Practice Test 2

1. Let $f: \mathbb{R} \rightarrow \mathbb{R}, f \in C^{2}(\mathbb{R}), f^{\prime}(0)=0$. Define $g: \mathbb{R}^{n} \rightarrow \mathbb{R}$ by $g(x)=f(\|x\|)$. Show that $g \in C^{1}\left(\mathbb{R}^{n}\right)$.
2. Let $f, g: \mathbb{R} \rightarrow \mathbb{R}$ be continuously differentiable, $f(1)=g(1)=0$, and $\left|f^{\prime}(1)\right| \neq\left|g^{\prime}(1)\right|$. Show that the system

$$
f(x y)+g(y z)=0, \quad g(x y)+f(y z)=0
$$

can be solved for y and z as functions of x near the point $(x, y, z)=(1,1,1)$. Compute the derivatives of y and z with respect to x at 1 if $f^{\prime}(1)=1, g^{\prime}(1)=0$.
3. Define $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ by $T(x, y)=\left(e^{x} \cos y, e^{x} \sin y\right)$. What is the image of T ? Show that for every $(x, y) \in \mathbb{R}^{2}$ there is an open neighborhood U of (x, y) such that $T_{\mid U}$ is invertible and its inverse is of class $C^{1}(T(U))$. Is it true that if $f: \Omega \rightarrow \mathbb{R}^{p}$, where Ω is an open subset of $\mathbb{R}^{p}, f \in C^{1}(\Omega)$ and $J_{f}(z) \neq 0$ for every $z \in \Omega$ then f is invertible as a map from Ω onto $f(\Omega)$?
4. Let A be a symmetric $p \times p$ matrix. Show that the maximum value of $f(x)=(A x) \cdot x$ on the unit sphere $\left\{x \in \mathbb{R}^{p}:\|x\|=1\right\}$ is equal to the largest eigenvalue of A.
5 . Let g be the function from problem 1. Does $D^{2} g(0)$ exist? Find $D^{2} g(0)$ if it exists.

Solutions:

1. Away from the origin $g(x)=f(\|x\|)=f\left(\sqrt{x_{1}^{2}+\ldots+x_{n}^{2}}\right)$ is the composition of two differentiable functions and therefore using chain rule we have

$$
D_{i} g(x)=f^{\prime}(\|x\|) D_{i}(\|x\|)=f^{\prime}(\|x\|) \frac{x_{i}}{\|x\|} \quad \text { for } i=1, \ldots, n
$$

and these functions are continuous. Moreover $\lim _{\|x\| \rightarrow 0} D_{i} g(x)=0$ for every i, since

$$
\left|f^{\prime}(\|x\|) \frac{x_{i}}{\|x\|}\right| \leq\left|f^{\prime}(\|x\|)\right| \rightarrow\left|f^{\prime}(0)\right|=0
$$

as $x \rightarrow 0$, and

$$
D_{i} g(0)=\lim _{t \rightarrow 0} \frac{g\left(t e_{i}\right)-g(0)}{t}=\lim _{t \rightarrow 0} \frac{f(t)-f(0)}{t}=f^{\prime}(0)=0
$$

Therefore all partial derivatives of g exist and are continuous on \mathbb{R}^{n} and thus $g \in C^{1}\left(\mathbb{R}^{n}\right)$.
2. Define the map $F: \mathbb{R}^{3} \rightarrow \mathbb{R}^{2}$ by

$$
F(x, y, z)=(f(x y)+g(y z), g(x y)+f(y z)) .
$$

We have $F(1,1,1)=0$ and

$$
\frac{\partial\left(F_{1}, F_{2}\right)}{\partial(y, z)}(x, y, z)=\operatorname{det}\left(\begin{array}{cc}
f^{\prime}(x y) x+g^{\prime}(y z) z & g^{\prime}(x y) y \\
g^{\prime}(x y) x+f^{\prime}(y z) z & f^{\prime}(y z) y
\end{array}\right)
$$

Therefore

$$
\frac{\partial\left(F_{1}, F_{2}\right)}{\partial(y, z)}(1,1,1)=\operatorname{det}\left(\begin{array}{cc}
f^{\prime}(1)+g^{\prime}(1) & g^{\prime}(1) \\
g^{\prime}(1)+f^{\prime}(1) & f^{\prime}(1)
\end{array}\right)=\left(f^{\prime}(1)\right)^{2}-\left(g^{\prime}(1)\right)^{2} \neq 0 .
$$

