τ ]]
are given by

ϕσ1

( τ

2π i

)
= 1

4
√
3

(
1 +

11τ

72
√−3

+
697τ 2

2 (72
√−3)2

+
724351τ 3

30 (72
√−3)3

+ · · ·
)

. (8)

The exponent in (3) involves the hyperbolic volume of the 41 knot complement

V (σ1) = V = 2Im Li2(e
iπ/3) = 2.029883 . . . . (9)

The two series �σ j (τ ) for j = 1, 2 form a vector

�(τ) =
(

�σ1(τ )

�σ2(τ )

)
(10)
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that also appears in the refined quantummodularity conjecture [GZc].�(τ) is the vector
of series whose description in Borel plane we wish to give.

Consider the linear q-difference equation

ym+1(q) − (2 − qm)ym(q) + ym−1(q) = 0 (m ∈ Z) . (11)

It has a fundamental solution set given by the columns of the following matrix

Wm(q) =
(

G0
m(q) G1

m(q)

G0
m+1(q) G1

m+1(q)

)
, (12)

where G0
m(q) and G1

m(q) are defined by

G0
m(q) =

∞∑
n=0

(−1)n
qn(n+1)/2+mn

(q; q)2n
(13a)

G1
m(q) =

∞∑
n=0

(−1)n
qn(n+1)/2+mn

(q; q)2n

⎛
⎝2m + E1(q) + 2

n∑
j=1

1 + q j

1 − q j

⎞
⎠ , (13b)

and E1(q) = 1 − 4
∑∞

n=1 q
n/(1 − qn) is the Eisenstein series.

It is easy to see that G0
m satisfies (11). Indeed, G0

m(q) = ∑∞
n=0 an,−m(q)−1 where

an,m(q) is given in (34) below. Equations (35a)–(35c), applied to an,−m(q)−1 conclude
the result. A similar proof applies for G1

m . Another way to do so is to use the state
integral (39) (with (A, B) = (1, 2)) and show that the latter satisfies the linear q-
difference Eq. (11) in two ways, one with respect to the variable λ and another with
respect to the variable μ.

The fundamental solution Wm(q) satisfies

det(Wm(q)) = 2 (14)

and the symmetry

Wm(q−1) = W−m(q)

(
1 0
0 −1

)
, (15)

and the orthogonality

1

2
Wm(q)

(
0 1

−1 0

)
Wm(q)T =

(
0 1

−1 0

)
. (16)

for all integers m, as well as

1

2
Wm(q)

(
0 1

−1 0

)
W	(q)T ∈ SL(2,Z[q, 1/q]) (17)

for all integers m, 	. The S matrix is given by

S+(q) = 1

2

(
0 1
1 1

)
W−1(q)

(
0 1
1 0

)
W−1(q)T

(
0 −1
1 2

)
, (18a)

S−(q) = 1

2

(−1 −1
0 1

)
W−1(q)

(
0 1
1 0

)
W−1(q)T

(
1 0

−2 1

)
. (18b)

The above matrix S satisfies Eq. (4).
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3. The Equation x−2(1 − x)3 = 1 and the 52 Knot

The state integral of the 52 knot is given by Eq. (39) below with (A, B) = (2, 3) and
μ = λ = 0. The critical points of the integrand are solutions of the algebraic equation

x−2(1 − x)3 = 1 . (19)

The above equation (which defines a cubic field of discriminant−23, the trace field of the
52 knot) has three solutions ξ1 = 0.78492 + 1.30714 . . . i, ξ2 = 0.78492− 1.30714 . . . i
and ξ3 = 0.43016 . . . , corresponding to the geometric representation, its conjugate and
the real representation. The corresponding series �σ j (τ ) satisfy �σ2(τ ) = −i�σ1(−τ)

and the first few terms of φσ j (τ/(2π i)) are given by

ϕσ j

( τ

2π i

)
=

(−3ξ2j + 3ξ j − 2

23

)1/4

(
1 +

33ξ2j + 242ξ j − 245

22 · 232 τ +
100250ξ2j − 12643ξ j + 2732

25 · 233 τ 2

+
−50198891ξ2j + 35443870ξ j − 79016748

27 · 3 · 5 · 235 τ 3

+
−3809943572ξ2j + 1861268771ξ j + 1015686665

211 · 3 · 5 · 236 τ 4 + . . .

)
. (20)

The exponent in (3) involves

V (σ1) = 2.821 . . . + 1.379 . . . i, V (σ2) = −2.821 . . . + 1.379 . . . i, V (σ3) = −2.758 . . . (21)

where � V (σ1) is the hyperbolic volume of the 52 knot complement, and � V (σ1) =
� V (σ2) the Chern–Simons action. The three series�σ j (τ ) for j = 1, 2, 3 form a vector

�(τ) =
⎛
⎝�σ1(τ )

�σ2(τ )

�σ3(τ )

⎞
⎠ . (22)

Consider the linear q-difference equation

ym(q) − 3ym+1(q) + (3 − q2+m)ym+2(q) − ym+3(q) = 0. (23)

The above equation has a fundamental solution set given by the columns of the following
matrix

Wm(q) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

W+
m(q), |q| < 1,⎛

⎜⎝
0 0 1
0 1 0
1 0 0

⎞
⎟⎠W−

−m−2(q
−1)

⎛
⎜⎝
1 0 0
0 −1 0
0 0 1

⎞
⎟⎠ , |q| > 1.

(24)

where the matrices W ε
m(q) with ε = ± are respectively

W ε
m(q) =

⎛
⎝ H ε

0,m(q) H ε
1,m(q) H ε

2,m(q)

H ε
0,m+1(q) H ε

1,m+1(q) H ε
2,m+1(q)

H ε
0,m+2(q) H ε

1,m+2(q) H ε
2,m+2(q)

⎞
⎠ (25)
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and H ε
j,m(q) are given in “Appendix A” for j = 0, 1, 2 and m ∈ Z.

