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We state and prove a quantum generalization of MacMahon’s
celebrated Master Theorem and relate it to a quantum generali-
zation of the boson–fermion correspondence of physics.

In this article we state and prove a quantum generalization of
MacMahon’s celebrated Master Theorem conjectured by

S.G. and T.T.Q.L. Our result was motivated by quantum
topology. In addition to its potential importance in knot theory
and quantum topology (explained in brief in ref. 4), this
article answers George Andrews’s long-standing open problem
(1) of finding a natural q-analog of MacMahon’s Master
Theorem.

MacMahon’s Master Theorem
Let us recall the original form of MacMahon’s Master Theorem
and some of its modern interpretations.

Consider a square matrix A � (aij) of size r with entries in
some commutative ring. For 1 � i � r, let Xi :� �j�1

r aij xj, (where
xi are commuting variables) and for any vector (m1, . . . , mr) of
nonnegative integers let G(m1, . . . , mr) be the coefficient of
x1

m1x2
mr . . . xr

mr in �i�1
r Xi

mi. MacMahon’s Master Theorem is the
following identity (see ref. 2):

�
m1,m2, . . . , mr�0

�

G�m1, . . . , mr� � 1�det�I � A� . [1]

There are several equivalent reformulations of MacMahon’s
Master Theorem (see, for example, ref. 3 and references
therein). Let us mention one of these studies, which is of
importance to physics.

Given a matrix A � (aij) of size r with commuting entries that
lie in a ring R, and a nonnegative integer n, we can consider its
symmetric and exterior powers Sn(A) and �n(A), and their traces
tr Sn(A), and tr �n(A), respectively. Because

trSn�A� � �
m1� . . . mr�n

G�m1, . . . , mr�

det�I � tA� � �
n�0

�

�	1�ntr�n�A� tn,

the following identity

1
�n�0

� �	1�ntr�n�A� tn � �
n�0

�

trSn�A� tn [2]

in R [[t]] is equivalent to Eq. 1. In physics, Eq. 2 is called the
boson–fermion correspondence, where bosons (fermions) are
commuting (skew-commuting) particles corresponding to sym-
metric (exterior) powers.

Quantum Algebra, Right-Quantum Matrices, and
Quantum Determinants
In r-dimensional quantum algebra we have r indeterminate
variables xi (1 � i � r), satisfying the commutation relations
xj xi � qxi xj for all 1 � i 
 j � r. We also consider matrices A �

(aij) of r2 indeterminates aij, 1 � i, j � r, which commute with
the xi and such that for any 2-by-2 minor of (aij), consisting of
rows i and i�, and columns j and j� (where 1 � i 
 i� � r, and
1 � j 
 j� � r), writing a :� aij, b :� aij�, c :� ai�j, d :� ai�j�, we
have the commutation relations:

ca � qac, �q-commutation of the entries in a column� [3]

db � qbd, �q-commutation of the entries in a column� [4]

ad � da � q	1cb � qbc �cross commutation relation� . [5]

We will call such matrices A right-quantum matrices.
The quantum determinant, (first introduced in ref. 3) of any

(not necessarily right-quantum) r by r matrix B � (bij) may be
defined by

detq�B� :� �
��Sr

�	q�	inv���b�11b�22· · ·b�rr ,

where the sum ranges over the set of permutations, Sr, of {1, . . . ,
r}, and for any of its members, �, inv(�) denotes the number of
pairs 1 � i 
 j � r for which �i � �j.

A q-Version of MacMahon’s Master Theorem
We are now ready to state our quantum version of MacMahon’s
Master Theorem.

Theorem 1 (Quantum MacMahon Master Theorem). Fix a right-
quantum matrix A of size r. For 1 � i � r, let Xi :� �j�1

r aij xj, and
for any vector (m1, . . . , mr) of nonnegative integers let G (m1, . . . ,
mr) be the coefficient of x1

m1x2
mr . . . xr

mr in �i�1
r Xi

mi. Let

Ferm�A� � �
J�1, . . . , r�

�	1� �J�detq�AJ�

where the summation is over the set of all subsets J of {1, . . . , r},
and AJ is the J by J submatrix of A, and

Bos�A� � �
m1, . . . , mr�0

�

G�m1, . . . , mr� .

