Math. 4318, Test 1, 02/17/2020
Name: SOLUTIONS
1 . $(8 \mathrm{pts})$ Suppose $f$ is continuous on $[0,+\infty)$, differentiable on $(0,+\infty), f(0)=0$, and $f^{\prime}$ is an increasing function. Define $g(x)=\frac{f(x)}{x}$ for $x>0$. Prove that $g$ is increasing on $(0,+\infty)$.

It is enough to show that $g^{\prime} \geq 0$. Using the product rule we have

$$
g^{\prime}(x)=f^{\prime}(x) \frac{1}{x}-f(x) \frac{1}{x^{2}}=\frac{x f^{\prime}(x)-f(x)}{x^{2}} .
$$

Thus we need to show that $x f^{\prime}(x) \geq f(x)$ for $x>0$. This is however clear since by the Mean Value Theorem $f(x)=f(x)-f(0)=f^{\prime}(c)(x-0)=f^{\prime}(c) x$ for some $c \in[0, x]$. Therefore, since $f^{\prime}$ is increasing, $f(x)=f^{\prime}(c) x \leq f^{\prime}(x) x$.
2. $(8 \mathrm{pts})$ Let $f, f^{\prime}$ be continuous on $[a, b]$. Let $c \in(a, b)$ and let $f^{\prime}$ satisfy

$$
\left|f^{\prime}(x)-f^{\prime}(c)\right| \leq L|x-c|
$$

for all $x \in(a, b)$ for some $L>0$. Show that

$$
\left|f(x)-f(c)-f^{\prime}(c)(x-c)\right| \leq \frac{L}{2}|x-c|^{2}
$$

for all $x \in[a, b]$. (You will get 5 points if you can show that the inequality holds with constant $L$ instead of $L / 2$.)

By Fundamental Theorem of Calculus

$$
\begin{aligned}
& f(x)-f(c)=\int_{c}^{x} f^{\prime}(y) d y \leq \int_{c}^{x}\left(f^{\prime}(c)+L(y-c)\right) d y \\
= & f^{\prime}(c)(x-c)+\left.\frac{L}{2}(y-c)^{2}\right|_{c} ^{x}=f^{\prime}(c)(x-c)+\frac{L}{2}|x-c|^{2} .
\end{aligned}
$$

Similarly

$$
\begin{aligned}
& f(x)-f(c)=\int_{c}^{x} f^{\prime}(y) d y \geq \int_{c}^{x}\left(f^{\prime}(c)-L(y-c)\right) d y \\
= & f^{\prime}(c)(x-c)-\left.\frac{L}{2}(y-c)^{2}\right|_{c} ^{x}=f^{\prime}(c)(x-c)-\frac{L}{2}|x-c|^{2} .
\end{aligned}
$$

Therefore

$$
-\frac{L}{2}|x-c|^{2} \leq f(x)-f(c)-f^{\prime}(c)(x-c) \leq \frac{L}{2}|x-c|^{2}
$$

which proves the claim.
3. $(8 \mathrm{pts})$ Let $f$ be Riemann integrable on $[a, b]$. Define for $x \in[a, b]$

$$
F(x)=\int_{a}^{x} f(t) d t
$$

Show that $F$ is continuous on $[a, b]$ and $F^{\prime}(x)$ exists and equals $f(x)$ at every $x$ at which $f$ is continuous.

Let $|f(t)| \leq C$ for all $t \in[a, b]$. Then if $x \leq y$ we have

$$
|F(y)-F(x)|=\left|\int_{x}^{y} f(t) d t\right| \leq \int_{x}^{y} C d t=C|y-x|
$$

Thus $F$ is uniformly continuous on $[a, b]$ (in fact it is Lipschitz continuous with Lipschitz constant $C$ ).

