Math. 1501N5, Test 2, 11/2/1999

Solutions:

1. (4 pts) Calculate

\[\frac{d}{dx} \left[\cos \left(\frac{3x + 1}{1 + 2x^3} \right)^5 + \tan x \right] \]

\[= -\sin \left(\frac{3x + 1}{1 + 2x^3} \right)^5 + \tan x \right] \times \left[5 \left(\frac{3x + 1}{1 + 2x^3} \right)^4 \frac{3(1 + 2x^3) - 6x^2(3x + 1) + \sec^2 x}{(1 + 2x^3)^2} \right]. \]

2. (5 pts) Find the equation of the line tangent to the curve \(\sin y + x^3y^4 = 0 \) at (1, 0).

Differentiate the equation implicitly to get

\[\cos y \frac{dy}{dx} + 3x^2y^4 + x^3y^3 \frac{dy}{dx} = 0. \]

If \(x = 1 \) and \(y = 0 \) we then have \(\frac{dy}{dx} = 0 \) and so the equation of the tangent line is \(y = 0 \).

3. (5 pts) A poster is to have an area of 180 in\(^2\) with 1-inch margins at the bottom and sides and a 2-inch margin at the top. What dimensions will give the largest printed area?

Let \(x \) be the length of the side of the poster. Then the length of the top (and the bottom) is \(180/x \). Therefore the printed area as a function of \(x \) is

\[A(x) = 180 - 2x - \left(\frac{180}{x} - 2 \right) - 2 \left(\frac{180}{x} - 2 \right) = 186 - 2x - \frac{540}{x}, \]

where \(3 \leq x \leq 90 \). We need to find \(x \) maximizing \(A \).

\[A'(x) = -2 + \frac{540}{x^2} = 0 \]

if and only if \(x = \sqrt{270} \). Since \(A(3) = A(90) = 0 \) the function must have maximum at \(x = \sqrt{270} \).

4. (5 pts) How many solutions does the equation \(4x^3 - 4x^2 + x = 0 \) have in the interval \([-1, 1]\)?

Let \(f(x) = 4x^3 - 4x^2 + x \). \(f'(x) = 12x^2 - 8x + 1 \) and so \(f'(x) = 0 \) if \(x = 1/2, x = 1/6 \). Now: \(f(-1) < 0, f(1/6) > 0, f(1/2) = 0, f(1) > 0 \). Therefore by the Intermediate Value Theorem \(f \) has one zero in the interval \((-1, 1/6)\). The second zero is at \(1/2 \). There are no other zeros since if there were one there would have to be another critical number. Therefore the equation has two solutions.

5. (5 pts) A lighthouse is located on a small island 3 km away from the nearest point \(P \) on a straight shoreline and its light makes four revolutions per minute. How fast is the beam of light moving along the shoreline when it is 1 km from \(P \)?
Let x be the distance along the shoreline between the light and the point P, and θ be the angle between the line connecting the lighthouse with P and the light beam. We know that $d\theta/dt = 8\pi$ (rad/min). Since $x = 3 \tan \theta$ we get

$$\frac{dx}{dt} = 3 \sec^2 \theta \frac{d\theta}{dt}.$$

When $x = 1 \tan \theta = 1/3$ and thus $\sec^2 \theta = 10/9$. Therefore when $x = 1$

$$\frac{dx}{dt} = 3 \frac{10}{9} 8\pi = \frac{80\pi}{3} \text{ (km/min)}.$$

6. (16 pts) Let

$$f(x) = \frac{1}{x^3 - x}.$$

(a) Find the critical numbers of f and the intervals on which f is increasing or decreasing.
(b) Find the local maximum and minimum values of f.
(c) Find the intervals of concavity and inflection points.
(d) Find the asymptotes of f (if any).
(e) Use the information from parts (a)-(d) to sketch the graph of f.

(a) Domain of f is $\mathbb{R} \setminus \{0, \pm 1\}$. Moreover f is differentiable on its domain and is odd and so its graph is symmetric about the origin.

$$f'(x) = \frac{1 - 3x^2}{(x^3 - x)^2}.$$

Therefore $f(x)' = 0$ if $x = \pm 1/\sqrt{3}$ and these are the critical numbers.

$f' < 0$ (and so f is decreasing) on

$$(-\infty, -1) \cup (-1, -\frac{1}{\sqrt{3}}) \cup \left(\frac{1}{\sqrt{3}}, 1\right) \cup (1, +\infty),$$

$f' > 0$ (and so f is increasing) on

$$\left(-\frac{1}{\sqrt{3}}, 0\right) \cup (0, \frac{1}{\sqrt{3}}).$$

(b) Since f' changes sign at $\pm 1/\sqrt{3}$ we see that there is a local minimum at $-1/\sqrt{3}$ and a local maximum at $1/\sqrt{3}$.

(c)

$$f''(x) = \frac{6x^4 - 3x^2 + 1}{x^3(x^2 - 1)^3}.$$
Since \(6x^4 - 3x^2 + 1\) is always greater than 0, \(f''\) is never zero and so there are no inflection points. We have:

\(f'' < 0\) (and thus \(f\) is concave down) on \((-\infty, -1) \cup (0, 1)\).

\(f'' > 0\) (and thus \(f\) is concave up) on \((-1, 0) \cup (1, +\infty)\).

(d) \[\lim_{x \to \pm\infty} f(x) = 0, \quad \lim_{x \to -1^-} f(x) = -\infty, \quad \lim_{x \to -1^+} f(x) = +\infty, \quad \lim_{x \to 0^-} f(x) = +\infty, \quad \lim_{x \to 0^+} f(x) = -\infty, \quad \lim_{x \to 1^-} f(x) = -\infty, \quad \lim_{x \to 1^+} f(x) = +\infty.\]

Therefore \(f\) has vertical asymptotes \(x = -1, x = 0, \) and \(x = 1,\) and a horizontal asymptote \(y = 0.\)

(e) Please sketch the graph yourself.