Math. 4317, Practice Test 1

1. Let $a>2$ and $b=1+\sqrt{a-1}$. Show that $2<b<a$.
2. Show that $2^{n}+3^{n}$ is a multiple of 5 for all odd $n \in \mathbb{N}$.
3. Let $f: X \times Y \rightarrow \mathbb{R}$ be a function with bounded range. Show that

$$
\sup _{x \in X} \inf _{y \in Y} f(x, y) \leq \inf _{y \in Y} \sup _{x \in X} f(x, y) .
$$

4. Let $f: A \rightarrow B$ be a surjection and $g: B \rightarrow C$ be such that $g \circ f$ is an injection. Prove that both f and g are injections.
5. Can you find a compact set $A \subset \mathbb{R}$ and a function $f: A \rightarrow A$ such that $f(A)$ is not compact?
6. We first show that $\sqrt{a-1}>1$. If $\sqrt{a-1} \leq 1$ then $a-1=\sqrt{a-1} \cdot \sqrt{a-1} \leq$ $\sqrt{a-1} \cdot 1 \leq 1$ which is a contradiction.

Therefore $b=1+\sqrt{a-1}>2$.
If $b \geq a$ then $b-1 \geq a-1>\sqrt{a-1}$ which is a contradiction. Therefore we must have $b<a$.
2. The proof is by induction. $2^{1}+3^{1}=5=5 \cdot 1$ so the statement is true for $k=1$. Suppose that the statement is true for an odd number $2 k-1$. We need to show that it is true for $2(k+1)-1$, i.e. that $2^{2 k-1}+3^{2 k-1}=5 m$ for some $m \in \mathbb{N}$. We now have

$$
2^{2 k+1}+3^{2 k+1}=2^{2 k-1} 4+3^{2 k-1} 9=\left(2^{2 k-1}+3^{2 k-1}\right) 4+3^{2 k-1} 5=5\left(4 m+3^{2 k-1}\right)
$$

which proves the claim.
3. For every $x_{0} \in x$ and $y_{0} \in Y$ we have

$$
\inf _{y \in Y} f\left(x_{0}, y\right) \leq f\left(x_{0}, y_{0}\right)
$$

Therefore $\sup _{x \in X} f\left(x, y_{0}\right)$ is an upper bound of $\left\{\inf _{y \in Y} f(x, y): x \in X\right\}$ and so

$$
\sup _{x \in X} \inf _{y \in Y} f(x, y) \leq \sup _{x \in X} f\left(x, y_{0}\right) .
$$

But this implies that $\sup _{x \in X} \inf _{y \in Y} f(x, y)$ is a lower bound of $\left\{\sup _{x \in X} f(x, y): y \in Y\right.$ and so we obtain

$$
\sup _{x \in X} \inf _{y \in Y} f(x, y) \leq \inf _{y \in Y} \sup _{x \in X} f(x, y)
$$

4. Let $(b, c) \in g$ and $\left(b^{\prime}, c\right) \in g$. Since f is a surjection there exist $a, a^{\prime} \in A$ such that $(a, b) \in f$ and $\left(a^{\prime}, b^{\prime}\right) \in f$. But then $(a, c) \in g \circ f$ and $\left(a^{\prime}, c\right) \in g \circ f$. Therefore $a=a^{\prime}$ and this implies $b=b^{\prime}$ which means that g is an injection.

To show that f is an injection we take $(a, b) \in f$ and $\left(a^{\prime}, b\right) \in f$. Let $c \in C$ be such that $(b, c) \in g$. Then $(a, c) \in g \circ f$ and $\left(a^{\prime}, c\right) \in g \circ f$ which again implies that $a=a^{\prime}$ which proves the claim.
5. Take $A=[0,1]$ and f defined by $f(x)=x / 2$ for $0 \leq x<1$ and $f(1)=1$. Then $f(A)=[0,1 / 2) \cup\{1\}$. This set is not closed so it is not compact.