The fundamental solutions satisfy

det(Wm(q)) = 2, (26)

for all integers m as well as

1

2
Wm(q)

⎛
⎝0 0 1
0 2 0
1 0 0

⎞
⎠W	(q

−1)T ∈ SL(3,Z[q, 1/q]) (27)

for all integers m, 	. In particular, we have:

1

2
Wm−1(q)

⎛
⎝0 0 1
0 2 0
1 0 0

⎞
⎠W−m−1(q

−1)T =
⎛
⎝1 0 0
0 0 1
0 1 3 − qm

⎞
⎠ . (28)

The S matrix is given by

S+(q) = 1

2

⎛
⎝ 0 1 0

0 1 1
−1 0 0

⎞
⎠W−1(q

−1)

⎛
⎝0 0 1
0 −2 0
1 0 0

⎞
⎠W−1(q)T

⎛
⎝0 0 −1
1 1 0
0 1 0

⎞
⎠ , (29a)

S−(q) = 1

2

⎛
⎝0 3 −1
0 −1 0
1 0 0

⎞
⎠W−1(q)

⎛
⎝0 0 1
0 −2 0
1 0 0

⎞
⎠W−1(q

−1)T

⎛
⎝ 0 0 1

3 −1 0
−1 0 0

⎞
⎠ . (29b)

The above matrix S satisfies Eq. (4). A proof is given in “Appendix A.2”.

4. Descendants

A key aspect of our study of asymptotic series are linear q-difference equations which
are satisfied for their descendants. This elementary idea leads to descendants of the
Kashaev invariant (studied extensively in [GZc]), of asymptotic series (ibid), of q-series
as well as of state integrals. In this section we review in detail the story of descendants
(or ancestors, as the case may be).

4.1. The Kashaev invariant and its descendants. The series �σ1(τ ) appearing in the
saddle-point expansion of the state integral appeared originally in the asymptotic expan-
sion of the Kashaev invariant [Kas95]. In the case of the 41 knot, the Kashaev invariant
is given by

J(41)(q) =
∞∑
n=0

(q; q)n(q
−1; q−1)n . (30)

The above expression can be evaluated when q is a root of unity. The Volume Conjecture
of Kashaev [Kas97] (and its extension to all orders [Guk05]) asserts that J(41)(e2π i/N )

has an asymptotic expansion for N large of the form

J(41)(e2π i/N ) ∼ N 3/2 �σ1

(
1

N

)
. (31)
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We now explain a relation discovered in [GZc] between the formula for the Kashaev
invariant (30) and the algebraic Eq. (7).

Following [GZc], we define the descendants J(41)
m (q) of the Kashaev invariant of the

41 knot by

J(41)
m (q) =

∞∑
n=0

(q; q)n(q
−1; q−1)n q

mn, (m ∈ Z) . (32)

Then, the sequence J(41)
m (q) is a solution to a linear q-difference equation

qm+1Jm(q) + (1 − 2qm)Jm(q) + qm−1Jm−1(q) = 1, (m ∈ Z) . (33)

This can be seen as follows: let

an,m(q) = (q; q)n(q
−1; q−1)nq

mn (34)

denote the summand of (32). It follows that

an+1,m(q) = (1 − q−n−1)(1 − qn+1) an,m(q) (35a)

= qm(2 − qn+1 − q−n−1) an,m(q) (35b)

= qm(2 − q an,m+1(q) − q−1an,m−1(q)) . (35c)

Summing over n ≥ 0 and taking into account the boundary term a0,m(q) = 1 on the left
hand side of the above equation concludes the proof of Eq. (33).

Using the operators E and Q that act on sequences (ym) by

(Ey)m = ym+1, (Qy)m = qm ym, EQ = qQE (36)

it follows that we can write (33) in the form

(Q(1 − qE)(1 − q−1E−1) − I )Jm(q) = 1 . (37)

The homogeneous part of the above operator can be obtained by replacing x in the left
hand side of Eq. (7) x by qE , and replacing the right hand side of Eq. (7) by Q−1.

4.2. The q-series (G0
0,G

1
0) and their descendants. Wenow discuss an appearance of the

formal power series �(τ) in the radial asymptotics of some q-series, following [GZb].
By q-series we mean formal Laurent series in a variable q with integer coefficients,

i.e., elements of Z((q)). All the q-series below will define holomorphic functions in
the punctured unit disk with (perhaps) a pole at the origin. We now recall how the
radial asymptotics of the q-series (G0

0,G
1
0) is given by �(τ). The first series G0

0(q)

was found quite by accident to have radial asymptotics expressed in terms of the series
�(τ) [GZb], whereas the second series was found systematically by expressing the state
integral invariant of the 41 knot in terms of products of q-series and q̃-series [GK17].

Below, we will use capital letters for q-series and small letters for the corresponding
functions on the upper half-plane, e.g., g0m(τ ) = G0

m(q) for q = e2π iτ . In [GZb] it was
observed that we have an asymptotic expansion

(
1√
τ
g00(τ )√

τg10(τ )

)
∼

(
1 −1
1 1

)
�(τ) (38)
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to all orders in τ , as τ tends to 0 along a ray in the first quadrant of the upper half-plane.
The above asymptotic expansion requires some explanation since on a fixed ray in the
first quadrant, �σ1(τ ) is exponentially larger than �σ2(τ ). Nonetheless, the asymptotic
expansion (38)makes sense theoretically and computationally if we use a refined optimal
truncation explained in detail in [GZc] and applied in [GZb].Thenumerical computations
of [GZb] hinted that the matrix in Eq. (38) is the constant term of a matrix of q̃ series.

Given the definition of G0
0(q) and G1

0(q) from [GZb] and [GK17], it was relatively
straightforward to add the variable qmn and arrive to formulas (13a) and (13b) which
define the descendants of the pair (G0

0(q),G1
0(q)).