Then

Bos�A� � 1/Ferm�A� .

When we specialize to q � 1, Theorem 1 recovers Eq. 2, which
explains why our result is a q-version of the MacMahon Master
Theorem. For a motivation of Theorem 1, see Some Remarks on
the Boson–Fermion Correspondence.

The above result is not only interesting from the combinatorial
point of view, but it is also a key ingredient in a finite noncom-

Author contributions: S.G., T.T.Q.L., and D.Z. performed research.

The authors declare no conflict of interest.

This paper was submitted directly (Track II) to the PNAS office.

†To whom correspondence should be addressed. E-mail: stavros@math.gatech.edu.

© 2006 by The National Academy of Sciences of the USA

13928–13931 � PNAS � September 19, 2006 � vol. 103 � no. 38 www.pnas.org�cgi�doi�10.1073�pnas.0606003103

D
ow

nl
oa

de
d 

at
 M

ax
-P

la
nc

k 
G

es
el

ls
ch

af
t M

P
D

L 
on

 M
ar

ch
 1

7,
 2

02
0 



mutative formula for the colored Jones function of a knot
(see ref. 4).

Computer Code
The results of the article have been verified by computer code
(written by D.Z.). Maple programs QuantumMACMAHON and
qMM are available at www.math.rutgers.edu/�zeilberg�
programs.html. QuantumMACMAHON rigorously proves The-
orem 1 for any fixed r.

Proof
Some Lemmas on Operators. The proof will make crucial use of a
calculus of difference operators developed by D.Z. (5). This
calculus of difference operators predates the more advanced
calculus of holonomic functions developed by D.Z. (6).

Difference operators act on discrete functions F, that is func-
tions whose domain is �r. For example, consider the shift-
operators Mi and the multiplication operator Qi, which act on a
discrete function F(m1, . . . , mr) by

�MiF��m1, . . . , mr� :� F�m1, . . . , mi	1, mi � 1, mi�1, . . . , mr�

�QiF��m1, . . . , mr� :� qmiF�m1, . . . , mr�.

It is easily seen that

MiQi � qQiMi.

Abbreviating Qi as qmi, we obtain that

Miqmi � qmi�1Mi Miqmj � qmjMi for i � j . [6]

Another example is the operator x̂i, which left-multiplies F by xi.
Notice that x̂j x̂i � qx̂i x̂j for j � i. In the proof below, we will
denote x̂i as xi. In that case, the identity xj xi � qxi xj for j � i holds
in the quantum algebra in the algebra of operators.

Before embarking on the proof, we need the following readily
and verified lemmas.

Lemma 1. (Commuting Xi with Xj): For 1 � i 
 j � r, Xj Xi �
qXi Xj.

Lemma 2. (Commuting xi with Xj): For each of the aij, define the
operator Qij acting on expressions P involving aij by QijP(aij) :�
P (qaij). Then, for any 1 � i, j � r, and integer mi and any
expression F

xi
	miXjF � ��Qj1

	1Qj2
	1· · ·Qj,i	1

	1 Qj,i�1· · ·Qjr�
miXj�xi

	miF.

Lemma 3. (Column expansion with respect to the last column):
Given an r by r matrix (aij) (not necessarily quantum), let Ai be the
minor of the entry air, i.e., the r 	 1 by r 	 1 matrix obtained by
deleting the ith row and rth column. Then

detq�A� � �
i�1

r

�	q� i	r�detq Ai�air.

Lemma 4. If A is a matrix that satisfies Eq. 5 and A� denotes a
matrix obtained by interchanging the i and j columns of A, then
detq(A�) � (	q)	inv(ij)detq(A).