Let now $f$ be continuous at $x$. We notice that

$$
f(x)=f(x) \frac{1}{y-x} \int_{x}^{y} d t=\frac{1}{y-x} \int_{x}^{y} f(x) d t
$$

For $\epsilon>0$ there is $\delta>0$ such that $|f(t)-f(x)|<\epsilon$ whenever $|t-x|<\delta$. Hence, if $|y-x|<\delta$ we have

$$
\begin{aligned}
& \left|\frac{F(y)-F(x)}{y-x}-f(x)\right|=\left|\frac{1}{y-x} \int_{x}^{y}[f(t)-f(x)] d t\right| \\
\leq & \frac{1}{|y-x|}\left|\int_{x}^{y}\right| f(t)-f(x)|d t| \leq \frac{1}{|y-x|}\left|\int_{x}^{y} \epsilon d t\right|=\epsilon
\end{aligned}
$$

Therefore

$$
\lim _{y \rightarrow x} \frac{F(y)-F(x)}{y-x}=f(x)
$$

i.e. $F^{\prime}(x)$ exists and equals $f(x)$.
4. ( 8 pts ) Explain why the Riemann-Stieltjes integral

$$
\int_{0}^{2} x^{2} d\left(\left[x^{3}\right]+e^{x^{2}}\right)
$$

exists and evaluate it.
The integral exists since $f(x)=x^{2}$ is continuous and $g(x)=\left[x^{3}\right]+e^{x^{2}}$ is increasing and bounded on $[0,2]$. We have

$$
\int_{0}^{2} x^{2} d\left(\left[x^{3}\right]+e^{x^{2}}\right)=\int_{0}^{2} x^{2} d\left(\left[x^{3}\right]\right)+\int_{0}^{2} x^{2} d\left(e^{x^{2}}\right)
$$

$$
\begin{gathered}
=\sum_{i=1}^{8} i^{\frac{2}{3}}+\left.x^{2} e^{x^{2}}\right|_{0} ^{2}-\int_{0}^{2} e^{x^{2}} d\left(x^{2}\right)=\sum_{i=1}^{8} i^{\frac{2}{3}}+4 e^{4}-\int_{0}^{2} 2 x e^{x^{2}} d x \\
=\sum_{i=1}^{8} i^{\frac{2}{3}}+4 e^{4}-\left.e^{x^{2}}\right|_{0} ^{2}=\sum_{i=1}^{8} i^{\frac{2}{3}}+3 e^{4}+1
\end{gathered}
$$

5. (10 pts) Show that

$$
\int_{0}^{+\infty} \frac{\sin \left(x+x^{2}\right)}{x^{\lambda}} d x
$$

exists for $0<\lambda<2$.
Since

$$
\lim _{x \rightarrow 0} \frac{\sin \left(x+x^{2}\right)}{x}=1
$$

we have for $0<x \leq 1$

$$
0<\frac{\sin \left(x+x^{2}\right)}{x^{\lambda}}=\frac{\sin \left(x+x^{2}\right)}{x} \frac{x}{x^{\lambda}} \leq C \frac{1}{x^{\lambda-1}}
$$

for some constant $C>0$ so

$$
\int_{0}^{1} \frac{\sin \left(x+x^{2}\right)}{x^{\lambda}} d x
$$

exists by the Comparison Test.
As regards the infinite integral on $[1,+\infty)$ we use Dirichlet's Test. The function $1 / x^{\lambda}$ is monotonically decreasing to 0 as $x \rightarrow+\infty$. Therefore we need to show that the set $\left\{\int_{1}^{c} \sin \left(x+x^{2}\right) d x: c \geq 1\right\}$ is bounded. However, making the change of variables $z=x+x^{2}$, we have

$$
\int_{1}^{c} \sin \left(x+x^{2}\right) d x=\int_{2}^{c+c^{2}} \frac{\sin z}{\sqrt{1+4 z}} d z
$$

The latter integrals are bounded since the infinite integral

$$
\int_{2}^{+\infty} \frac{\sin z}{\sqrt{1+4 z}} d z
$$

exists, which can be seen after another application of Dirichlet's Test.