4.3. The state integral and its descendants. In this sectionwe recall the definition of state
integrals and someof their basic properties. State integrals aremultidimensional integrals
whose integrand is a product of Faddeev’s quantum dilogarithm function �b (whose
definition we will not need and may be found in [Fad95,FK94]) times an exponential
of a quadratic and linear form. Here τ = b2 ∈ C′ := C\(−∞, 0], thus even if the
integrand contains no free variables, a state integral is always a holomorphic function
of τ .

State integrals have two key properties:

(a) They define holomorphic functions in the complex cut plane C′.
(b) They can be expressed bilinearly in the upper and in the lower half-plane in terms

of products of q-series and q̃-series.

For a detailed discussion of state integrals and numerous example, see for instance
[BDP14] and also [AK14] and [GK17].

In this sectionwe introduce a descendant version of the one dimensional state integrals
of [GK17] that satisfies the above properties. In this section we will use the notation
from [GK17]. Consider the state integral

IA,B,λ,μ(b) =
∫
R+iε

�b(x)
Be−Aπ ix2+2π(λb−μb−1)xdx, (λ, μ ∈ Z) (39)

where A and B are integers and B > A > 0. Under these assumptions, it follows that the
integrand is exponentially decaying at infinity and the integral is absolutely convergent
and defines a holomorphic function of τ = b2 ∈ C′. Below, we will use the notation
φ(w, δ•), φ̃(w, δ̃•) and

〈F(q, x)〉 = F(q, 1) (40)

from [GK17].

Theorem 3. Fix integers A and B with B > A > 0 and integers λ and μ. For all τ with
�(τ ) > 0, we have:

IA,B,λ,μ(b) = (−1)λ−μq
λ
2 q̃

μ
2

(
q̃

q

) B−3A
24

eπ i B+2(A+1)4 〈PA,B,λ,μ

(
FA,B,λ(q, x)F̃A,B,μ(q̃, x̃)

)〉
(41)

where the operator PA,B,λ,μ is given by



478 S. Garoufalidis, J. Gu, M. Mariño

PA,B,λ,μ = Resw=0

(
e

w2
4π i +w

(
b(δ+1/2+λ/A)+b−1(δ̃+1/2−μ/A)

))A
(

φ(bw, δ•)φ̃(b−1w, δ̃•)
b(1 − eb−1w)

)B

.

(42)

In particular, the right hand side of Eq. (41) is a bilinear combination of q and q̃-series
extend to the cut plane C′. A similar formula can be given when τ is in the lower
half-plane, and what is more, the state integral satisfies the symmetry IA,B,λ,μ(b) =
IA,B,λ,μ(b−1) which is a consequence of the symmetry �b−1(x) = �b(x) of the quan-
tum dilogarithm.

Proof. We follow the derivation in [GK17] closely. The idea is to sum up residues at all
singularities in the upper half-plane. The factor �b(x) has poles at

xm,n = ib(m + 1/2) + ib−1(n + 1/2), m, n ∈ N . (43)

We notice that

e2π(λb−μb−1)(x+xm,n) = ew(λb−μb−1)qλ(m+1/2)q̃μ(n+1/2)(−1)λ−μ (44)

where we have made the change of variables w = 2πx and used the notation

q = e2π ib
2
, q̃ = e−2π ib−2

. (45)

Now by modifying Eq. (27) of [GK17], we find

IA,B,λ,μ(b) = (−1)λ−μq
λ
2 q̃

μ
2

(
q̃

q

) B−3A
24

eπ i B+2(A+1)4

×
∞∑

m,n=0

(
Resw=0FA,B,m,n,λ,μ(w)

) qλmtm(q)A

(q; q)Bm

q̃μn t̃n(q̃)A

(q̃−1; q̃−1)Bn
, (46)

where

FA,B,m,n,λ,μ(w)=
(
e

w2
4π i +w

(
b(m+1/2+λ/A)+b−1(n+1/2−μ/A)

))A
(

φm(bw)φ̃n(b−1w)

b(1 − eb−1w)

)B

.

(47)

Using the operator formalism in [GK17], this concludes the proof of Eq. (41). �
The reader may find in [GK17] the expressions of the operators φ(w, δ•), φ̃(w, δ̃•).

Note that el(q̃) in the paper are simply E (0)
l (q̃). In addition,

FA,B,λ(q, x) =
∞∑
n=0

(−1)An
q A n(n+1)

2 +nλ

(q; q)Bn
xn, (48)

F̃A,B,μ(q̃, x̃) =
∞∑
n=0

(−1)(B−A)n q̃
(B−A)

n(n+1)
2 +nμ

(q̃; q̃)Bn
x̃n . (49)

They can be related by

FA,B,λ(q
−1, x) = F̃A,B,−λ(q, x). (50)
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Example 4. In this example we illustrate Theorem 3 with the state integral I1,2,λ,μ(b)

associated to the 41 knot [AK14]. As we will see, this reproduces the q-series G0
m(q)

and G1
m(q) of (13a) and (13b).

Using

Fλ(q, x) = F1,2,λ(q, x) = F̃1,2,λ(q, x) =
∞∑
n=0

(−1)n
q

n(n+1)
2 +nλ

(q; q)2n
xn . (51)

we find that

P1,2,λ,μ = b
2
(1 + 2δ − 4δ1 + 2λ) − b−1

2
(1 + 2δ̃ − 4δ̃1 + 2μ). (52)

It then follows that (τ = b2)

I1,2,λ,μ(b) = (−1)λ−μ+1iq
λ
2 q̃

μ
2

(
q

q̃

) 1
24

(
τ 1/2

2
G1

λ(q)G0
μ(q̃) − τ−1/2

2
G0

λ(q)G1
μ(q̃)

)
,

(53)

where we have used that

〈Fλ(q, x)〉 = G0
λ(q), 〈(1 + 2λ + 2δ − 4δ1)Fλ(q, x)〉 = G1

λ(q). (54)

In “Appendix A”, we give the details for the state integral I2,3,λ,μ(b) of the 52 knot.