Proof. Suppose first that we interchange two adjacent columns
i and j :� i � 1. Consider the involution of Sr that sends a
permutation � to �� � �(ij). Given � � Sr, let (A; �) �
(	1)	inv(�)a�11 . . . a�rr denote the contribution of � in detq(A).
Then, detq(A) � �� (A; �). Eq. 5 implies that

�A; �� � �A;��� � �	q���A� ; �� � �A� ; ���� .

Summing over all permutations proves the result when j �
i � 1.

Observe that when j � i � 1, the matrix A� is no longer
right-quantum since it does not satisfy Eq. 5. However, the proof
used only the fact that Eq. 5 holds for the i and i � 1 columns
of A.

Thus, the proof can be iterated inv(ij) times to commute the
i and j � i columns of A. The result follows.

Lemma 5. (Equal columns imply that detq vanishes): Let A be a
right-quantum matrix. In the notation of Lemma 3, for all j � r,

�
i�1

r

�	q� i	r�detq Ai�aij � 0.

Proof. If j � r 	 1, it is easy to see that q-commutation along
the entries in every column of A imply that the sum vanishes.

If j 
 r 	 1, use Lemma 4 to reduce it to the case of j � r 	 1.
Remark. One can give an alternative proof of Lemmas 4 and 5

from the trivial 2-by-2 case and, by induction using the q-Laplace
expansion of a q-determinant that is completely analogous to the
classical case.

Proof of Theorem 1. The proof is a quantum-adaptation of the
‘‘operator-elimination’’ proof of MacMahon’s Master Theorem
given in ref. 5. Fix a right-quantum matrix A.

Observe that G(m1, . . . , mr) is the coefficient of x1
0 . . . xr

0 in

H�m1, . . . , mr; x1, . . . , xr� :� xr
	mr· · ·x2

	m2x1
	m1 �

i�1

r

Xi
mi.

We will think of H as a discrete function that is as a function of
(m1, . . . , mr) � �r. H takes values in the ring of noncommu-
tative Laurrent polynomials in the xis, with coefficients in the
ring generated by the entries of A, modulo the ideal given by Eqs.
3–5.

Let us see how the shift operators Mi acts on H. By definition,

MiH�m1, . . . , mr; x1, . . . , xr� �

xr
	mr· · ·xi�1

	mi�1xi
	mi	1xi	1

	mi	1· · ·x1
	m1X1

m1· · ·Xi	1
mi	1Xi

mi�1Xi�1
mi�1· · ·Xr

mr .

By moving xi
	1 to the front and Xi in front of X 1

m1, and using
Lemma 1 and xj xi � qxi xj, we have

MiH�m1, . . . , mr; x1, . . . , xr� �

qmr�mr	1�· · ·�mi�1	m1	m2	· · ·	mi	1xi
	1�xr

	mr· · ·x1
	m1Xi�X1

m1· · ·Xr
mr.

By moving Xi next to xi
	1 and using Lemma 2 this equals to

qmr�mr	1�· · ·�mi�1	m1	m2	· · ·	mi	1xi
	1

���Qi2· · ·Qir�
m1�Qi1

	1Qi3· · ·Qir�
m2

��Qi1
	1Qi2

	1Qi4· · ·Qir�
m3· · ·�Qi1

	1Qi2
	1· · ·Qi,r	1

	1 �mrXi�

�xr
	mr· · ·x1

	m1X1
m1 . . . Xr

mr,

which is equal to

qmr�mr	1�· · ·�mi�1	m1	m2	· · ·	mi	1xi
	1

��q	m2	m3	· · ·	mrai1x1 � qm1	m3	· · ·	mrai2 x2 � · · ·

� qm1�m2�· · ·�mr	1air xr�H�m1, . . . , mr; x1, . . . , xr�.
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Multiplying out and rearranging, we get that the discrete func-
tion H (m1, . . . , mr; x1, . . . , xr) is annihilated by the r operators
(i � 1, 2, . . . , r):

Pi :� �
j�1

i	1

	q	mj	2mj�1	· · ·	2mi	1	miaij x j � �Mi � aii�xi

� �
j�i�1

r

	qmi�2mi�1�· · ·�2mj	1�mjaij x j.

