
Math. 4317, Practice Test 2

1. Let A1 ⊇ A2 ⊇ ... ⊇ An ⊇ ... be a nested sequence of closed connected subsets of IR2.
Is it true that

⋂
n≥1

An must be connected? Prove or give a counterexample.

2. Let 0 < x1 ≤ 3 and let xn+1 =
√

2xn + 3. Show that the sequence (xn) is convergent
and find its limit.

3. Let fn → f and gn → g uniformly on some set E ⊆ IR. Does it follow that (fngn)
converge uniformly to fg on E?

4. Let f : IR → IR be continuous at a point b ∈ IR and let f(b) < M for some M ∈ IR.
Show that there is an open interval I containing b such that f(x) < M for all x ∈ I.

5. Let J be an interval and f : J → IR be an increasing function (i.e. if x ≤ y for x, y ∈ J
then f(x) ≤ f(y)) such that f(J) is an interval. Show that f must be continuous on J .



1. Let An = IR2 \ {(x, y) : 0 < x < 1,−n < y < n}. The An are nested, closed, and
connected as every two points in An can be connected trivially by a polygonal curve that
consists of at most three line segments. But

⋂

n≥1

An = {(x, y) : x ≤ 0} ∪ {(x, y) : x ≥ 1}

which is not connected.

2. We first show that 0 < xn ≤ 3 for all n ∈ IN. We will prove it by induction. The
inequality is true for k = 1. Suppose that 0 < xk ≤ 3 for some k ∈ IN. Then 0 < 2xk+3 ≤ 9
which implies that 0 ≤ xk+1 =

√
2xk + 3 ≤

√
9 = 3 and we are done.

We will now show that xn ≤ xn+1. For every n ∈ IN. Since we know that 0 ≤ xn ≤ 3
it is enough to show that x ≤

√
2x + 3 for 0 ≤ x ≤ 3. Since x ≥ 0 this inequality is

equivalent to x2 ≤ 2x + 3 which is equivalent to (x − 3)(x + 1) ≤ 0, which holds for
−1 ≤ x ≤ 3. This shows that we must have xn ≤ xn+1. We also notice that if x ≥ 0 then
the equality x =

√
2x + 3 holds only if x = 3.

Therefore (xn) is bounded and monotone increasing and so it has a limit. If we denote
the limit by x then obviously 0 ≤ x ≤ 3. Moreover, passing to the limit in the expression
xn+1 =

√
2xn + 3, we get x =

√
2x + 3 which, as we noted above, implies that x = 3.

3. The answer is no. For instance, let E = (0, +∞), fn(x) = f(x) = x, gn(x) = 1/n. Then
obviously g(x) = 0 but fn(x)gn(x) = x/n does not converge uniformly to f(x)g(x) = 0.
The result is true if we assume additionally that the functions f and g are bounded. Prove
it.

4. Let ǫ = M − f(b). By the definition of continuity there exists δ(ǫ) > 0 such that if
|x − b| < δ(ǫ) then |f(x) − f(b)| < ǫ. Take I = (b − δ(ǫ), b + δ(ǫ)). Then if x ∈ I we have
|x − b| < δ(ǫ) and so |f(x) − f(b)| < ǫ = M − f(b). Therefore we have

f(x) − f(b) < M − f(b)

which implies f(x) < M .

5. Let a ∈ J and let (xn) be a sequence in J such that xn → a. We notice that,
since f is increasing, f is bounded in J ∩ [a − ǫ, a + ǫ] for some ǫ > 0. If (f(xn)) does
not converge to f(a) then, since it is bounded, it must have a convergent subsequence
(f(xnk

)) which converges to a number z 6= f(a). By choosing a further subsequence we
can assume without loss of generality that xnk

< a, k = 1, 2, .... (The proof is similar if
we assume xnk

> a, k = 1, 2, ....) If x ∈ J, x < a then there exists a natural number k0

such that for k ≥ n0, x < xnk
, which implies f(x) ≤ f(xnk

) and thus f(x) ≤ z. Since
for x ∈ J, x ≥ a we have f(x) ≥ f(a), we thus obtained that (z, f(a)) ∩ f(J) = ∅ but
f(xnk

) ∈ f(J), f(xnk
) ≤ z and f(a) ∈ f(J). This contradicts that f(J) is an interval.

Thus we must have lim f(xn) = f(a) for every sequence xn → a and hence f is continuous
at a.