5. Computations

5.1. Resurgent analysis. In this section we briefly review some basic ingredients of
resurgent analysis. A detailed exposition may be found for example in [ABS19,MS16].
Given a Gevrey-1 series

ϕ(τ) =
∑
n≥0

anτ
n, an = O(Cnn!), (55)

its Borel transform is defined by

ϕ̂(ζ ) =
∑
k≥0

ak
k! ζ

k . (56)

It is a holomorphic function in a neighborhood of the origin. In favorable cases, this
function can be extended to the complex ζ -plane (also called Borel plane), but it will
have singularities. Assuming that the analytically continued function does not grow too
fast at infinity, the Borel resummation of ϕ(τ) is defined as the Laplace transform

s(ϕ)(τ ) =
∫ ∞

0
e−ζ ϕ̂(ζ τ )dζ. (57)
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This has discontinuities at Stokes rays in the τ plane, whenever arg(τ ) = arg(ζs), where
ζs is a singularity of ϕ̂(ζ ). We define the lateral Borel resummations for τ near a Stokes
ray by

s±(ϕ)(τ ) =
∫ e±iε∞

0
e−ζ ϕ̂(ζ τ )dζ. (58)

In the context of the theory of resurgence, we are usually given a collection of
transseries �ω(τ), where ω belongs to an indexing set. These transseries have the form

�ω(τ) = e−Vω/τ ϕω(τ), ϕω(τ) ∈ C[[τ ]], (59)

where Vω is the “action" associated to the sector ω. The Borel resummation of the
trans-series �ω(τ) is defined by

s(�ω)(τ ) = e−Vω/τ s(ϕω)(τ ) (60)

(with suitable care for the constant term of ϕω(τ)). Tomeasure the discontinuity of Borel
resummations across a Stokes ray, one introduces the Stokes automorphism S as

s+ = s−S. (61)

In our case, the singularities of ϕ̂(τ ) are logarithmic branch points (i.e. we are dealing
with so-called simple resurgent functions). In that case, the Stokes automorphism can
be expressed as a (possibly infinite) linear combination of transseries,

S(�ω) = �ω +
∑
ω′

Sωω′�ω′ . (62)

The coefficientsSωω′ are the Stokes constants (note that with this convention, their signs
are opposite to e.g. the ones in [ABS19].) The singularities of ϕ̂ω(τ ) occur at the points
Vω′ − Vω for which Sωω′ �= 0.

In the case that we consider in this paper, the transseries are labeled by the critical
point σ and the multicovering μ ∈ Z, i.e. ω = (σ, μ). If there is a singularity in the
Borel plane of �σ,μ located at

ι
(μ,λ)

σ,σ ′ = CS(σ ;μ) − CS(σ ′; λ), (63)

representing another transseries �σ ′,λ, then the Borel resummation s(�σ,μ)(τ ) is dis-

continuous across the Stokes ray ρθ with θ = arg ι
(μ,λ)

σ,σ ′ , and the associated Stokes
automorphism reads

s+(�σ,μ)(τ ) = s−(�σ,μ)(τ ) + S(μ,λ)

σ,σ ′ s−(�σ ′,λ)(τ ), (64)

where S(μ,λ)

σ,σ ′ is the Stokes constant. Equation (2) implies that S(μ,λ)

σ,σ ′ = S(λ−μ)

σ,σ ′ depends
on σ, σ ′ and the difference λ − μ, an arbitrary integer number. It follows the equation
of Stokes automorphism (64) can be written as

s+(�)(τ) = Sθ (q̃)s−(�)(τ) (65)
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with �(τ) = (�σ (τ))σ the vector of asymptotic series, and the Stokes automorphism
matrix

Sθ (q̃) = I + S(k)
σ,σ ′ q̃k Eσ,σ ′ (66)

where Eσ,σ ′ is the elementary matrix with (σ, σ ′)-entry 1 and all other entries zero.
Furthermore, all the Stokes constants are encoded in the two Stokes matrices

S+(q̃) = S−ε→π−ε(q̃), S−(q̃−1) = Sπ−ε→2π−ε(q̃) (67)

(for ε > 0 and sufficiently small) where Sθ−→θ+ is the global Stokes automorphism
matrix defined for two non-Stokes rays whose arguments satisfy 0 ≤ θ+ − θ− ≤ π by

Sθ−→θ+(q̃) =
←−∏

θ−<θ<θ+

Sθ (q̃) (68)

where the ordered product is taken over the Stokes rays in the cone generated by ρθ−
and ρθ+ . This factorization is well-known in the classical literature on the WKBmethod
(see for example [Vor83] where it is called the “radar method”), and we will discuss it
in more detail including its uniqueness in [GGMn20a]. Note the Stokes automorphisms
are now represented by two finite-dimensional matrices S+(q̃) and S−(q̃−1) in which
the entries have been promoted to q̃ and q̃−1-series respectively. This reorganization of
the transseries is reminiscent of what was done in [CC01].

To numerically compute the integer coefficients of the above q̃-series, we need a
high precision numerical computation of the Laplace integrals. And here lies the issue.
In practice, only a few hundred coefficients of the series ϕ(τ) can be obtained. For
instance, for the 41 knot, the stationary phase of the state integral allows one to compute
300 coefficients of ϕσ1,2(τ ), and for the 52 knot about 200 coefficients of ϕσ1,2,3(τ ) can
be obtained. Alternatively, a numerical computation of the Kashaev invariant together
with numerical extrapolation gives about 100 terms. Given such a truncated series, one
can use Padé approximants to analytically continue the Borel transform to the complex
plane, and then calculate the Borel resummation numerically. The Padé approximant
can be also used to determine numerically the singularities in the Borel plane. Precision
can be improved by using a conformal mapping, see [CMHR+07] for a summary of
numerical techniques.

