Practice Test 2

1. Let f: IR — IR, f € C%(IR), f/(0) = 0. Define g : IR" — IR by g(x) = f(||x||). Show
that g € C1(IR™).

2. Let f,g: IR — IR be continuously differentiable, f(1) = ¢g(1) = 0, and |f'(1)| # |¢’(1)|-
Show that the system

flzy) +g9(yz) =0, g(zy)+ f(yz) =0

can be solved for y and z as functions of x near the point (x,y, z) = (1,1,1). Compute the
derivatives of y and z with respect to z at 1 if /(1) =1,¢'(1) = 0.

3. Define T : IR? — IR? by T(x,y) = (e* cosy, e*siny). What is the image of T? Show
that for every (z,y) € IR? there is an open neighborhood U of (z,%) such that Ty is
invertible and its inverse is of class C1(T'(U)). Is it true that if f : Q — IRP, where Q is
an open subset of IRP, f € C1(Q) and J;(z) # 0 for every z € Q then f is invertible as a
map from Q onto f(2)?

4. Let A be a symmetric p X p matrix. Show that the maximum value of f(z) = (Ax) -z
on the unit sphere {x € IR : ||z|| = 1} is equal to the largest eigenvalue of A.

5. Let g be the function from problem 1. Does D?g(0) exist? Find D?g(0) if it exists.



Solutions:

1. Away from the origin g(z) = f(||z|) = f(\/2} + ... + 22) is the composition of two

differentiable functions and therefore using chain rule we have

fori=1,...,n,

Dig(x) = f'(Ilz)Di(ll=|l) = (lell)

and these functions are continuous. Moreover lim ;o D;g(z) = 0 for every 4, since

f'(ll= H) < [zl = 1 (0)] =0
as ¢ — 0, and
Dig(0) = tim 20 IOy JOZTO _ 1) —

Therefore all partial derivatives of g exist and are continuous on IR" and thus g € C*(IR").
2. Define the map F : IR® — IR? by

F(z,y,2) = (f(xy) + g(y2), 9(zy) + f(yz)).
We have F'(1,1,1) = 0 and

O(Fy, Fy) . _ get [ vz + 9 (y2)2
y.z) O >_dt<9’ y)x +

Therefore

M — de ) +4'(1) ¢'()\ _ , p 2 2
Ay, ) (1,1,1) = det <g/ + £/(1) f/(l)) = (f'(1)) (¢'(1)) #£0.

Therefore, by the Implicit Function theorem there exists a continuously differentiable func-
tion ¢(x) = (y(x), z(z)) in a neighborhood W of x = 1 and a neighborhood U of (1,1,1)
such that (x,y, z) € U satisfies F/(z,y, z) = 0 if and only if F/(z, ¢(z)) = F(z,y(x), z(x)) =
0 for z € W, i.e. the equations can be solved for y and z as functions of x. Moreover we

know tha
T b= (20) - (2 40 (1)

(1) ()= D6E)-():



3. Let (u,v) # (0,0) € IR®. Then if + = Invu2+ 2 and y is such that cosy =
u/vVu? +v? siny = v/vVu? + v? we get

T(w,y) = (V@7 L Vet Ly (g ),

VaE T Vit o
Since ||T'(z,y)|| = €* > 0, (0,0) does not belong to the image of T'. Therefore the image
of T is IR* \ {(0,0)}.
Since the partial derivatives of the coordinate functions of T' are continuous, T &€
C*(IR?). Now for every (z,y) € IR?

e’ cosy —ersiny
e’siny  e*cosy

Jr(x,y) = det ( ) = e?"(cos? y +sin? y) = €2 £ 0.

Thus, by the Inverse Mapping theorem, there exists an open neighborhood U of (z, y) such
that 7}y is invertible and its inverse is of class C1(T(U)).

The map T is an example of a map such that Jp(z,y) # 0 for every (x,y) € IR? but
T is not invertible as a map from IR* onto IR? \ {(0,0)}.

4. We want to maximize f subject to the constraint g(z) = ||z||*> — 1 = 0. Since f(z +
h) — f(x) —2Ax - h = Ah - h, we have
—_— —_— . . . 2
i M@0 = f() =240 b _ AR B b AL
Inll—0 7] Inli—o  [|A] Inli—0  IAll

Df(x)(h) = 2Ax - h. Also Dg(x)(h) = 2x - h. Since the unit sphere is compact, the
maximum of f is attained at some point ¢. Thus by Lagrange’s theorem there must exist
A such that

2Ac = A2c.

Therefore \ is an eigenvalue of A and c¢ is an eigenvector. Moreover
fle)=xc-c=Ne|? = A,
i.e. the maximum value of f is equal to an eigenvalue of A. Obviously the maximum value

must be equal to the largest eigenvalue of A.

5. Identifying Dg(z) with the gradient of g at  we need to show that the map x —
f’(Ha:H)ﬁ is differentiable at 0. Recall that Dg(0) = 0. But

L (D) pzp = 0 = £7(0)|]
<

1m <
] —0 1Edl ] —0

L7 Cl]l) = f7(0)

]l

- (0| =o.

Therefore D?g(0) exists, the Hessian matrix (of second partial derivatives) at 0 is equal to
f"(0)I, and

D?g(0)(u,v) = f"(0) Z Ui Vi



