
Math. 4318, Test 1, 02/17/2020

Name: SOLUTIONS

1.(8 pts) Suppose f is continuous on [0,+∞), differentiable on (0,+∞), f(0) = 0, and

f ′ is an increasing function. Define g(x) = f(x)
x

for x > 0. Prove that g is increasing on
(0,+∞).

It is enough to show that g′ ≥ 0. Using the product rule we have

g′(x) = f ′(x)
1

x
− f(x)

1

x2
=

xf ′(x)− f(x)

x2
.

Thus we need to show that xf ′(x) ≥ f(x) for x > 0. This is however clear since by the
Mean Value Theorem f(x) = f(x) − f(0) = f ′(c)(x − 0) = f ′(c)x for some c ∈ [0, x].
Therefore, since f ′ is increasing, f(x) = f ′(c)x ≤ f ′(x)x.

2.(8 pts) Let f, f ′ be continuous on [a, b]. Let c ∈ (a, b) and let f ′ satisfy

|f ′(x)− f ′(c)| ≤ L|x− c|

for all x ∈ (a, b) for some L > 0. Show that

|f(x)− f(c)− f ′(c)(x− c)| ≤ L

2
|x− c|2

for all x ∈ [a, b]. (You will get 5 points if you can show that the inequality holds with
constant L instead of L/2.)

By Fundamental Theorem of Calculus

f(x)− f(c) =

∫ x

c

f ′(y)dy ≤
∫ x

c

(f ′(c) + L(y − c))dy

= f ′(c)(x− c) +
L

2
(y − c)2

∣

∣

x

c
= f ′(c)(x− c) +

L

2
|x− c|2.

Similarly

f(x)− f(c) =

∫ x

c

f ′(y)dy ≥
∫ x

c

(f ′(c)− L(y − c))dy

= f ′(c)(x− c)− L

2
(y − c)2

∣

∣

x

c
= f ′(c)(x− c)− L

2
|x− c|2.

Therefore

−L

2
|x− c|2 ≤ f(x)− f(c)− f ′(c)(x− c) ≤ L

2
|x− c|2

which proves the claim.



3.(8 pts) Let f be Riemann integrable on [a, b]. Define for x ∈ [a, b]

F (x) =

∫ x

a

f(t)dt.

Show that F is continuous on [a, b] and F ′(x) exists and equals f(x) at every x at which
f is continuous.

Let |f(t)| ≤ C for all t ∈ [a, b]. Then if x ≤ y we have

|F (y)− F (x)| =
∣

∣

∣

∣

∫ y

x

f(t)dt

∣

∣

∣

∣

≤
∫ y

x

Cdt = C|y − x|.

Thus F is uniformly continuous on [a, b] (in fact it is Lipschitz continuous with Lipschitz
constant C).

Let now f be continuous at x. We notice that

f(x) = f(x)
1

y − x

∫ y

x

dt =
1

y − x

∫ y

x

f(x)dt.

For ǫ > 0 there is δ > 0 such that |f(t) − f(x)| < ǫ whenever |t − x| < δ. Hence, if
|y − x| < δ we have

∣

∣

∣

∣

F (y)− F (x)

y − x
− f(x)

∣

∣

∣

∣

=

∣

∣

∣

∣

1

y − x

∫ y

x

[f(t)− f(x)]dt

∣

∣

∣

∣

≤ 1

|y − x|

∣

∣

∣

∣

∫ y

x

|f(t)− f(x)|dt
∣

∣

∣

∣

≤ 1

|y − x|

∣

∣

∣

∣

∫ y

x

ǫ dt

∣

∣

∣

∣

= ǫ.

Therefore

lim
y→x

F (y)− F (x)

y − x
= f(x),

i.e. F ′(x) exists and equals f(x).

4.(8 pts) Explain why the Riemann-Stieltjes integral

∫ 2

0

x2d
(

[x3] + ex
2
)

exists and evaluate it.

The integral exists since f(x) = x2 is continuous and g(x) = [x3] + ex
2

is increasing
and bounded on [0, 2]. We have

∫ 2

0

x2d
(

[x3] + ex
2
)

=

∫ 2

0

x2d([x3]) +

∫ 2

0

x2d(ex
2

)



=
8

∑

i=1

i
2

3 + x2ex
2 |20 −

∫ 2

0

ex
2

d(x2) =
8

∑

i=1

i
2

3 + 4e4 −
∫ 2

0

2xex
2

dx

=
8

∑

i=1

i
2

3 + 4e4 − ex
2 |20 =

8
∑

i=1

i
2

3 + 3e4 + 1.

5.(10 pts) Show that
∫ +∞

0

sin(x+ x2)

xλ
dx

exists for 0 < λ < 2.

Since

lim
x→0

sin(x+ x2)

x
= 1

we have for 0 < x ≤ 1

0 <
sin(x+ x2)

xλ
=

sin(x+ x2)

x

x

xλ
≤ C

1

xλ−1

for some constant C > 0 so
∫ 1

0

sin(x+ x2)

xλ
dx

exists by the Comparison Test.
As regards the infinite integral on [1,+∞) we use Dirichlet’s Test. The function

1/xλ is monotonically decreasing to 0 as x → +∞. Therefore we need to show that the set
{
∫ c

1
sin(x+x2)dx : c ≥ 1} is bounded. However, making the change of variables z = x+x2,

we have
∫ c

1

sin(x+ x2)dx =

∫ c+c2

2

sin z√
1 + 4z

dz.

The latter integrals are bounded since the infinite integral

∫ +∞

2

sin z√
1 + 4z

dz

exists, which can be seen after another application of Dirichlet’s Test.