5.2. The 41 knot. The structure of singularities in the Borel plane for the formal power
series ϕ1,2(τ ) of the 41 knot is shown in Fig. 1. Points in each vertical line are 2π i apart,
and the two points in the real axis correspond to

ι± = ±
(
V (σ1)

2π
− V (σ2)

2π

)
= ±V

π
, (69)

whereV is defined in (9). Since each singularity in theBorel plane leads to a discontinuity
in the Borel resummation, one has the structure of Stokes rays shown in Fig. 2 (where we
took into account both series). Note that there is an infinite dense set of rays accumulating
towards the imaginary axis.

We already hinted at the end of Sect. 4.2 that the asymptotic expansion (38) can be
upgraded to an exact expression. To do this, one has to upgrade the optimal truncation
of �(τ) to its Borel resummation. Simultaneously we have to promote the matrix of
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V/π

ϕσ1(τ )

−V/π

ϕσ2(τ )

Fig. 1. The singularities in the Borel plane for the series ϕσ1,2 (τ )

constants appearing in (38), to a matrix whose entries are power series in q̃ with integer
coefficients: (

1√
τ
g00(τ )√

τg10(τ )

)
= MR(q̃) sR(�)(τ). (70)

The index R labels a sector in the τ -plane, since due to presence of Stokes rays, both the
matrix MR(q̃) and the Borel resummed vector � depend on the sector of the τ -plane. In
view of the structure of the Stokes rays, convenient sectors to perform the analysis are
the angular wedges (i.e., pointed open cones in the complex plane) denoted by I , I I ,
I I I and I V in Fig. 2.

It is a challenge to numerically compute the matrix MR(q̃) given only a few hundred
terms of �(τ), since the volume of 41 (about 2.02 . . . ) is so much smaller than the
instanton corrections (appearing at 4π2 = 39.47 . . . ). This can be done however, and
with 300 terms of �(τ) it is possible to compute the first twelve terms in the series
appearing in MR(q̃). One finds for example, in region I ,

MI (q) =
(

1 − q − 2q2 − 2q3 − 2q4 −1 + 2q + 3q2 + 2q3 + q4

1 − 7q − 14q2 − 8q3 − 2q4 1 + 10q + 15q2 − 2q3 − 19q4

)
+ O(q5).

(71)

Our Conjecture 1 suggests that these q-series can be expressed in terms of solutions to
the linear q-difference equation (11). Indeed, one has, at this order,

MI (q) =
(
G0

0(q) −G0
0(q) − G0−1(q)

G1
0(q) −G1

0(q) − G1−1(q)

)
= W−1(q)T

(
0 −1
1 −1

)
. (72)

We conjecture that this is in fact the exact expression for this matrix.
An important consequence of the relation (70) is that, by inverting it, one can express

the Borel resummations of�σ j for j = 1, 2 in a given sector, in terms of the descendants
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III

III IV

Fig. 2. Stokes rays in the τ -plane for �(τ)

of the state integral introduced in (4.3), which are holomorphic functions of τ on C′.
Indeed, let us consider the “reduced" descendant

Ĩ1,2,λ,μ(b) = τ 1/2

2
G1

λ(q)G0
μ(q̃) − τ−1/2

2
G0

λ(q)G1
μ(q̃). (73)

This differs from the descendant (53) in a manifestly holomorphic factor, so it is holo-
morphic on C′. Then, one finds, in region I ,

sI (�σ1)(τ ) = Ĩ1,2,0,0(τ ) + Ĩ1,2,0,−1,(τ ), sI (�σ2)(τ ) = Ĩ1,2,0,0(τ ). (74)

This procedure can be done in the other sectors appearing in Fig. 2: one calculates
MR(q), express it in terms of fundamental solutions, and represent the Borel resum-
mation sR(�) in terms of holomorphic functions on C′. By comparing the different
expressions for the Borel resummations in different sectors, one deduces the Stokes
automorphisms relating them, and from a composition of the Stokes automorphisms
one deduces the promised S matrices.

The results for MR(q) are the following:

MI I (q) =
(

G0
0(q) + G0−1(q) −G0

0(q)

−G1
0(q) − G1−1(q) G1

0(q)

)
=

(
1 0
0 −1

)
W−1(q)T

(
1 0
1 −1

)
,

MI I I (q) =
(
G0

0(q
−1) + G0−1(q

−1) G0
0(q

−1)

G1
0(q

−1) + G1−1(q
−1) G1

0(q
−1)

)
= W−1(q

−1)T
(
1 0
1 1

)
,

MIV (q) =
(

G0
0(q

−1) G0
0(q

−1) + G0−1(q
−1)

−G1
0(q

−1) −G1
0(q

−1) − G1−1(q
−1)

)
=

(
1 0
0 −1

)
W−1(q

−1)T
(
0 1
1 1

)
.

(75)
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From these values one deduces the Stokes automorphisms

sI I (�) = SI→I I (q̃)sI (�), sI V (�) = SI I I→I V (q̃−1)sI I I (�)

sI (�) = SI V �→I sI V (�), sI I I (�) = SI I �→I I I sI I I (�), (76)

where

SI→I I (q) = MI I (q)−1MI (q) SI I I→I V (q) = MIV (q−1)−1MI I I (q
−1) (77a)

SI V→I = MI (q)−1MIV (q) SI I→I I I = MI I I (q)−1MI I (q) . (77b)

and

S+(q) = SI→I I (q)SI V→I , S−(q) = SI I I→I V (q)SI I→I I I . (78)

Substituting the conjectured values for MR and using symmetry and the orthogonality
relations (15) and (16) one obtains (18a), (18b). In the q �→ 0 limit the Stokes matrices
read

S+(0) =
(
1 3
0 1

)
, S−(0) =

(
1 0

− 3 1

)
. (79)

The off–diagonal entries ±3 are Stokes constants associated to the singularities ι± on
the positive and negative real axis respectively. They agree with the matrix of integers
obtained in [GH18], [GZc]. Note that the Stokes matrices S±(q) can also be factorized
according to (67) in order to extract all the other Stokes constants. This will be studied
in [GGMn20a]. Let us finally note that

S+
σ1σ1

(q) = G0
0(q)G1

0(q) = 1 − 8q − 9q2 + 18q3 + 46q4 + O(q5) = Indrot41 (q), (80)

in agreement with Conjecture 2 (the fact that G0
0(q)G1

0(q) equals the rotated index was
pointed out in [GZb]).