Now comes a nice surprise. Let us define bij to be the coefficient
of xj in Pi. For example, for r � 3 we have

B � � M1 � a11 	qm1�m2a12 	qm1�2m2�m3a13

	q	m1	m2a21 M2 � a22 	qm2�m3a23

	q	m1	2m2	m3a31 	q	m2	m3a32 M3 � a33

� .

Lemma 7. B is a right-quantum matrix.
Proof. It is easy to see that the entries in each column of B

q-commute. To prove Eq. 5, consider the following three cases
for a 2-by-2 submatrix C of B: C contains two (resp. one, resp.
zero) diagonal entries of B, and prove it case by case, using the
fact that the operators Mi and qmj commute with the aij and
satisfy the commutation relations of Eq. 6.

Now we eliminate x1, x2, . . . , xr	1 by left-multiplying Pi by the
minor of bir in B � (bij) � (	q)i	r, for each i � 1, 2, . . . , r, and
adding them all up. Since B is right-quantum (by Lemma 7),
Lemma 5 implies that the coefficients of x1, . . . , xr	1 all vanish,
and detq(B)xrH � 0. After left-multiplying by xr

	1, which com-
mutes with the entries in B, we obtain that

detq�B�H�m1, . . . , mr; x1, . . . , xr� � 0.

Since the entries of B do not contain any xi, it follows that detq(B)
annihilates every coefficient of H, in particular its constant term.
Taking the constant term yields

detq�B�G�m1, . . . , mr� � 0.

Here comes the next surprise.

Lemma 8. (i) We have

detq�B� � �
J�1, . . . , r�

�	1� �J�detq�AJ�MJ�,

where J� � {1, . . . , r} 	 J and MJ � �j�J Mj.
(ii) In particular,

detq�B� �M1�· · ·�Mr�1 � Ferm�A� .

Proof. Let us expand detq(B) as a sum over permutations � �
Sr. We have

detq�B� � �
��Sr

�	q�	inv���b�11b�22· · ·b�r r

� �
��Sr

�
i�1

r

�	q�	inv��, i�b�i i,

where inv(�, i) is the number of j � i such that �i � �j. Now,
bij � �ijMi 	 qij aij, where qij is a monomial in the variables qmk,
and �iq�ii � 1. Moreover, if �i � i, then for each j with i 
 j �
�j, the exponent of qmi in qij is 2 if �j 
 i and 0 if �j � i.

Since �iq�ii � 1, we can move the monomials qij in the left of
�i(	q)	inv(�, i)b�ii and then cancel them. The monomials com-

mute with all entries of the matrix bij, except with the diagonal
ones. Commuting q2mi with bii � ��iiMii 	 q�iia�ii gives biiq2mi �
q2mi(��iiq

2Mii 	 q�iia�ii). In other words, commuting replaces Mi
by q2Mi. Thus, we have:

detq�B� � �
��Sr

�
i�1

r

�	q�	inv��, i����iiq
2inv��, i�Mi � a�i i�

� �
��Sr

�
J�1, . . . , r�

�
i�J

�	q�	inv��, i���i iq
2inv��, i�Mi

��
i�J

�	q�	inv��, i��	a�i i� .

Now, rearrange the summation. Observe that every permutation
� of {1, . . . , r} gives rise to a permutation �� on the set {1, . . . ,
r} 	 Fix (�), where Fix (�) is the fixed point set of �. Moreover,
inv (��, i) � inv (�, i) 	 �{ j � J : j � i}�. Using this, part i
follows. Part ii follows from part i and the definition of Ferm (A).