Therefore, by the Implicit Function theorem there exists a continuously differentiable function $\varphi(x)=(y(x), z(x))$ in a neighborhood W of $x=1$ and a neighborhood U of $(1,1,1)$ such that $(x, y, z) \in U$ satisfies $F(x, y, z)=0$ if and only if $F(x, \varphi(x))=F(x, y(x), z(x))=$ 0 for $x \in W$, i.e. the equations can be solved for y and z as functions of x. Moreover we know that

$$
\begin{gathered}
D \varphi(1)=\binom{y^{\prime}(1)}{z^{\prime}(1)}=-\left(\begin{array}{cc}
f^{\prime}(1)+g^{\prime}(1) & g^{\prime}(1) \\
g^{\prime}(1)+f^{\prime}(1) & f^{\prime}(1)
\end{array}\right)^{-1}\binom{f^{\prime}(1)}{g^{\prime}(1)} \\
=-\left(\begin{array}{ll}
1 & 0 \\
1 & 1
\end{array}\right)^{-1}\binom{1}{0}=-\left(\begin{array}{cc}
1 & 0 \\
-1 & 1
\end{array}\right)\binom{1}{0}=\binom{-1}{1}
\end{gathered}
$$

3. Let $(u, v) \neq(0,0) \in \mathbb{R}^{2}$. Then if $x=\ln \sqrt{u^{2}+v^{2}}$ and y is such that $\cos y=$ $u / \sqrt{u^{2}+v^{2}}, \sin y=v / \sqrt{u^{2}+v^{2}}$ we get

$$
T(x, y)=\left(e^{\ln \sqrt{u^{2}+v^{2}}} \frac{u}{\sqrt{u^{2}+v^{2}}}, e^{\ln \sqrt{u^{2}+v^{2}}} \frac{v}{\sqrt{u^{2}+v^{2}}}\right)=(u, v) .
$$

Since $\|T(x, y)\|=e^{x}>0,(0,0)$ does not belong to the image of T. Therefore the image of T is $\mathbb{R}^{2} \backslash\{(0,0)\}$.

Since the partial derivatives of the coordinate functions of T are continuous, $T \in$ $C^{1}\left(\mathbb{R}^{2}\right)$. Now for every $(x, y) \in \mathbb{R}^{2}$

$$
J_{T}(x, y)=\operatorname{det}\left(\begin{array}{cc}
e^{x} \cos y & -e^{x} \sin y \\
e^{x} \sin y & e^{x} \cos y
\end{array}\right)=e^{2 x}\left(\cos ^{2} y+\sin ^{2} y\right)=e^{2 x} \neq 0
$$

Thus, by the Inverse Mapping theorem, there exists an open neighborhood U of (x, y) such that $T_{\mid U}$ is invertible and its inverse is of class $C^{1}(T(U))$.

The map T is an example of a map such that $J_{T}(x, y) \neq 0$ for every $(x, y) \in \mathbb{R}^{2}$ but T is not invertible as a map from \mathbb{R}^{2} onto $\mathbb{R}^{2} \backslash\{(0,0)\}$.
4. We want to maximize f subject to the constraint $g(x)=\|x\|^{2}-1=0$. Since $f(x+$ $h)-f(x)-2 A x \cdot h=A h \cdot h$, we have

$$
\lim _{\|h\| \rightarrow 0} \frac{\|f(x+h)-f(x)-2 A x \cdot h\|}{\|h\|}=\lim _{\|h\| \rightarrow 0} \frac{\|A h \cdot h\| \cdot h}{\|h\|} \leq \lim _{\|h\| \rightarrow 0} \frac{\|A\|\|h\|^{2}}{\|h\|}=0
$$

$D f(x)(h)=2 A x \cdot h$. Also $D g(x)(h)=2 x \cdot h$. Since the unit sphere is compact, the maximum of f is attained at some point c. Thus by Lagrange's theorem there must exist λ such that

$$
2 A c=\lambda 2 c
$$

Therefore λ is an eigenvalue of A and c is an eigenvector. Moreover

$$
f(c)=\lambda c \cdot c=\lambda\|c\|^{2}=\lambda
$$

i.e. the maximum value of f is equal to an eigenvalue of A. Obviously the maximum value must be equal to the largest eigenvalue of A.
5. Identifying $D g(x)$ with the gradient of g at x we need to show that the map $x \rightarrow$ $f^{\prime}(\|x\|) \frac{x}{\|x\|}$ is differentiable at 0 . Recall that $D g(0)=0$. But

$$
\lim _{\|x\| \rightarrow 0} \frac{\left\|f^{\prime}(\|x\|) \frac{x}{\|x\|}-0-f^{\prime \prime}(0) x\right\|}{\|x\|} \leq \lim _{\|x\| \rightarrow 0}\left|\frac{\| f^{\prime}(\|x\|)-f^{\prime}(0)}{\|x\|}-f^{\prime \prime}(0)\right|=0
$$

Therefore $D^{2} g(0)$ exists, the Hessian matrix (of second partial derivatives) at 0 is equal to $f^{\prime \prime}(0) I$, and

$$
D^{2} g(0)(u, v)=f^{\prime \prime}(0) \sum_{i=1}^{n} u_{i} v_{i}
$$