5.3. The 52 knot. The structure of singularities in the Borel plane for the formal power
series ϕσ j (τ ) ( j = 1, 2, 3) of the 52 knot is shown in Fig. 3. Points in each vertical line
are 2π i are apart, while the six points ιi j surrounding the origin are given by

ιi j = V (σi )

2π
− V (σ j )

2π
, 1 ≤ i �= j ≤ 3 , (81)

where V (σi ) are given in (21). The structure of Stokes rays is shown in Fig. 4. There is
also an infinite dense set of rays accumulating towards the imaginary axis.

The q-series H±
k,0 for (k = 0, 1, 2), which are analogues of G0

0,G
1
0 of the 41 knot,

have similarly interesting radial asymptotics. We use small letters for the corresponding
functions, i.e.

hk(τ ) =
{
H+
k,0(e

2π iτ ), �(τ ) > 0
H−
k,0(e

−2π iτ ), �(τ ) < 0
, k = 0, 1, 2 . (82)

Then the exact expression of the radial asymptotics reads

e3π i/4

⎛
⎝ τ−1h0(τ )

h1(τ )

τh2(τ )

⎞
⎠ = MR(q̃)sR(�)(τ), (83)
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s21
s31

ϕσ1(τ )

s12
s32

ϕσ2(τ )

s23s13

ϕσ3(τ )

Fig. 3. The singularities in the Borel plane for the series ϕσ j (τ ) of the 52 knot for j = 1, 2, 3

where the index R labels a sector in the τ -plane. The entries of the matrix MR(q̃) are
power series in q̃ in the upper half plane, and power series in 1/q̃ in the lower half-plane.

With more than 200 terms of �(τ), we are able to compute first few terms in MR(q̃).
For instance, in region I+ we are able to compute first six terms in each entry of MI+(q̃).
We display some of the results here

MI+(q) =
⎛
⎝ −1 − q2 2 + 3q2 1 + q + 3q2

−1 + 3q + 3q2 1 − 6q − 3q2 −q
− 5

6 + 5q − 53
6 q

2 − 4
3 − 4q + 77

2 q
2 − 1

6 + 29
6 q + 55

2 q
2

⎞
⎠ + O(q3). (84)

Following Conjecture 1, we can express it in terms of solutions to the linear q-difference
equation (23)

MI+(q) = W−1(q)T

⎛
⎝ 0 0 1

−1 3 0
0 −1 0

⎞
⎠ , (85)

where the Wronskian is defined in (25). Note that this expression is exact. By inverting
the matrix MI+(q), we can express the Borel resummation of �σ j for j = 1, 2, 3 in the
sector I+ in terms of the descendants of the state integal introduced in Eq. (39). Let us
again introduce the “reduced” descendant

Ĩλ,μ(τ ) = τH+
2,λ(q)H−

0,μ(q̃) − 2H+
1,λ(q)H−

1,μ(q̃) + τ−1H+
0,λ(q)H−

2,μ(q̃), (86)
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I+

II+

IV+

III+

I−

II−

IV−

III−

s21s12
s23

s31

s13

s32

Fig. 4. Stokes rays in the τ -plane for �σ j (τ ) of the 52 knot for j = 1, 2, 3. Note that the points s23, s31
happen to have the same real part, and so do s13, s32. The dots are not shown in scale for aesthetic purpose

which differs from the descendant (111) in a manifestly holomorphic factor. We find in
region I+

sI+(�)(τ) = 1

2
e3π i/4

⎛
⎝−1 −1 0

0 −1 0
0 0 1

⎞
⎠

⎛
⎜⎝
Ĩ0,−1

Ĩ0,0
Ĩ0,1

⎞
⎟⎠ (τ ). (87)

In other regions, the results for MR(q) are as follows:



The Resurgent Structure of Quantum Knot Invariants 487

• In the upper half-plane

MI I+(q) =W−1(q)T

⎛
⎝ 0 −3 1

−1 3 0
0 −1 0

⎞
⎠ , (88)

MI I I+(q) =
⎛
⎝1 0 0
0 −1 0
0 0 1

⎞
⎠W−1(q)T

⎛
⎝−3 0 1

3 −1 0
−1 0 0

⎞
⎠ , (89)

MIV+(q) =
⎛
⎝1 0 0
0 −1 0
0 0 1

⎞
⎠W−1(q)T

⎛
⎝ 0 0 1

3 −1 0
−1 0 0

⎞
⎠ , |q| < 1. (90)

• In the lower half-plane:

MI−(q) =
⎛
⎝1 0 0
0 −1 0
0 0 1

⎞
⎠W−1(q)T

⎛
⎝ 0 0 1

−1 −1 0
0 −1 0

⎞
⎠ , (91)

MI I−(q) =
⎛
⎝1 0 0
0 −1 0
0 0 1

⎞
⎠W−1(q)T

⎛
⎝ 0 0 1

−1 −1 −3
0 −1 0

⎞
⎠ , (92)

MI I I−(q) =W−1(q)T

⎛
⎝ 0 0 1

−1 −1 −3
−1 0 0

⎞
⎠ , (93)

MIV−(q) =W−1(q)T

⎛
⎝ 0 0 1

−1 −1 0
−1 0 0

⎞
⎠ , |q| > 1. (94)