Hence,

�
J�1, . . . , r�

�	1� �J�detq�AJ�MJ�G�m1, . . . , mr� � 0.

Summing over �r, we get

�
m1, . . . , mr�0

� �
J�1, . . . , r�

�	1� �J�detq�AJ�MJ�G�m1, . . . , mr� � 0.

For a subset J � {k1, . . . , kj} of {1, . . . , r}, we denote by
GJ(mk1

, . . . , mkj
) the evaluation G(m1, . . . , mr) at mi � 0 for

all i � J, and we define

SJ � �
mk1, . . . , mkj�0

�

G�m1, . . . , mr�.

Using telescoping cancellation, the inclusion–exclusion princi-
ple, and Lemma 8 (part ii), the above equation becomes

�
J�1, . . . , r�

�	1� �J�Ferm�AJ�SJ � 0.

Using induction (with respect to r), together with S� � 1, we
obtain that Ferm(A)S{1, . . . , r} � 1.

Some Remarks on the Boson–Fermion Correspondence
Let us give some motivation for Theorem 1 from the point of view
of quantum topology.

For a reference on quantum space and quantum algebra, see
Chapter IV of ref. 7 and ref. 8.

Recall that a vector (column or row) of r indeterminate entries
x1, . . . , xr lies in r-dimensional quantum space Ar�0 if its entries
satisfy

xj xi � qxi xj

for all 1 � i 
 j � r.
Recall that a right (left) endomorphism of Ar�0 is a matrix A �

(aij) of size r whose entries commute with the coordinates xi of
a vector x � (x1, . . . , xr)T � Ar�0 and in addition, Ax (left, xT A)
lie in Ar�0. Recall also that an endomorphism of Ar�0 is one that
is right and left endomorphism.

It is easy to see (e.g., in theorem IV.3.1 of ref. 7) that A is a
right-quantum (i.e., a right-endomorphism) if for every 2-by-2

submatrix � a
c

b
d� of A we have

13930 � www.pnas.org�cgi�doi�10.1073�pnas.0606003103 Garoufalidis et al.
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ca � qac, db � qbd, ad � da � q	1cb � qbc.

Moreover, A is left-quantum if for every 2-by-2 submatrix of A
(as above) we have

ba � qab, dc � qcd, ad � da � q	1bc � qcb.

Finally, A is quantum if for every 2-by-2 submatrix of A (as
above) we have

ba � qab, ca � qac, db � qbd, dc � qcd, cb � bc,

ad � da � q	1cb � qbc. [7]

The set of quantum matrices A are the points of the r-
dimensional quantum algebra Mq(r), which is defined to be the
quotient of the free algebra in noncommuting variables xij for
1 � i, j, � r, modulo the left ideal generated by the commutation
relations of Eq. 7.

The algebra Mq(r) has interesting and important structure.
Mq(r) is Noetherian and has no zero divisors; in addition, a basis
for the underlying vector space is given by the set of sorted
monomials {�i, jaij

nij�nij � 0}, where the product is taken lexico-
graphically. An important quotient of Mq(r) is the quantum
group SLq(r) :� Mq(r)/(detq 	 1), which is a Hopf algebra (see
theorem IV.4.1 in ref. 7) whose representation theory gives rise

to the quantum group invariants of knots, such as the celebrated
Jones Polynomial.

Observing that

tr Sn�A� � �
m1� . . . mr�n

G�m1, . . . , mr�

tr�n�A� � �
J�1, . . . , r�,�J��n

detq�AJ�

Theorem 1 implies that

Theorem 2. If A is in Mq(r), then

1
Ferm�A�

� �
n�0

�

trSn�A� .

Since the algebra Mq(r) has a vector space basis given by sorted
monomials, it should be possible to give an alternative proof of
the quantum MacMahon Master Theorem using combinatorics
on words, as was done in ref. 9 for several proofs of the
MacMahon Master Theorem. We hope to return to this alter-
native point of view in the near future.
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