From these values one can deduce the Stokes automorphism, in the anticlockwise direc-
tion

sI I I+(�) = SI I+→I I I+(q̃)sI I+(�), sI I−(�) = SI I I−→I I−(q̃−1)sI I I−(�),

sI I+(�) = SI+→I I+sI+(�), sI−(�) = SI I−→I−sI I−(�),

sI V+(�) = SI I I+→I V+sI I I+(�), sI I I−(�) = SI V−→I I I−sI V−(�),

sI+(�) = SI−→I+sI−(�), sI V−(�) = SI V+→I V−sI V+(�), (95)

where

SI I+→I I I+(q) =1

2

⎛
⎝0 −1 0
0 −1 −1
1 −3 0

⎞
⎠ · W−1(q

−1) ·
⎛
⎝0 0 1
0 −2 0
1 0 0

⎞
⎠ · W−1(q) ·

⎛
⎝ 0 −3 1

−1 3 0
0 −1 0

⎞
⎠ , (96)

S−1
I I I−→I I−(q) =1

2

⎛
⎝ 0 −1 0

−3 3 −1
1 0 0

⎞
⎠ · W−1(q) ·

⎛
⎝0 0 1
0 −2 0
1 0 0

⎞
⎠ · W−1(q

−1)T ·
⎛
⎝ 0 0 1

−1 −1 −3
0 −1 0

⎞
⎠ ,

(97)
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and SI−→I+ ,SI+→I I+ ,SI I I+→I V+ ,SI V+→I V− ,SI V−→I I I− ,SI I−→I− are given in
(100a),(100b). The matrices S±(q) are simply

S+(q) =SI I I+→I V+SI I+→I I I+(q)SI+→I I+SI−→I+ , (98)

S−(q) =SI I−→I−SI I I−→I I−(q)SI V−→I I I−SI V+→I V− , (99)

and we obtain (29a),(29b).
In the q �→ 0 limit, the Stokes matrices factorize

S+(0) =Sσ3,σ1Sσ3,σ2Sσ1,σ2 =
⎛
⎝ 1 0 0

0 1 0
− 3 0 1

⎞
⎠

⎛
⎝1 0 0
0 1 0
0 3 1

⎞
⎠

⎛
⎝1 4 0
0 1 0
0 0 1

⎞
⎠ , (100a)

S−(0) =Sσ1,σ3Sσ2,σ3Sσ2,σ1 =
⎛
⎝1 0 3
0 1 0
0 0 1

⎞
⎠

⎛
⎝1 0 0
0 1 −3
0 0 1

⎞
⎠

⎛
⎝ 1 0 0

− 4 1 0
0 0 1

⎞
⎠ . (100b)

The non-vanishing off-diagonal entry of Sσi ,σ j is the Stokes constant associated to the
Borel singularity ιi, j . Assembling these Stokes constants in a matrix we obtain

⎛
⎝ 0 4 3

−4 0 −3
−3 3 0

⎞
⎠ (101)

which is what was found numerically in [GZc, Sec.3.3]. Note that the Stokes matrices
S±(q) can also be factorized according to (67) in order to extract all the other Stokes
constants. This will be studied in detail in [GGMn20a].

We note that

S+
σ1σ1

(q) = 2H+
1,0(q)H−

1,0(q) = 1 − 12q + 3q2 + 74q3 + 90q4 + O(q5) = Indrot52 (q),

(102)

in agreement with Conjecture 2.

6. Open questions

In this paper we have formulated conjectures on the full resurgent structure of quantum
knot invariants of hyperbolic knots, and we have presented detailed evidence for the first
non-trivial cases, namely the knots 41 and 52. Althoughwe used complex Chern–Simons
theory as a way to motivate our results, and state integrals and asymptotic series as a
way to present them, it is clear that a key ingredient that controls the description of the
asymptotic series in Borel plane is a pair of linear q-difference equations with explicit
fundamental solutions. It is natural to ask whether these linear q-difference equations
are related to those that annihilate the 3D-index, or the colored Jones polynomial of a
knot [GL05]. The latter is the famous Â-polynomial of a knot, whose specialization at
q = 1 is conjectured to essentially coincide with the A-polynomial of a knot [Gar04].
It is an interesting question to relate the newly found linear q-difference equations with
the Â-polynomial of a knot.

One could also consider deformations by an arbitrary holonomy around the knot,
which will be explored in [GGMn20a]. In this case, the resulting perturbative series
depend on a parameter x (see e.g. [DGLZ09]) that plays the role of a Jacobi variable
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and one could calculate the Stokes constants in this extended setting. This might make
clearer the relation to the A-polynomial and its quantization.

Another interesting question is whether the Stokes constants we compute, which
are closely related to BPS counting, can be obtained with techniques similar to those
of [GMN13], i.e. by doing WKB analysis on the algebraic curve defined by the A-
polynomial, or some variant thereof.

Finally, we would like to point out that towers of singularities similar to those studied
here appear in the Borel plane of topological string partition functions, see e.g. [PS10,
CSMnS17]. Understanding the Stokes constants of these singularities in topological
string theory would probably lead to fascinating mathematics and to connections with
BPS state counting in string theory.
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Appendix A. q-Series Associated with the 52 Knot

A.1 The state integral of the 52 knot. We now consider the case of (A, B) = (2, 3), i.e.,
the state integral I2,3,λ,μ(b). The data we need to present our result are

F2,3,λ(q, x) =
∞∑
n=0

qn(n+1)+nλ

(q; q)3n
xn, (103)

F̃2,3,μ(q̃, x̃) =
∞∑
n=0

(−1)n
q̃

1
2 n(n+1)+nμ

(q̃; q̃)3n
x̃n, (104)

as well as the operator

P2,3,λ,μ = − 1

2π i
+ (1 + 2δ − 3δ1 + λ)(

1

2
+ δ̃ − 3δ̃1 + μ) (105)

− b2

2
((1 + 2δ − 3δ1 + λ)2 − 3δ2) (106)

− b−2

2
((
1

2
+ δ̃ − 3δ̃1 + μ)2 − 1

4
− 3δ̃2 + 6 E (0)

2 (q̃)). (107)

http://creativecommons.org/licenses/by/4.0/
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Using the observation that

− 1

2π i
= 1

12

(
τ E2(τ ) − τ−1E2(−1/τ)

)
(108)

as well as

E2(τ ) = 1 − 24
∞∑
s=1

qs

(1 − qs)2
= 1 − 24E (0)

2 (q), (109)

the final result can be written as (τ = b2 in the upper half-plane)

I2,3,λ,μ(b) = (−1)λ−μe
π i
4 q

λ
2 q̃

μ
2

(
q

q̃

) 1
8

(110)

×
(

−τ

2
H+
2,λ(q)H−

0,μ(q̃) + H+
1,λ(q)H−

1,μ(q̃) − τ−1

2
H+
0,λ(q)H−

2,μ(q̃)

)
.

(111)

Here

H+
j,λ(q) =

∞∑
n=0

p( j)
n,λ(q)tn,λ(q), H−

j,μ(q̃) =
∞∑
n=0

P( j)
n,μ(q̃)Tn,μ(q̃), ( j = 0, 1, 2) ,

(112)

where tn,λ(q), Tn,μ(q̃) are coefficients of F2,3,λ(q, x), F̃2,3,μ(q̃, x̃) as series of x, x̃ ,

tn,λ(q) = qn(n+1)+nλ

(q; q)3n
, (113)

Tn,μ(q̃) = (−1)n
q̃

1
2 n(n+1)+nμ

(q̃; q̃)3n
, (114)

while p( j)
n,λ(q), P( j)

n,μ(q̃) result from applying the operator P2,3,λ,μ, i.e.

p(0)
n,λ(q) = 1, (115)

p(1)
n,λ(q) = 1 + 2n − 3E (n)

1 (q) + λ, (116)

p(2)
n,λ(q) =

(
p(1)
n,λ(q)

)2 − 1

6
− 3E (n)

2 (q) + 4E (0)
2 (q), (117)

as well as

P(0)
n,μ(q̃) = 1, (118)

P(1)
n,μ(q̃) = 1

2
+ n − 3E (n)

1 (q̃) + μ, (119)

P(2)
n,μ(q̃) =

(
P(1)
n,μ(q̃)

)2 − 1

12
− 3E (n)

2 (q̃) + 2E (0)
2 (q̃). (120)
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Theq-series H+
j,λ(q) and H−

j,μ(q) for j = 0, 1, 2 are exactly those that appear inEq. (25).
A few coefficients of the above series are given by

H+
0,−1(q) = 1 + q + 3q2 + 6q3 + 11q4 + 18q5 + O(q6),

H+
1,−1(q) = −q + 3q3 + 3q4 + 3q5 + O(q6),

H+
2,−1(q) = −1

6
+
29

6
q +

55

2
q2 + 72q3 +

895

6
q4 + 270q5 + O(q6),

H−
0,−1(q) = −2q − 3q2 − 2q3 + q4 + 9q5 + O(q6),

H−
1,−1(q) = −1 − 3q − 3

2
q2 + 12q3 +

69

2
q4 +

153

2
q5 + O(q6),

H−
2,−1(q) = 5

3
q +

27

2
q2 +

143

3
q3 +

541

6
q4 +

263

2
q5 + O(q6). (121)

H+
0,0(q) = 1 + q2 + 3q3 + 6q4 + 10q5 + O(q6),

H+
1,0(q) = 1 − 3q − 3q2 + 3q3 + 6q4 + 12q5 + O(q6),

H+
2,0(q) = 5

6
− 5q +

53

6
q2 +

117

2
q3 + 117q4 +

601

3
q5 + O(q6),

H−
0,0(q) = 1 − q − 3q2 − 5q3 − 7q4 − 6q5 + O(q6),

H−
1,0(q) = 1

2
− 9

2
q − 21

2
q2 − 19

2
q3 − 9

2
q4 + 27q5 + O(q6),

H−
2,0(q) = 1

6
− 37

6
q − 17

2
q2 +

115

6
q3 +

389

6
q4 + 181q5 + O(q6). (122)

H+
0,1(q) = 1 + q3 + 3q4 + 6q5 + O(q6),

H+
1,1(q) = 2 − 3q − 6q2 − 2q3 + 3q4 + 15q5 + O(q6),

H+
2,1(q) = 23

6
− 11q − 12q2 +

191

6
q3 +

189

2
q4 + 200q5 + O(q6),

H−
0,1(q) = 1 − q2 − 3q3 − 6q4 − 9q5 + O(q6),

H−
1,1(q) = 3

2
− 3q − 17

2
q2 − 27

2
q3 − 21q4 − 31

2
q5 + O(q6),

H−
2,1(q) = 13

6
− 10q − 109

6
q2 − 13

2
q3 + 7q4 +

173

2
q5 + O(q6). (123)

A.2. The symmetry q ↔ q−1. We now discuss the symmetry q �→ q−1. It is easy to see
that the above q-series H±

j,λ(q) are well-defined holomorphic functions when q is either
inside or outside the unit disk. Extended this way, we claim that

H+
j,λ(q) = (−1) j H−

j,−λ(1/q), (q ∈ C, |q| �= 1) . (124)

This follows from the easy observation

tn,λ(q) = Tn,−λ(1/q) (125)
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and the less trivial symmetry

E1(τ ) = −E1(−τ), E2(τ ) = −E2(−τ) (126)

(see for instance [BC13] for the first and [CMZ18] for the second), where E1, E2 are
related to E (0)

1 , E (0)
2 by

E1(τ ) = 1 − 4
∑
n≥1

qn

1 − qn
= 1 − 4E (0)

1 (q), (127)

E2(τ ) = 1 − 24
∑
n≥1

qn

(1 − qn)2
= 1 − 24E (0)

2 (q) . (128)

Equations (125) and (126) and induction on the exponent n of E (n)
1 , E (n)

2 imply that

p(k)
n,λ(q) = (−1)k P(k)

n,−λ(1/q) (129)

for all n, and this concludes the proof of Eq. (124).
The above conclusions hold not only for the state integral with (A, B) = (2, 3) or
(A, B) = (1, 2), but for the case of arbitrary integers A and B with B > A > 0.
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